A Multiresolution Spline With Application to
Image Mosaics

PETER J. BURT and EDWARD H. ADELSON
RCA David Sarnoff Research Center

We define a multiresolution spline technique for combining two or more images into a larger image
mosaic. In this procedure, the images to be splined are first decomposedinto a set of band-pass
filtered componentimages. Next, the componentimagesin each spatial frequency hand are assembled
into a correspondingbandpassmosaic. In this step, componentimages are joined using a weighted
average within a transition zone which is proportional in size to the wave lengths representedin the

band. Finally, these band-passmosaic imagesare summedto obtain the desired image mosaic. In this

way, the spline is matchedto the scale of featureswithin the imagesthemselvesWhen coarse features
occur near borders, these are blended gradually over a relatively large distance without blurring or

otherwise degrading finer image details in the neighborhood of th e border.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/lImage Generation; 1.4.3
[Image Processing]: Enhancement

General Terms: Algorithms

Additional Key Words and Phrases: Image mosaics, photomosaics, splines, pyramid algorithms,
multiresolution analysis, frequency analysis, fast algorithms

1. INTRODUCTION

The needto combine two or more imagesinto a larger mosaic has arisen in a
number of contexts. Panoramicviews of Jupiter and Saturn have been assembled
for multiple images returned to Earth from the two Voyager spacecraft.In a
similar way, Landsat photographsare routinely assembledinto panoramic views
of Earth. Detailed images of galaxies and nebulae have been assembled from mul-
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Fig. 1. A pair of imagesmay be representedas a pair of surfacesabovethe (x, y) plane. The problem
of image splining is to join these surfaceswith a smooth seam,with as little distortion of each surface
as possible.

tiple telescope photographs.In each of these cases, the mosaic technique is
usedto constructan image with a far larger field of view or level of detail than
could be obtainedwith a single photograph.In advertising or computer graphics,
the technigue can be used to create synthetic images from possibly unrelated
components.

A technicalproblem commonto all applicationsof photomosaicsis joining two
images so that the edge betweenthem is not visible. Even slight differencesin
image gray level across an extended boundary can make that boundary quite
noticeable. Unfortunately, such gray level differences are frequently unavoidable;
they may be due to such factors as differencesin cameraposition or in image
processingprior to assembly. Thus, a technique is required which will modify
image gray levels in the vicinity of a boundaryto obtain a smooth transition
betweenimages.The two imagesto be joined may be consideredas two surfaces,
where the image intensity I(x, y) correspondsto the elevation above the X,y
plane. The problem, as illustrated in Figure 1, may be stated as follows: How can
the two surfacesbe gently distorted so that they can be joined together with a
smooth seam?We will usethe term image spline to refer to digital techniquesfor
making these adjustments.A good image spline will make the seam perfectly
smooth, yet will preserve as much of the original image information as possible.

It is probably safe to say that no fully satisfactory splining technique has yet
been found. Most image mosaics are still produced without any attempt at remov-
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Fig. 2. The weightedaveragemethodmay be used to avoid seamswhen mosaicsare constructedfrom
overlapped images. Each image is multipliedabyeighting function which decreasesnonotonicallyacross
its border; the resulting images are then summed to form the mosaic. Exaeigit¢ing functionsare shown
here in one dimension. The width of the transition Zbiea critical parameter for this method.

ing visible boundaries(e.g., [4]). The magnitude of the gray level difference
acrossa mosaic boundary can be reducedto some extent by a judicious choice of
boundarylocation when splining overlappedimages. The match may be improved
by adding a linear ramp to pixel values on either side of the boundaryto obtain
equal values at the boundaryitself [6, 7]. A still smoother transition can be
obtained using a technique recently proposed by Peleg [9]: The "smoothest
possible" correction function is constructedwhich can be addedto each image of
a mosaic to eliminate edge differences. However, this technique may not be
practical for large images, since the correction functions must be computed using
an iterative relaxation algorithm.

