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数字图像的表示

像素值的含义
物体表面的亮度(颜色)
生物体的吸收特性，如X光片

区域的温度，如红外照相

深度信息

任意二维函数的值
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What is Computer Vision?

Image Understanding (AI, behavior)
A sensor modality for robotics
Computer emulation of human vision
Inverse of Computer Graphics

Computer
vision

World 
model

Computer
graphics

World 
model



Shape from …

many different approaches/cues



Vision

Vision is the process of discovering 
what is present in the world and where 
it is by looking.



Computer Vision

Computer Vision is the study of analysis 
of pictures and videos in order to 
achieve results similar to those as by 
men.



Main topics

Shape (and motion) recovery
“What is the 3D shape of what I see?”

Segmentation 
“What belongs together?”

Tracking 
“Where does something go?”

Recognition
“What is it that I see?”



Main topics
Camera & Light

Geometry, Radiometry, Color
Digital images

Filters, edges, texture, optical flow
Shape (and motion) recovery 

Multi-view geometry
Stereo, motion, photometric stereo, …

Segmentation 
Clustering, model fitting, probalistic

Tracking 
Linear dynamics, non-linear dynamics 

Recognition
templates, relations between templates



General

Binary
Gray Scale
Color



Binary Images
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Gray Level Image

10 5 9

100



Color Image
Red, Green, Blue Channels



Image Histogram



Image Noise

Light Variations
Camera Electronics
Surface Reflectance
Lens



Image Noise

I(x,y) : the true pixel values 
n(x,y) : the noise at pixel (x,y)
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Salt & Pepper Noise

p is uniformly 
distributed random 
variable
l is threshold
smin and smin are 
constant
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Correcting Lens distortion

None Barrel Pincushion



图像和图像编码

衡量图像编码算法的三个主要指标

压缩比（Compression ratio）
失真度量（Distortion Measure）
算法复杂度（Computational Costs）



图像和图像编码

可分级性（Scalability）
图像空间分辨率的可分级性

图像解码重构质量的可分级性

视频解码帧速率的可分级性



图像和图像编码

图像空间分辨率可分级性（Resolution 
Scalability）



图像和图像编码

图像解码质量的可分级性（SNR Scalability）



率失真特性

一条典型的率失真特性曲线



图像和图像编码

常用的图像编码方法
预测编码（Motion estimation/compensation ）
变换编码（Discrete cosine transform）

统计编码/熵编码（Huffman/Arithmetic coding）
向量量化编码（Vector quantization coding）
子带编码（Subband coding）
分形编码（Fractal image coding）
小波编码（Wavelet-based image coding）



Huffman编码



分形图像编码

自相似性—分形蕨



分形图像编码

Lena图像中的自相似性



位置变换：From (xD,yD) to (xR,yR)
灰度变换

分形图像编码

仿射变换（基于收缩映射）
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Line Fitting
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思考题

图像到自身存在完美的全等映射，全等映射显然是一个仿射变换……
看来只需要记录一个映射参数就可以完成高压缩比的分形编码……
这个理想方法可行吗？问题出在哪里？



答案

“收缩”是IFS收敛到不动点的必要条件！

IFS Fixed point

Xi+1=Xi/3

Xi+1=Xi/2+1

Xi+1=sqrt(Xi)+2

Xi+1=Xi?

0

2

4
Starting X

每一图像都是相应迭代函数系统的不动点

不同的图像对应不同的迭代函数系统



小波图像编码

频域表示的不足之处

对非平稳信号用Fourier变换进行分析不能提
供完全的信息，即利用Fourier变换虽然可以
知道信号所含有的频率信息，但不能知道这
些频率信号究竟出现在哪些时间段上。

小波函数的特点
小—在时域都具有紧支集或近似紧支集。

波动性—具有正负交替的震荡波形。



小波图像编码

一个典型的小波函数波形



小波图像编码

小波图像编码的数学理论奠基人是I. Daubechies
et. al，广泛投入实用研究则起自S. Mallat于20世
纪80年代末提出的倍频程信号分解算法。

信号的小波分析的基本原理：将某一尺度空间 分
解为一个较粗尺度空间 与其正交补空间 的直和，
进而，信号在就可以分解为一个近似描述（即它
在粗尺度空间 上的投影）和一个细节描述（即它
在正交补空间 上的投影）。信号的主要能量集中
在它的近似描述中，细节描述则是对近似描述的
补充表示。



