Image and Vision Computing
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‘L Computer Vision
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‘L What is Computer Vision?

= Image Understanding (Al, behavior)
= A sensor modality for robotics
= Computer emulation of human vision
= Inverse of Computer Graphics

Computer World
vision model
v —
model graphics




S

many different approaches/cue



i Vision

= Vision Is the process of discovering
what Is present in the world and where
It Is by looking.

Scene Image _ Perception
» Eye Brain >

Image Acquisition Image Interpretation



i Computer Vision

= Computer Vision Is the study of analysis
of pictures and videos in order to
achieve results similar to those as by
men.

Scene ‘ Image

Perception
— > (Camera ‘ » Computer >

Image Acquisition Image Interpretation



‘L Main topics

= Shape (and motion) recovery
“What is the 3D shape of what | see?”

= Segmentation
“What belongs together?”

= Tracking

“Where does something go?”
= Recognition

“What is it that | see?”



Main topics

Camera & Light
= _Geometry, Radiometry, Color

Digital images

= Filters, edges, texture, optical flow
Shape (and motion) recovery

= Multi-view geometry

= Stereo, motion, photometric stereo, ...
Segmentation

= Clustering, model fitting, probalistic
Tracking

= Linear dynamics, non-linear dynamics
Recognition

= templates, relations between templates



i General

= Binary
= Gray Scale
m Color




i Binary Images
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Color Image
i Red, Green, Blue Channels




|
100



i Image Noise

= Light Variations

= Camera Electronics
= Surface Reflectance
= Lens



‘L Image Noise

= I(X,y) : the true pixe
= N(X,y) : the noise at

(%, y)=1(x, y)+n(x,y)

values

nixel (x,y)




‘L Gaussian Noise

n(x,y)=e2




i Salt & Pepper Noise

= P is uniformly
distributed random
variable

= | IS threshold

m S...ands. . are
constant




i Correcting Lens distortion
H

g H

None Barrel Pincushion
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« %5tk ( Compression ratio )
« % A /Z% (Distortion Measure)
= B0k 5 2 F (Computational Costs)
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o EGES R p R n] 432t (Resolution
Scalablllty)
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best solution

target rate
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« TN ZWAYS (Motion estimation/compensation )
« At (Discrete cosine transform)
s Bl gmid/Rigmiy (Huffman/Arithmetic coding)
o mEEYES (Vector quantization coding)
= Trgmfis (Subband coding)
« B4R (Fractal image coding)
« /N YRAY (Wavelet-based image coding)




HuffmanZi i

Huffman coding (example)
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!L JPEG2000

= Scalablility-Progressive by resolution




!L JPEG2000

= Scalablility-Progressive by resolution




i JPEG2000

= Scalablility-Progressive by resolution




‘L JPEG2000

= Scalablility-Progressive by resolution




i JPEG2000

= Scalability-Progressive by accuracy




i JPEG2000

= Scalablility-Progressive by accuracy




‘L JPEG2000

= Scalablility-Progressive by accuracy




i Error Resilience

= More Examples
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What can we do with an image?

Object Detection/RecognitiQn
Curve Detection/Fitting

Line Detection/Fitting

Key Feature Estimation

Scene Editing/Augmentation




Image Processing

= Define a new image g in terms of an
existing image 7
= We can transform either the domain or the
range of 7

= Range transformation:

g(z,y) = t(f(z,y))

What kinds of operations can this perform?

Smoothing, Enhancing, Denoising, Binarizing......



i Image Processing

= Some operations preserve the range
but change the domain of f :

g(z,y) = f(te(z,y), ty(z,y))

= What kinds of operations can this
perform?

Translation, Rotation, Scaling......



i Image Processing

= Still other operations operate on both the
domain and the range of f .

g(x,y) =s(1(t.(x y).t,(x,y)))

= What kinds of operations can this perform?

Fractal Image coding, Wavelet Image coding......



Bilinear Interpolation(X{Zk M43 {H)

= A simple method for resampling images

(¢, + 1) (¢e+1,74+1)
(z,y)
Yl
(4,4) (i4+1,5)
flx,y) = (1 —a)(1=0) f[i,j]
+a(1-06)  fli+1,5]
+ab fli+1,5+1]
+(1—=a)  fli, 5+ 1]




Normalized Correlation

Account for energy differences

Zmzzn:t(m—i,n—j)f(m,n)

%

[zxeo-ini] [z




i Linear Filtering

= The output is the linear combination of
the neighborhood pixels

= Weighted Sum(hint )

1 13 |0 1 |10 |1 1 }o lo
2 1102 |® |2 |0 [-2 | = |4 f4 4
4 |1 |1 1 |0 |-1 N E

Image Kernel Filter Output

— convolution



:ﬁverage Filter(~

Mask with positive
entries, that sum 1.