We are concernedwith a weighted average splining technique. To begin, it is
assumedthat the imagesto be joined overlap so that it is possible to compute
the gray level value of points within a transition zone as a weighted average of
the correspondingpoints in eachimage. Supposethat one image, FI(i), is on the
left and the other, Fr(i), is on the right, and that the imagesare to be splined at
a point i (expressedin one dimensionto simplify notation). Let HI(i)) be a
weighting function which decreasesmonotonically from left to right and let
Hr(i) = 1 —HI(i) (see Figure 2). Then, the splined im&gas given by

FGi) = HIi—i ) FI(i) + Hr(i—1 ) Fr(i).

It is clear that with an appropriatechoice of H, the weighted averagetechnique
will result in a transition which is smooth. However, this alone does not ensure
that the location of the boundary will be invisible. Let T be the width of a
transition zone over which HI changesfrom 1 to 0. If T is small comparedto
image features,then the boundary may still appearas a step in image gray level,
albeit a somewhatblurred step. If, on the other hand, T is large compared to
image features, features from both images may appear superimposedwithin the
transition zone, as in a photographic double exposure.
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These extremesare illustrated in Figure 3 with several attempts to spline two
synthetic images of stars. The original images, Figures 3a and 3b (257 x 257
pixels) are identical exceptfor a slight shift in vertical position and a slight shift
in meangray level. The first of these differencescan arise from optical distortions
or misalignmentsof actual photographs,while the secondcan be due to differ-
ences in atmospheric conditions or in photographic development.

In this example, photomosaicsare obtained by joining the left half of Figure
3a with the right half of Figure 3b. If this is donewithout any attemptto smooth
the image transition (T = 0), the boundary will appearas a sharp edge (Figure
3c). If insteadthe images are combined by the method of weighted averagewithin
a relatively narrow transition zone (T = 8), the edge appearsblurred but remains
visible (Figure 3d). When the images are splined with a broad transition (T =
64), the edgeis no longer visible but stars have a "double exposed'look within
the transition zone (Figure 3e).

Clearly, the size of the transition zone, relative to the size of image features,
plays a critical role in image splining. To eliminate a visible edgethe transition
width should be at least comparablein size to the largest prominent featuresin
the image. On the other hand, to avoid a double exposureeffect, the zone should
not be much larger than the smallest prominent image features. There is no
choice of T which satisfies both requirementsin the star images of Figure 3
because these contain both a diffuse background and small bright stars.

These constraints can be stated more precisely in terms of the image spatial
frequency content. In particular, a suitable T can only be selectedif the images
to be splined occupy a relatively narrow spatial frequency band. As a rough
requirement,we may stipulate that T should be comparablein size to the wave-
length of the lowest prominent frequencyin the image. If T is smaller than this
the spline will introduce a noticeableedge. On the other hand, to avoid a double
exposureeffect, T should not be much larger than two wave lengths of the highest
prominent frequency componentin the images. This ensuresthat there will not
be room for multiple featureswithin the transition zone. While it is likely that
these limits can be exceeded somewhat without noticeable degradation, the
general conclusion—thatthe band width of images to be splined should be
roughly one octave—is an important one.

How can images which occupy more than an octave be splined? The approach
proposedhere is that such images should first be decomposednto a set of band-
pass componentimages. A separatespline with an appropriately selected T can
then be performedin each band. Finally, the splined band-passcomponents are
recombinedinto the desired mosaic image. We call this approachthe multi-reso-
lution spline. It was used to obtain the image shown in Figure 3f.

In decomposingthe image into frequencybands,it is important that the range
of frequenciesin the original be covered uniformly, although the bandsthemselves
may overlap. As a practical matter, a set of low-passfilters are applied to generate
a sequenceof imagesin which the band limit is reducedfrom image to image in
one-octavesteps. Band-passimages can then be obtained simply by subtracting
each low-pass image from the previous image in the sequence.This not only
ensurescomplete coverageof spatial frequenciesbut meansthat the final mosaic
can be obtained simply by summing the band-pass component images.
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Fig. 3. Common artifacts of the weighted average techniquesare demonstratedin these attempts to
spline two syntheticimagesof stars (Figure 3a and 3b). These differ only in mean gray level and a
slight vertical shift. A seamis clearly visible when the left half of figure 3a is joined with the right
half of Figure 3b without any adjustmentin gray level, as shown in Figure 3c. The seamis still visible
when the weighted average techniqueis used with a narrow transition zone (Figure 3d). However, if
the transition zone is wide, features within the zone appear double (Figure 3e). The first of these
artifacts is due to a gray level mismatch at low spatial frequencies, while the secondis due to a
position mismatch at high frequencies. Both are avoided in the multiresolution method (Figure 3f).
ACM Transactions on Graphics, Vol. 2, No. 4, October 1983.
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Fig. 4. A one-dimensionalgraphical representationof the iterative REDUCE operation used in
pyramid construction.