倍频程信号分解算法（S. G. Mallat）

上式是S. Mallat建立的金字塔式离散小波变换算法的一个
简略数学表达。其本质是信号的渐进分解和分而治之的思
想。从上式式中体现的逐级分解形式可以直观地看出小波
分解的潜在可分级性能。

小波图像编码
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小波图像编码

小波分解的时频特征
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小波图像编码

小波分解图像中系数分布的零树结构

1HH
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3LL



小波图像编码

小波分解图像中系数分布的零树结构（续）



JPEG2000

Scalability-Progressive by resolution



JPEG2000

Scalability-Progressive by resolution



JPEG2000

Scalability-Progressive by resolution



JPEG2000

Scalability-Progressive by resolution



JPEG2000

Scalability-Progressive by accuracy



JPEG2000

Scalability-Progressive by accuracy



JPEG2000

Scalability-Progressive by accuracy



Error Resilience

More Examples
:Data packet,          : Protecting packet  



总结

几点最重要的思想

分而治之的思想（Divide and Conquer）
逐步求精的思想（Scalability & Iteration）
动态规划的思想（Dynamic Programming）

请提问



What can we do with an image?

Object Detection/Recognition

Curve Detection/Fitting

Line Detection/Fitting

Key Feature Estimation

Scene Editing/Augmentation



Image Processing
Define a new image g in terms of an 
existing image f

We can transform either the domain or the 
range of  f

Range transformation:

What kinds of operations can this perform?

Smoothing, Enhancing, Denoising, Binarizing……



Image Processing

Some operations preserve the range 
but change the domain of f :

What kinds of operations can this 
perform?

Translation, Rotation, Scaling……



Image Processing

Still other operations operate on both the 
domain and the range of f .

What kinds of operations can this perform?

))),(),,(((),( yxtyxtfsyxg yx=

Fractal Image coding, Wavelet Image coding……



Bilinear Interpolation(双线性插值)

A simple method for resampling images



Normalized Correlation
Account for energy differences
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Linear Filtering

The output is the linear combination of 
the neighborhood pixels
Weighted Sum(加权和)

1 3 0
2 10 2
4 1 1

Image

1 0 -1
2 0 -2
1 0 -1

Kernel

=

Filter Output

⊗

convolution

1 0

4 0

4 0

0

-4

-1

4



Average  Filter(平均滤波器)
• Mask with positive 

entries, that sum 1.
• Replaces each pixel 

with an average of 
its neighborhood.

• If all weights are 
equal, it is called a 
BOX filter.
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11 11
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Filtering Examples

0 0 0
0 1 0
0 0 0

* =



Filtering Examples

0 0 0
0 0 1
0 0 0

* =



Filtering Examples

1 1 1
1 1 1
1 1 1

9
1* =



Filtering Examples
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Gaussian Smoothing

2=σ

8.2=σ 4=σ

original



Median Filter(中值滤波)
Smoothing is averaging
(a) Blurs edges 
(b) Sensitive to outliers

(a)

(b)

Median filtering
Sort            values around the pixel 
Select middle value (median)

Non-linear (Cannot be implemented with convolution)

12 −N

sort median



Image gradient(梯度)
The gradient of an image: 
The gradient points in the direction of most rapid 
change in intensity

The gradient direction is given by:

how does this relate to the direction of the edge?

The edge strength is given by the gradient 
magnitude



Effects of noise(噪声的影响)

Where is the edge?

Consider a single row or column of the image
Plotting intensity as a function of position gives a 
signal



Where is the edge?

Solution:  smooth first

Look for peaks in



Derivative theorem of convolution

This saves us one operation:



Reflectance 
discontinuity (i.e., 
change in surface 
material properties)

What Causes an Edge?