 Replaces each pixel
with an average of
Its neighborhood.

 |f all weights are
equal, it Is called a
BOX filter.

e

A
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Gaussian Smoothing

original SEEEEEREENE =




Median Filter( " {EJE %)

= Smoothing is averaging ©®@ ° = _ °

(a) Blurs edges S e

(b) Sensitive to outliers i) ° %
= Median filtering

= Sort N°-1 values around the pixel

= Select middle value (median)

@ sort © median
O] Q o QO Q o Q Q @)

= Non-linear (Cannot be implemented with convolution)
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Image gradient(£f /%)

i The gradient of an image: Vf = [gng, ggﬂ

The gradient points in the direction of most rapid
change In intensity

vi=[50 I vi =[5 3]
F vfz[o’ﬁ] k

= The gradient direction is given by:

_ _1(9f 0
o = tan—1 (4L/90)
= how does this relate to the direction of the edge?
= The edge strength is given by the gradient

magnitude IV f|| = \/(gf) _|_( )




Effects of noise ("5 1 5 i)

= Consider a single row or column of the image

= Plotting intensity as a function of position gives a
signal

f(x) |

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
| | T | . | | |

duf (@)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

= Where is the edge?



Solution: smooth first

Sigma = 50
I

...................................................................................................
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Where is the edge? Look for peaks in O (h* f)



‘LDerivative theorem of convolution

D (hxf) = (%h) = f This saves us one operation:

Sigma = 50
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What Causes an Edge?

+

= Reflectance
discontinuity (i.e.,
change in surface
material properties)

= Depth discontinuity

s Surface orientation
discontinuity

= lllumination
discontinuity (e.g.,
shadow)




iPrewitt and Sobel Edge Detector

= Compute derivatives
« In x and y directions

= Find gradient magnitude
= Threshold gradient magnitude



i Pyramids

= Many applications
= small images faster to process
= good for multiresolution processing
= compression
= progressive transmission
= Known as “MIP-maps” in graphics
community
= Precursor to wavelets
= Wavelets also have these advantages



i Canny Edge Detector

= Criterion 1: Good Detection: The optimal
detector must minimize the probability of
false positives as well as false negatives.

= Criterion 2: Good Localization: The edges
detected must be as close as possible to the
true edges.

= Single Response Constraint: The detector
must return one point only for each edge
point.



i Canny Edge Detector Steps

1.

2.

3.

Smooth image with Gaussian filter
Compute derivative of filtered image

Find magnitude and orientation of
gradient

Apply “Non-maximum Suppression”
Apply “Hysteresis Threshold”




Canny Edge Detector
‘L Hysteresis Thresholding

Gradient —\ F/ High
magnitude \\ /

N \—\J > low




iLeast Squares Fit(f/> il &)

= Standard linear solution to estimating
unknowns.

= If we know which points belong to which line
= Or if there is only one line

A

y=ax+b=f(x,a,b) 1
Minimize E = Z[yi - f(x.,a,b)[ l .

Take derivative wrt a and b setto O >




‘L Advantage of Voting

Example: Two candidates (A & B) run for the president
Assumption: the correct probability of each vote is 0.7

Scheme 1: assigned by the previous president.
Correct rate: 70%=0.7

Scheme 2: general election, the candidate with more votes wins

correct rate for 3 votes: [

Correct rate for 10,000,000 votes: ......

Correct rate for 5 votes:



Recall: Increase transmission
‘L reliability by voting

Example: Transmit one “0” or “1” bit in a channel of 80% reliability

Scheme 1: Directly transmit the bit(0 or 1).

Correct rate: 80%=0.8

Scheme 2: Transmit “000” for the bit 0 and “111” for
the bit 1. Take the symbol appears more times in the

received sequence as the correct one, eg. “101"->"1"
“001”_>”O”’ “100”_>”O”’ (‘111”_>”1H

corect rate: |



Hough transform: Principle

parameter space

o | | A
o
B
T O — .:. .....................................................
10 = S S SR S
D
D 1

Implementation :

1. the parameter space is discretised
2. a counter is incremented at each cell where the lines pass
_)3. peaks are detected



;

‘-LHough transform: Principle

Problem : unbounded parameter domain, vertical lines require infinite m

A

M

y
m —> oo XCco0s@ +ysing =p
—T—0—>
X
Solution: alternative representation //
P
0: determine the slope of the line: m
p: the distance from the line to the origin //g g

Each point will add a cosine function in the (0,p) parameter space



iHough transform: Principle

XCcos@ +ysind =p Each green bin get a vote

[l 2_

p =XC0SH +ysind

=y (=
X5+ Y

=X+ y*sin(@+ o) .