In Section 2 we presenta highly efficient "pyramid" algorithm for performing
the required filtering operations and in Section 3 we show that the pyramid
structure is ideally suited for performing the splining steps as well.

2. BASIC PYRAMID OPERATIONS

A sequenceof low-pass filtered images G,, G;, . . ., Gy can be obtained by
repeatedlyconvolving a small weighting function with an image [1, 3]. With this
technigue,image sample density is also decreasedwith each iteration so that the
bandwidth is reducedin uniform one-octavesteps. Sample reduction also means
that the cost of computation is held to a minimum.

Figure 4 is a graphical representatiorof the iterative filtering procedurein one
dimension. Each row of dots representsthe samples,or pixels, of one of the
filtered images.The lowest row, G, is the original image. The value of each node
in the next row, G,, is computedas a weightedaverageof a 5 x 5 subarrayof G,
nodes, as shown Nodes of array G, are then computed from G, using the same
patternof weights. The processis iteratedto obtain G, from G,, G; from G, and
so on. The sample distance is doubled with each iteration so that successive
arrays are half as large in each dimension as their predecessorsif we imagine
these arrays stackedone above the other, the result is the tapering data structure
known as a pyramid [10]. If the original image measure2™ + 1 by 2 + 1, then
the pyramid will haveN + 1 levels.

Both sample density and resolution are decreasedfrom level to level of the
pyramid. For this reason,we shall call the local averagingprocesswhich generates
each pyramid level from its predecessora REDUCE operation. Again, let G, be
the original image. Then for Ol< N:

G, = REDUCE [5,4],
by which we mean:

G(,j)= Z iw(m, n)G_,(2i +m,2j +n).

m,n=1

More generally, a pyramid of N + 1 levels may be constructedfrom any image which measures
Mg2" + 1 rows byM 2" + 1 columns, wherM; andM.. are integers.
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The pattern of weights w(m, n) used to generateeach pyramid level from its
predecessolis called the generating kernel. These weights are chosen subject to
four constraints: First, for computational convenience,the generating kernel is
separablew(m, n) = W(m) W(n) Second, the one dimensional function W is
symmetric, W(O) = a, W( 1) = W(l) = b, and W( 2) = W(2) = ¢, as shownin
Figure 4. Third, W is normalized,a + 2b + 2c = 1. The final constraintstipulates
that eachlevel | node must contributethe sametotal weight to level | + 1 nodes:
thus, a + 2c = 2b. Now, combining constraints,we find that a may be considered
a free variable, whild =1/4 andc = 1/4 — a/2.

2.1 Equivalent Weighting Functions

It is clearthat every level | node in the pyramid representsa weighted averageof
a 5 x 5 subarrayof level | — 1 nodes.Each of thesein turn representsan average
of a subarrayof level | — 2. In this way, we can trace the weights for a given
pyramid node back to the original image G, to discoverthe "equivalent weighting
function" W, which, if convolved directly with the original image, would have
given the same node values at level |. It is convenientto discuss pyramid-based
computations in terms of these equivalent weighting functions, although the
iterative REDUCE processis considerably more efficient and is used in all
computations.

The equivalent weighting functions have several properties which will be
important in filtering and splining operations. The scale of these functions
doublesfrom level to level of the pyramid while their shapedoes not change[1].
Function shapedoes dependon the value of parametera in the generatingkernel.
For example,if a = 0.5, the functions are all triangularin shape,while if a = 0.4,
the functions resemble the Gaussian probability density function. Convolution
with a Gaussianhas the effect of low-passfiltering the image. Pyramid construc-
tion is equivalentto convolving the image with a set of Gaussian-likefunctions
to produce a correspondingset of filtered images. Becauseof the importance of
the multiple filter interpretation, we shall refer to this sequenceof images G,
G, .. .,Gy as the Gaussian pyramid.