Depth discontinuity
Surface orientation 
discontinuity
Illumination 
discontinuity (e.g., 
shadow)



Prewitt and Sobel Edge Detector

Compute derivatives
In x and y directions

Find gradient magnitude
Threshold gradient magnitude



Pyramids

Many applications
small images faster to process
good for multiresolution processing
compression
progressive transmission

Known as “MIP-maps” in graphics 
community
Precursor to wavelets

Wavelets also have these advantages 



Canny Edge Detector

Criterion 1: Good Detection: The optimal 
detector must minimize the probability of 
false positives as well as false negatives.

Criterion 2: Good Localization: The edges 
detected must be as close as possible to the 
true edges.

Single Response Constraint: The detector 
must return one point only for each edge 
point.



Canny Edge Detector Steps

1. Smooth image with Gaussian filter
2. Compute derivative of filtered image
3. Find magnitude and orientation of 

gradient
4. Apply “Non-maximum Suppression”
5. Apply “Hysteresis Threshold”



High

low

Gradient 
magnitude

Canny Edge Detector
Hysteresis Thresholding



Least Squares Fit(最小二乘拟合)

Standard linear solution to estimating 
unknowns.

If we know which points belong to which line
Or if there is only one line

( )baxfbaxy ,,=+=
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Take derivative wrt a and b set to 0



Advantage of Voting
Example: Two candidates (A & B) run for the president

Assumption: the correct probability of each vote is 0.7

Scheme 1: assigned by the previous president.

Correct rate:   70%=0.7

Scheme 2: general election, the candidate with more votes wins

Correct rate for 3 votes: 784.0)7.0(3.0)7.0( 322
3 =+⋅⋅C

Correct rate for 5 votes: 837.0)7.0()3.0()7.0()3.0()7.0( 544
5

233
5 =+⋅⋅+⋅⋅ CC

Correct rate for 10,000,000 votes: ……



Recall: Increase transmission 
reliability by voting

Example: Transmit one “0” or “1” bit in a channel of 80% reliability

Scheme 1: Directly transmit the bit(0 or 1).

Correct rate:   80%=0.8

Scheme 2: Transmit “000” for the bit 0 and “111” for 
the bit 1. Take the symbol appears more times in the 
received sequence as the correct one, eg. “101”->”1”
“001”->”0”, “100”->”0”, “111”->”1”

Correct rate: 896.0)8.0(2.0)8.0( 322
3 =+⋅⋅C



implementation :

1. the parameter space is discretised
2. a counter is incremented at each cell where the lines pass 
3. peaks are detected

ymxb +−=  )(

Hough transform: Principle

m



Problem : unbounded parameter domain, vertical lines require infinite m

ρθθ =+   sin  cos yx

Each point will add a cosine function in the (θ,ρ) parameter space

Solution: alternative representation

Hough transform: Principle

x

∞→m

θ: determine the slope of the line: m

ρ: the distance from the line to the origin

ymxb +−=  )(



Hough transform: Principle

ρθθ =+   sin  cos yx
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Each green bin get a vote

Each feature point corresponds to a sine 
cuve in Hough space



Matlab Demos

I  = imread('circuit.tif');
rotI = imrotate(I,33,'crop'); %rotate to prevent degradation
BW = edge(rotI,'canny');
[H,T,R] = hough(BW);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
P  = houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));
x = T(P(:,2)); y = R(P(:,1));
plot(x,y,'s','color','white');      %draw hough transform image with 5 peaks on
lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);
figure, imshow(rotI), hold on;
max_len = 0;
for k = 1:length(lines)

xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green'); %green line
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');%yellow start point
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');    %red end point
len = norm(lines(k).point1 - lines(k).point2);
if ( len > max_len)

max_len = len;
xy_long = xy;

end
end
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan'); % highlight the longest line segment



Outliers

Least squares assumes Gaussian errors
Outliers: Points with extremely low 
probability of occurrence (according to 
Gaussian statistic)

Can result from data association errors

Strongly influence least squares



RANSAC

Main idea
Select 2 points at random
Fit a line
“Support” = number of inliers
Line with most supports wins

General algorithm
Randomly select s points
Instantiate a model
Get consensus set Si (supports)
Repeat for N trials, return model with max |Si|



A demo for line fitting

Trial 1: Support number=2

Trial 2: Support number=6

Trial 3: Support number=4

Trial 2 Wins with maximal support number !