Supposesamplesin G, are separatecby a unit distance.Then, samplesat level
| are separatedby the distance2'. It can be shown that the width of the equivalent
weighting function W, is 22 — 4, covering 2*? — 3 image samples,or just less
than four times the sample distance (see Figure 5). Thus equivalent weighting
functions centeredon level | sample points will overlap in such a way that each
image pixel contributesto the value of at most 16 leveld samples(4 in one
dimension). If the contributions of any image pixel are summed, the result will
be unity. For each, j, andl,

i W(@i-m2,j-n2)=1

m,n=-2

This result follows from the equal contribution property of the generating kernel.
The Gaussian shape and summation properties of the functions W, mean
they can be used to construct the weighting functidnseeded for image splining
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Fig. 5. Equivalentweighting functions, W,, are shown centered at level | sample points on the left
in the figure, while zero weight is given to points on the right. When these weights are summed, a
uniform value of unity is obtainedon the left, a value of zero on the right, and a monotonic transition
in the center. The weighting functions H used in image splining can be constructedin this way (see
Figure 2).

(Figure 2). SupposeW, is associatedwith each node in the left half of G, while
zero weight is associatedwith nodesin the right half (Figure 5). Then, the sum
of thesefunctions will be a function which decreasesnonotonically from 1 to O,
with a transition zonewidth T equalto 3 times the level | sampleinterval. This
property will be used in the pyramid-based multiresolution spline, although
functions H and W will never be explicity computed.

2.2 The Laplacian Pyramid

The Gaussianpyramid is a set of low-passfiltered images. In order to obtain the
band-passimages required for the multiresolution spline we subtract each level
of the pyramid from the next lowest level. Becausethese arrays differ in sample
density, it is necessanto interpolate new samplesbetweenthose of a given array
before it is subtractedfrom the next lowest array. Interpolation can be achieved
by reversing the REDUCE process.We shall call this an EXPAND operation.
Let G, be the image obtained by expandi@gk times. Then

Go=G,
and for k>0,
G = EXPAND[G, ..

By EXPAND, we mean

) . .
—— [(Ri+m 2] +nQ
Gl,k(l!J)_4Zn’nZ:_2Q,k—1DT' 5> [0
Here, only terms for which (2i + m)/2 and (2] + n)/2 are integers contribute
to the sum. Note that G, , is the samesizeas G;, andthat G,, is the samesize as
the original image.
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We now define a sequence of band-pass imhgeds, . . .,Ly. For 0 <I <N,
L| = G| - EXPAND[GH]] = G| - G|+|’|.

Because there is no higher level array to subtract frgmvé definel = G,.

Just as the value of each node in the Gaussian pyramid could have been
obtained directly by convolving the weighting function W, with the image, each
node of L, can be obtaineddirectly by convolving W, - W,,; with the image. This
difference of Gaussian-like functions resembles the Laplacian operators
commonly used in the image processing [5], so we refer to the sequence
Lo Ly, .. .,Ly as the Laplacian pyramid.

2.3 Summation Property

The steps used to construct the Laplacian pyramid may be reversedto recover
the original image G, exactly. The top pyramid level, L, is first expandedand
addedto L, to recover G,,; this array is then expandedand addedto L., to
recover Gy.,, and so on. Alternatively, we may write

N
G, = ; L.

The expandand sum procedurewill be usedto constructa mosaic image from
its set of splined band-pass components.

2.4 Boundary Conditions

In both the REDUCE and EXPAND operations, special attention must be given
to edgenodes.For example,when a REDUCE is performed,the generatingkernel
for an edgenode at level G, extendsbeyondthe edge of level G, by two nodes.
Therefore, before the REDUCE (or EXPAND) is performed, G, is augmentedby
two rows of nodeson each side. Values are assignedto these nodesby reflection
and inversion acrossthe edgenode. Thus, if G,(0, j) is a node on the left edge of
G,, we set

Gi(-1,j) = 2G,(0,])) - G(1,)),
and
G(-2,)) =2G(0,)) - G(2,))-

This treatment of boundarieshas the effect of extrapolating the images in such
a way that the first derivative is constantat the edge node (the second derivative
is zero).