RANSAC—Summary
Choose a small subset uniformly at random
Least squares fit to that subset
Compute the fitting error 
Determine the consensus set 

comparing each error with the threshold;
Anything close to result is inliers; 
all others are outliers

Repeat the above steps for many trials
Choose the fit that agreed with most points

Can perform one final LS with all inliers



RANSAC—Discussion
Advantages:

General method suited for a wide range of model fitting 
problems;
Easy to implement and easy to calculate its failure rate;

Disadvantages:
Only handles a moderate percentage of outliers without 
cost blowing up
Many real problems have high rate of outliers (but 
sometimes selective choice of random subsets can help)

Hough transform can handle high percentage of 
outliers, but false collisions increases with large bins



Segmentation as clustering
Cluster together (pixels, tokens, etc.) that belong together
Agglomerative (凝聚)  clustering (bottom-up)

attach closest to cluster it is closest to
repeat

Divisive (分裂) clustering (top-down)
split cluster along best boundary
Repeat

Point-Cluster distance (merge/split rules)
single-link clustering
complete-link clustering
group-average clustering

Dendrograms (树形图)
yield a picture of output as clustering process continues



Agglomerative clustering—
Clustering by merging



Divisive clustering—
Clustering by splitting



Clustering

We want to group together some primitives

Seems easy, but…



Clustering

We want to group together some primitives
If we knew which items belongs to a group…

A good description of the groups can be drawn
Position, intensity, texture…

If we knew a good description of the group…
We may figure out which primitives belong to which groups
Or at least the probability…

This is a chicken and egg problem…

),(),,( 21 Σ== μNormalfbaUnitf



Clustering 

Iterative solution:
Guess one side of the answer
Figure out the other side
Refigure out the first side
Keep going till we converge



Clustering

How to choose the representative colors?
This is a clustering problem!

Objective
Each point should be as close as possible to a cluster center

Minimize sum squared distance of each point to closest center

R R

G G



Break it down into subproblems

Suppose I tell you the cluster centers ci

Q:  how to determine which points to associate with each ci?
A:  for each point p, choose closest ci

Suppose I tell you the points in each cluster
Q:  how to determine the cluster centers?
A:  choose ci to be the mean of all points in the cluster



K-means clustering
K-means clustering algorithm
1. Randomly initialize the cluster centers, c1, ..., cK

2. Given cluster centers, determine points in each cluster
• For each point p, find the closest ci.  Put p into cluster i

3. Given points in each cluster, solve for ci

• Set ci to be the mean of points in cluster i
4. If ci have changed, repeat Step 2

Properties
Will always converge to some solution
Can be a “local minimum”

• does not always find the global minimum of objective function:



Convergence of the algorithm

The iteration always reduces the error measure
Reassigning a point to the nearest center reduces error
The center that minimizes MSE is the average

d1 d2

d2 < d1



Recall –
Fitting a constant function

For constant function y=a
Minimizing squares gives a=mean
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K-Means

Choose a fixed number of clusters
Choose cluster centers and point-cluster allocations to 
minimize error 

can’t do this by search, because there are too many possible 
allocations.
Algorithm

fix cluster centers; allocate points to closest cluster
fix allocation; compute best cluster centers

x could be any set of features for which we can compute a 
distance (careful about scaling)

x j − μ i

2

j∈elements of i'th cluster
∑

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ i∈clusters

∑



K-Means



Clustering –
Determine Regions



Graph Cut –
Determine Boundaries



Computer Vision Algorithm

Feature 1
Feature 2

:
Feature N

Features in Computer Vision

Feature 1
Feature 2

:
Feature N

Image 1 Image 2



Inner (dot/scalar) Product
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The inner product is a The inner product is a SCALAR!SCALAR!
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wvwv ⊥⇔= 0. 
The inner product measures the The inner product measures the similaritysimilarity of two vectorsof two vectors



Outer (cross/vector) Product

wvu ×=

The cross product is a The cross product is a VECTOR!VECTOR!
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Homogeneous Coordinates 
(齐次坐标)

Multiply the coordinates by a non-zero scalar 
and add an extra coordinate equal to that 
scalar.  For example,

0   ),,,(),,(
0   ),,(),(

≠⋅⋅⋅→
≠⋅⋅→

wwwzwywxzyx
zzzyzxyx

• NOTE: If the scalar is 1, there is no need 
for the multiplication!