3. THE MULTIRESOLUTION SPLINE

3.1 Splining Overlapped Images

The multiresolution spline algorithm may be defined rather simply in terms of
the basic pyramid operationsintroduced in the last section. Here variations on
the method will be described for splining overlapped and nonoverlapped square im-

’In fact, the equivalent weighting functions for the Laplacian pyramid are slightly different from
W, -W,_,, because of the EXPAND operation used at lévell.

ACM Transactions on Graphics, Vol. 2, No. 4, October 1983.



226 . P. J. Burt and E. H. Adelson

ages and for splining images of arbitrary shape. Modifications for other tasks
will then be apparent.To begin, supposewe wish to spline the left half of image
A with the right-half of image B. Assume that these images are both square,
measuring2® + 1 pixels on a side, and that they overlap completely. The spline
is achieved in three steps:

Step 1. Laplacian pyramids LA and LB are constructedfor images A and B
respectively.

Step 2. A third Laplacian pyramid LS is constructedby copying nodes from
the left half of LA to the correspondingnodesof LS, and nodesin the
right half of LB to the right half of LS. Nodes along the centerline of
LS are set equal to the average of correspondicand LB nodes.

The centerline for level | of a Laplacian pyramid is at i = 2% Thus, for
all i, j, I,
AG ) if 1<
LS, ]) = E(LA(LJ'H LB(,j))/2 It j=2N2
B (. j) it s on
Step 3. The splined image S is obtainedby expandingand summing the levels
of LS.

The result of applying this procedureto the star example is shown in Figure
3f. Note that the transition betweenimage halves is now smooth, without the
blurred step edge of Figure 3d or the doubling of Figure 3e.

A secondexampleis given in Figure 6. Here we wish to spline two Landsat
imagesof San Francisco, Figures 6a and 6b. These images are identical except
for diffuse background noise which has been added to simulate the effects of
possible differences in atmospheric conditions or image processing. Again, we
wish to constructa mosaicin which the left half of one image is joined to the
right half of the other. If this is done without a spline, the boundaryis easily
visible (Figure 6c). If the multiresolution spline is used, however, the edge is
completely removed (Figure 6d).

A third example shows the result of splining two quite different images, an
apple and an orange (Figures 7a and 7b). The mosaic obtained without a spline
is given in Figure 7c, while that obtainedwith the spline is shown in Figure 7d.
In this case the transition between componentimages has been made slightly
more gradual: in addition to averaging Laplacian nodes along the center line,
nodeson either side of the center nodes have been averagedwith a 3/4 to 1/4
ratio of weights. The splining processhas been repeatedseparatelyfor the red,
green, and blue image color components.Again, a smooth transition is obtained
despite the rather large step in gray level between the apple and orange halves.

In this pyramid-based splining procedure, the equivalent weighting functions
W, play a dual role. Within the domain of eachimage, they act as interpolation
functions betweenlevel | samples.Along the boundary betweenthe image halves,
they act as the splining functions H. If the imagesto be splined are identical,
then the mosaic obtained through the pyramid-based splining will be the same im-
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Fig. 6. The spline applied to Landsat images of San Francisco. When the left half of@&igsijeined to the
right half of Figure 6b without a spline, the boundaryis clearly visible (Figure 6c). No boundaryis visible
when the multiresolution spline is used (Figure 6d).

age again. In this sense, the splining procedure by itself does not introduce
image distortion. As shown in Figure 5, W, extendstwice the sample distance 2
on eachside of the level | sample point. This is an appropriatetransition distance
for splining the frequencies represented in Ithepyramid level.