Example:
)...2,4,2,6( ~)2,4,2,6( ~)1,2,1,3()2,1,3(

)...2,6,4( ~)2,6,4( ~)1,3,2()3,2(
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Back to Cartesian Coordinates:

• Divide by the last coordinate and eliminate it. For 
example,

)/,/,/(0   ),,,(
)/,/(0   ),,(

wzwywxwwzyx
zyzxzzyx

→≠
→≠

Question: What if z=0 ?



Scaling, Translating & 
Rotating

Order matters!Order matters!

PP’’ = S.P= S.P
PP’’’’=T.P=T.P’’=(T.S).P=(T.S).P
PP’’’’’’=R.P=R.P””=R.(T.S).P=(R.T.S).P =R.(T.S).P=(R.T.S).P 

R.T.S R.T.S ≠≠ R.S.T R.S.T ≠≠ T.S.R T.S.R ……



Projective Transformations in 
a Plane (射影变换/透视变换) 

Projectivity (直射)
Mapping from points in plane to points in plane
3 aligned points are mapped to 3 aligned points

Also called
Collineation (共线，直射变换) 
Homography (单应性)

Same shapes are related by a projective transformation



Invariants(不变量)

Length
Area

Angle
Shape

Parallelism
Area ratio

Collinearity
Cross-ratio

Isometry √ √ √

√

√

×

√

Similarity × √ √

Affine

Projective

× × √

× × √





Homography
Homography is a singular case of the 
Fundamental Matrix(基本矩阵)

Two views of coplanar points
Two views that share the same center of 
projection



Homographies
Perspective projection of a plane

Lots of names for this:
homography, collineation, planar projective map

Modeled as a 2D warp using homogeneous coordinates
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H pp’

To apply a homography H
• Compute     p’ = Hp       (regular matrix multiplication)
• Convert p’ from homogeneous to image coordinates

– divide by w (third) coordinate



Image Warping

Given a coordinate transform (x’,y’) = h(x,y) 
and a source image f(x,y), how do we 
compute a transformed image g(x’,y’) =
f(h(x,y))?

x x’

h(x,y)

g(x’,y’)

’

f(x,y)

y y



f(x,y) g(x’,y’)

Forward Warping

Send each pixel f(x,y) to its corresponding 
location 
(x’,y’) = h(x,y) in the second image

x x’

h(x,y)

Q:  what if pixel lands “between” two pixels?

y y’



f(x,y) g(x’,y’)

Forward Warping

Send each pixel f(x,y) to its corresponding location 
(x’,y’) = h(x,y) in the second image

x x’

h(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

A:  distribute color among neighboring pixels (x’,y’)
– Known as “splatting”



Forward Warping

Reference image Target image

Forward warped image

h(x,y)

Extended region



f(x,y) g(x’,y’)x
y

Inverse Warping

Get each pixel g(x’,y’) from its corresponding location 
(x,y) = h-1(x’,y’) in the first image

x x’
y’

h-1(x,y)

Q:  what if pixel comes from “between” two pixels?



f(x,y) g(x’,y’)x
y

Inverse Warping

Get each pixel g(x’,y’) from its 
corresponding location (x,y) = h-1(x’,y’) in 
the first image

x x’

h-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  resample color value



Inverse Warping

Reference image Target image

Inverse warped image

h-1(x,y)

Extended region



Forward vs. Inverse Warping

Q:  which is better?

A:  usually inverse—eliminates holes
however, it requires an invertible warp function—not 
always possible...



Bilinear Interpolation

A simple method for resampling images



A general pipeline

Feature detection
Feature matching

(Tracking)
Initial alignment

Refinement

(Optimization)

Stitching

(Warping)

Postprocessing

(Deghosting)

MultiView/Extraction/matching/tracking/morphing/optimization
/blending/inpainting/editing/…

Which module is most difficult ?



Wide-angle Imaging
Goal 

Stitch together several images into a 
seamless composite

+ + … + =



Panoramas

What if you want a 360° field of view?

mosaic Projection Cylinder



Cylindrical Reprojection

X
Y

Z

side view

top‐down view

( )zyx ˆ,ˆ,ˆ

( )zyx ˆ,ˆ,ˆ

( )1,, =zyx



Homogeneous Coordinates

Multiply the coordinates by a non-zero scalar 
and add an extra coordinate equal to that 
scalar.  For example,

0   ),,,(),,(
0   ),,(),(

≠⋅⋅⋅→
≠⋅⋅→

wwwzwywxzyx
zzzyzxyx

• NOTE: If the scalar is 1, there is no need 
for the multiplication!

Example:
)...2,4,2,6( ~)2,4,2,6( ~)1,2,1,3()2,1,3(

)...2,6,4( ~)2,6,4( ~)1,3,2()3,2(
−−−−−→−

−−−→



Back to Cartesian Coordinates:

• Divide by the last coordinate and eliminate it. For 
example,

)/,/,/(0   ),,,(
)/,/(0   ),,(

wzwywxwwzyx
zyzxzzyx

→≠
→≠





Homogeneous coordinates

( )Ta,b,cl =
0=++ cbyax ( )Ta,b,c

0,0)()( ≠∀=++ kkcykbxka ( ) ( )TT a,b,cka,b,c ~

Homogeneous representation of lines

equivalence class of vectors, any vector is representative
Set of all equivalence classes in R3−(0,0,0)T forms P2

Homogeneous representation of points
0=++ cbyax( )Ta,b,c=l( )Tyx,x = on if and only if

( )( ) ( ) 0l 11 == x,y,a,b,cx,y, T ( ) ( ) 0,1,,~1,, ≠∀kyxkyx TT

The point x lies on the line l if and only if xTl=lTx=0

Homogeneous coordinates
Inhomogeneous coordinates ( )Tyx,

( )T
321 ,, xxx but only 2DOF

( )T1x,y,p =



Points and lines
The point p(x,y,1)T lies on the line l(a,b,c)T if and only if pTl=lTp=0

i.e. ax+by+c=0

The line l pass through two points p1(x1,y1,1) and p2(x2,y2,1) is 
homogeneously defined by l=p1xp2

Note that (p1xp2)Tp1=0, (p1xp2)Tp2=0
The intersection point p of two lines l1(a1,b1,c1) and l2(a2,b2,c2) is 
homogeneously defined by p=l1xl2

( )1102 ,,p =

( )1003 ,,p = ( )1011 ,,p =

( )0102 ,,l =

( )1113 −= ,,l( )0011 ,,l =

We verify:
011101131 =−⋅+⋅+⋅=⋅ lp

3

21

)1,1,1()1,1,1(
)0011,1101,1110(

l
pp

=−∝−−=
⋅−⋅⋅−⋅⋅−⋅=×

3

21

)1,0,0(
)0011,0100,1000(

p
ll

==
⋅−⋅⋅−⋅⋅−⋅=×



Ideal points

1 1 2 2

1 2 1 2

( , , ) , ( , , )
( )( , ,0) ( , ,0)

T Tl a b c l a b c
l l c c b a b a

= =
× = − − ∝ −

Q: How many ideal points are there in P2?
A: 1 degree of freedom family – the line at infinity

l1

l2

It is independent of the third coordinate c
It is solely dependent on the ratio a/b



Ideal Points

The ideal point

Infinity Infinity

),0,1( alv =

),1,0( blh =

),1,1( cls −=
We validate:

0

0

0

=

=

=

s
T

s

h
T

h

v
T

v

Pl

Pl

Pl

)0,1,0(=vP

All parallel lines uniquely 
determine one ideal point

)0,0,1(=hP

)0,1,1(=sP



All ideal points of a 2D plane form an ideal line, 
which is called the line at infinity of this 2D plane.