3.2 Splining Regions of Arbitrary Shape

The stepsoutlined above can be generalizedfor constructinga mosaic from image
regions of arbitrary shape.Again, we assumethat the regions to be splined are
containedin imagesA and B and that these completely overlap. As before, nodes
of the LaplacianpyramidsLA and LB for the componentimageswill be combined
to form the Laplacian pyramid LS of the image mosaic S. We introduce an
additional pyramid structure in order to determine which nodes of LS should be
takenfrom LA, which from LB, and which should be an averageof the two. Let
R be a binary image of the samesizeas A and B, in which all pixels inside the
region of A to be splinedwith B are 1 and all those outsidethe region are 0. The
steps of the multiresolution spline are modified as follows (on page 230):
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Fig. 7. The spline can be used to combine very different images. Here the left half of an apple
(Figure 7a), is combined with the right half of an orange (Figure 7b). Figure 7c, obtained without a
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spline, shows that the orange and apple differ considerablyin gray level and color. Still, a smooth
transition is obtained with the multiresolution spline (Figure 7d).
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Sep la. Build Laplacian pyramidsA andLB for imagesA andB respectively.

Sep Ib. Build a Gaussian pyramf@R for the region imag®&.

Step 2. Form a combined pyramid LS from LA and LB using nodesof GR as
weights. That is, for eadhi and;j:

LS(@, j) = GR(i, LA, j) + (1 -GR(i, )))LB(I, ).

Step 3. Obtain the splined image S by expandingand summing the levels of
LS.

The Gaussianpyramid servestwo purposeshere: It is a convenient method for
determiningwhich nodes at each pyramid level lie within the mask area of image
R, and it "softens" the edgesof the mask through an effective low-pass filter.
Without this the spline would be overly sensitive to the position of the mask
relative to the pyramid sample points. Nodes which fall exactly on the mask edge
will receivea 50 percentweight, just as in the procedureoutlined in the previous
section. Here nodesto a distanceof two sample positions on either side of the
mask edgewill also be combinedas a weightedaverageof their LA and LB values
(see Figure 5).

An exampleusing this techniqueis given in Figure 8. Figures 8a and 8b show
the two original images, an eye and a hand. Figure 8c shows the region of the
first image to be splined into the secondimage and Figure 8d shows the end
result of the spline: a hand with an eye embedded in the palm.

3.3 Splining Nonoverlapped Images

Imagesmust overlapif they areto be joined using any weighted averagetechnique.
Nonethelessa satisfactoryspline can be obtained with images that abut but do
not overlap, if each image is first extrapolatedacrossits boundaryto form an
overlapped transition zone. Since the width of the transition zone can be a
significant fraction of the width of the image itself, extrapolation may at first
seemto be a formidable task. However, in the multiresolution spline technique
extrapolation can be performed separatelyin each frequency band. Furthermore,
when the pyramid algorithm is used, only two samplesneed to be extrapolated
beyondthe edgeof eachlevel. In fact, it is just this type of extrapolationthat is
already handling boundary conditions during construction of both the Gaussian
and Laplacian pyramids. No further steps need to be taken in the spline.

An applicationof splining to nonoverlappingimagesis shown in Figure 9. We
begin with a single image which is itself a mosaicof 16 by 16 pixel blocks (only
the central 8 x 8 array of blocks is shown in the figure). Each block has been
reconstructedfrom a highly compact transform code, which, in this case, repre-
sentsthe image at a rate of only 0.5 bits per pixel (seefor example,[8]). Block
transform coding at a very low bit rate producesprominent block boundariesin
addition to other severeimage degradation.Our task is to remove the boundaries
by means of a multiresolution spline.

The original image containsa 16 x 16 array of blocks. Before attempting the
spline, we use extrapolationto add a row on the right and bottom sides of each
block. The resulting17 x 17 pixel blocks fit into the Laplacian pyramid structure
and overlap in the image by one pixel on each side. The first step of the spline
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Fig. 8. The spline may be usedto combineoddly shapedregionsof very different images.The portion of
Figure 8a within the region indicated by the mask in Figure 8c is inserted portion of Figure 8b which is
outside this mask region (Figure 8d).

procedureis to construct a separateLaplacian pyramid for each of these 256
blocks. These pyramids are then joined into a single pyramid with nodesin the
overlapped edges of each pyramid level being averaged.