Parallel lines

Line at infinity

Line at infinity



Points from lines and vice-versa

l'lx ×=

Intersections of lines 

The intersection of two lines and    is l l'

Line joining two points
The line through two points  and     is x'xl ×=x x'

Example

1=x

1=y



Ideal points and the line at 
infinity

( )T0,,l'l ab −=×

Intersections of parallel lines 

( ) ( )TT and ',,l'  ,,l cbacba ==

Example

1=x 2=x

Ideal points ( )T0,, 21 xx
Line at infinity ( )T1,0,0l =∞

∞∪= l22 RP

tangent vector
normal direction

( )ab −,
( )ba,

Note that in P2 there is no distinction 
between ideal points and others



Practice

All ideal points are on l∞:    
Proof:  (0,0,1)•(x1,x2,0)T = 0

Any line l intersects with l∞ line at an ideal point
Proof:  (a,b,c)x(0,0,1) =(b,-a,0)

Two parallel lines l and l’ always meet at an ideal 
point

Proof: Let  l = (a,b,c)T and l’ = (a,b,c’)T

……



2D Projective Geometry: Basics

A point:

A line:

we denote a line with a 3-vector

Points and lines are dual: p is on l if

Intersection of two lines:

A line through two points:

2 2( , , ) ( , )T Tx yx y z P
z z

∈ ⇔ ∈�

0 ( ) ( ) 0x yax by cz a b c
z z

+ + = ⇔ + + =

0Tl p =

1 2 ,l l×

1 2p p×

( , , )Ta b c



A hierarchy of transformations
Euclidean group (upper left 2x2 orthogonal)

Similarity groun (scaled Euclidean)
Affine group (last row (0,0,1))

Projective linear group (general)

Can be described algebraically 
characterized by invertible 3x3 matrices
or in terms of invariants

Similarity Affine Perspective



Overview transformations

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
2221

1211

y

x

taa
taa

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
2221

1211

y

x

tsrsr
tsrsr

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

333231

232221

131211

hhh
hhh
hhh

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
2221

1211

y

x

trr
trr

Projective
8dof

Affine
6dof

Similarity
4dof

Euclidean
3dof

Concurrency, collinearity, 
order of contact (intersection, 
tangency, inflection, etc.), 
cross ratio

Parallellism, ratio of areas, 
ratio of lengths on parallel 
lines (e.g midpoints), linear 
combinations of vectors 
(centroids). 
The line at infinity l∞

Ratios of lengths, angles.
The circular points I,J

lengths, areas.



Shrinking the aperture

Why not make the aperture 
as small as possible?

Less light gets through
Diffraction effects...



Lens

Ideal lens realizes the same projection 
as a pinhole but gathers much more 
light!



Thin Lens: Properties

1. Any ray entering a thin lens parallel to 
the optical axis must go through the 
focus on other side

2. Any ray entering through the focus on 
one side will be parallel to the optical 
axis on the other side

3. Any ray passing through the optical 
center does not change its direction



Thin-lens Law (Gaussian Lens 
Formula)

P

'P

i o

f

F

f : focal length

foi
111

=+

mm50=f mm300=o mm60=iFor example, 

optical axis

center of 
projection

'F



Thin Lens: Model

Z f f

O

P Q

R

Fr

Fl

p

f
QO

z
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=
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f
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Z
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=

zZf
f
z
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Z
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The Thin Lens Law
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Limits of the Thin Lens Model

3 assumptions :

1. all rays from a point are focused onto 1 image point
• Remember thin lens small angle assumption

2. all image points in a single plane

3. magnification                is constant 

Deviations from this ideal are aberrations
0

'
z
fm =



Aperture and F/stop

P

'P

F d

aperture

F/stop: for instance,  f/1.0  f/1.4  f/2.0  f/2.8  f/4  f/5.6  f/8  f/11

less light
aperture areas is halved at each stop

f/stop =   f/1.4      f/2.0     f/2.8      f/4      f/5.6     f/8    f/11
= 1/1000    1/500   1/250   1/125    1/60    1/30  1/15shutter 

speed

iris diaphragm



Vignetting



Vignetting

B

A

L3 L1L2

More light passes through lens L3 for scene point A than scene point B.
Results in spatially non‐uniform brightness (in the periphery of the image)

Optical Vignetting - Aperture dependency
At wider aperture, on the edge of the field, the entrance pupil can be partially shielded by the 
lens body. This is why optical vignetting increases with aperture.