Let L, be the Ith level of the Laplacian pyramid constructedfor the nth block
in the mth row of blocks. Then, for i andj not on block boundaries(i.e., i and j
are not equal to a multiple of ) and level 0 <l < 3,

LS, 1) = L (1),

where m is the integer part of i/2* -

i=i-m2*'" andj =j-2¢".
If i orj is on a block boundaryabovelevel zero,0 < | < 3, then the LS node
will be an average,

, n is the integer part of j/2* - '

Ll,m—l,n(161 ] ) + Ll,m,n(ov J)
2
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Fig. 9. The multiresolution spline usedto remove block boundariesfrom a block transform encoded
image. Figure 9a shows an image which has been block transform encodedat a rate of 0.5 bits per
pixel. An 8 x 8 array of blocks is shown, each containinga 16 x 16 array of pixels. Blocks were
treated as separate,nonoverlappedimages to obtain the splined result shown in Figure 9b. Image
quality remainslow becauseof the very low bit rate of the code, but the perceptually prominent block
boundaries are almost completely eliminated.

This averageis not computedfor boundary nodes in the bottom level because
the nodel, ,,,(16,j) represents an extrapolated value. Instead, we simply say

LS, J) = Loma(0s §)-

Reconstructionthrough the expand and sum process yields the image shown
in Figure 9b. Note that the block boundaries have been almost completely
removed.The imageis still of low quality, but this is dueto the very low bit rate
of the original block encoded image rather than to the splining technique.

4. SUMMARY AND DISCUSSION

We have describeda multiresolution spline techniquefor combining two or more
imagesinto a larger image mosaic. In this procedure,the imagesto be splined
are first decomposedinto a set of band-passfiltered componentimages Next,
the component images in each spatial frequency band are assembledinto a
correspondingband-passmosaic. In this step, componentimages are joined using
a weighted averagewithin a transition zone which is proportional in size to the
wave lengths representedin the band. Finally, these band-passmosaic images
are summedto obtain the desiredimage mosaic. In this way, the spline is matched
to the scale of featureswithin the imagesthemselves.When coarsefeaturesoccur
near borders, these are blended gradually over a relatively large distance without
blurring or otherwise degrading finer image details in the neighborhood of the
border.

The basic steps of the multiresolution spline are illustrated in Figure 10. In

this case, the left half of an apple (Figure 7a) is splined with the right half of an orange
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(Figure 7b). The first column of images in Figure 10 (10a-10d) shows
high, medium and low frequency componentsof the half apple. Note that the
high frequencycomponentsextend only slightly to the right of the midline, while
the low frequencies extend considerably further. If these images are summed
(along with a number of other componentswhich are not shown), the half apple
at the bottom is obtained (Figure 10d).

Figures in the center column (10e-10h) show the corresponding components
for the orange. Figures in the right hand column (10i-10l) are obtained by
summing the orange and apple componentsin each spatial frequency band. All
computationsare linear. Thus, the final mosaic, Figure 10l, can be obtained by
summing the half apple of Figure 10d with the half orange of Figure 10h, or by
summing the composite band-passimages in the right hand column (10i-10j)
(along with other components not shown).

We have demonstratedthe multiresolution spline with a variety of image
mosaicexamples.In all cases,it has eliminated visible seamsbetweencomponent
images. This is true even when the componentimages are very different (e.g.,
the orange-apple),or of irregular shape (e.g., the hand-eye). The multiresolution
approach avoids artifacts such as the blurred edge and double exposure effect
obtainedwith a simple (single resolution) weighted average,as shown in Figures
3d and 3e.

In the implementation described here, pyramid algorithms have been used both
for filtering and splining operations. The pyramid structure is uniquely suited to
the presenttask. It is a highly efficient filter, requiring only seven arithmetic
operations(adds and multiplies) per image pixel to producea full set of low-pass
images [2]. Furthermore, the weighting functions H used in each spline are
implicit in the pyramid computation:they need never be specified explicitly, yet
they are matchedto each frequency band representedn the pyramid. In a similar
way, the image extrapolation required in splining nonoverlapped images is
provided as a boundary condition in the standard pyramid construction algo-
rithm.

In sum, the multiresolution spline appearsto be a practical and quite general
technique for forming image mosaics. The pyramid in turn offers a unifying
structure in  which required filtering and splining steps may be performed both
easily and efficiently.
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