Vignetting

Effect: Darkens pixels near the image boundary

Natural Vignetting - Lens Dependency
•Natural vignetting is inherent to lens design, regardless of aperture. 
•With a zoom lens, it  generally increases as the focal length decreases.



Pinhole cameras

Abstract camera 
model - box with a 
small hole in it

Pinhole cameras 
work in practice



Distant objects are smaller



Parallel lines meet
Common to draw film plane
in front of the focal point.
Moving the film plane merely
scales the image.



Vanishing points

• Each set of parallel lines meets at a different 
point
– The vanishing point for this direction

• Sets of parallel lines on the same plane lead to 
collinear vanishing points.   
– The line is called the horizon (or vanishing line) for 

that plane



Perspective Projection

A “similar triangle’s” approach to vision.  

Marc Pollefeys



Perspective Projection

x

fZ Z
fXx −=

X O -x

f



Properties of Projection
Points project to points
Lines project to lines
Planes project to the whole image or a half image 
Angles are not preserved
Degenerate cases

Line through focal point projects to a point.
Plane through focal point projects to line



Consequences: Parallel lines meet
There exist vanishing points



The Effect of Perspective



Vanishing points

VPL VPRH

VP1
VP2

VP3

Different directions correspond 
to different vanishing points Marc Pollefeys



Horiz
on

Perspective Projection

Objects farther appear 
smaller
Points go to Points
Lines go to Lines
Polygons go to Polygons
Parallel lines meet



Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html



Estimating the Projection Matrix

Place a known object in the scene
identify correspondence between image and scene
compute mapping from scene to image

Issues
• must know geometry very accurately
• must know 3D->2D correspondence



1 2 3 4

1

2

3

4

Measurements on planes

Approach:  unwarp then measure
What kind of warp is this?



Image rectification

To unwarp (rectify) an image
• solve for homography H given p and p’
• solve equations of the form:  wp’ = Hp

– linear in unknowns:  w and coefficients of H
– H is defined up to an arbitrary scale factor
– how many points are necessary to solve for H?

p
p’



Vanishing points

Vanishing point
projection of a point at infinity

image plane

camera
center

ground plane

vanishing point



Vanishing points (2D)

image plane

camera
center

line on ground plane

vanishing point



Vanishing points

Properties
Any two parallel lines have the same vanishing point v
The ray from C through v is parallel to the lines
An image may have more than one vanishing point

in fact every pixel is a potential vanishing point

image plane

camera
center

C

line on ground plane

vanishing point V

line on ground plane



Vanishing points

Image by Q‐T. Luong (a vision researcher & photographer)



Vanishing lines

Multiple Vanishing Points
Any set of parallel lines on the plane define a vanishing point
The union of all of these vanishing points is the horizon line

also called vanishing line
Note that different planes define different vanishing lines

v1 v2



Vanishing lines

Multiple Vanishing Points
Any set of parallel lines on the plane define a vanishing point
The union of all of these vanishing points is the horizon line

also called vanishing line
Note that different planes define different vanishing lines



Computing vanishing points

Properties
P∞ is a point at infinity, v is its projection
They depend only on line direction
Parallel lines P0 + tD, P1 + tD intersect at P∞
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Computing vanishing lines

Properties
l is intersection of horizontal plane through C with image plane
Compute l from two sets of parallel lines on ground plane
All points at same height as C project to l

points higher than C project above l
Provides way of comparing height of objects in the scene

ground plane

lC



Measuring height

1

2

3

4

5
5.4

2.8
3.3

Camera height
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