Each feature point corresponds to a sine | |
cuve in Hough space -pi -pir2 0 pif2

cosf +
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Matlab Demos

I = imread(‘circuit.tif");
rotl = imrotate(l,33,'crop’);
BW = edge(rotl,'canny’);
[H,T,R] = hough(BW);
imshow(H,[],’XData’,T,"YData',R, InitialMagnification’, fit');
xlabel("\theta"), ylabel("\rho");
axis on, axis normal, hold on;
P = houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));
x=T(P(:,2)); y = R(P(:,1));
plot(x,y,'s",'color’,'white’);
lines = houghlines(BW,T,R,P,'FillGap’,5,'MinLength',7);
figure, imshow(rotl), hold on;
max_len = 0;
for k = 1:length(lines)
xy = [lines(k).pointl; lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green’);
plot(xy(1,1),xy(1,2),'x','LineWidth’,2,'Color','yellow");
plot(xy(2,1),xy(2,2),'x','LineWidth’,2,'Color','red");
len = norm(lines(k).pointl - lines(k).point2);
if (len > max_len)
max_len = len;
xy_long = xy;
end
end
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color’,'cyan’);

100

200

300

| B
Emw




i Outliers

= Least squares assumes Gaussian errors

= Outliers: Points with extremely low
probability of occurrence (according to
Gaussian statistic)

= Can result from data association errors
= Strongly influence least squares



i RANSAC

= Main idea
= Select 2 points at random
= Fitaline
= “Support” = number of inliers
= Line with most supports wins

= General algorithm
= Randomly select s points
= Instantiate a model
= Get consensus set Si (supports)
= Repeat for N trials, return model with max |Si|



A demo for line fitting

Trial 1: Support number=2

Trial 3: Support number=4



RANSAC—Summary

Choose a small subset uniformly at random
Least squares fit to that subset
Compute the fitting error

Determine the consensus set

= comparing each error with the threshold;
= Anything close to result is inliers;

= all others are outliers

Repeat the above steps for many trials

Choose the fit that agreed with most points
= Can perform one final LS with all inliers



RANSAC—Discussion

= Advantages:

= General method suited for a wide range of model fitting
problems;

= Easy to implement and easy to calculate its failure rate;

= Disadvantages:

= Only handles a moderate percentage of outliers without
cost blowing up

= Many real problems have high rate of outliers (but
sometimes selective choice of random subsets can help)
= Hough transform can handle high percentage of
outliers, but false collisions increases with large bins




i Segmentation as clustering

Cluster together (pixels, tokens, etc.) that belong together
= Agglomerative (#t28) clustering (bottom-up)
= attach closest to cluster it is closest to
= repeat
= Divisive (47%2) clustering (top-down)
= split cluster along best boundary
= Repeat
= Point-Cluster distance (merge/split rules)
= single-link clustering
= complete-link clustering
= Qgroup-average clustering
= Dendrograms (#J& %))

= Vield a picture of output as clustering process continues



Agglomerative clustering—
i Clustering by merging

F

*
o o5
4 1 &
oA
e F

3 —

3456



Divisive clustering—
i Clustering by splitting

N
| —
distance

3456



Clustering

= We want to group together some primitives

L] "
- ® ®
e te

Seems easy, but...



Clustering

f, =Unit(a,b), f, = Normal (x,X)

We want to group together some primitives

If we knew which items belongs to a group...
= A good description of the groups can be drawn
= Position, intensity, texture...

If we knew a good description of the group... I

= We may figure out which primitives belong to which group
= Or at least the probability...
; ot

This is a chicken and egg problem...

)



i Clustering

= |[terative solution:
= Guess one side of the answer
= Figure out the other side
= Refigure out the first side
= Keep going till we converge




i Clustering

= How to choose the representative colors?
= This is a clustering problem!

G .

Objective

G eC1e
...D ® .Jj
) > "
o 830

= Each point should be as close as possible to a cluster center

=« Minimize sum squared distance of each point to closest center

2.

clusters 12

2.

points p in cluster 2

>
lp — <l




Break it down into subproblems

+

= Suppose | tell you the cluster centers c;
= Q: how to determine which points to associate with each c,?
= A: for each point p, choose closest c;

o o o(Cle
oo’. ° . ooDl. .Jj
|y >
o.. 06.3.

= Suppose | tell you the points in each cluster

= Q: how to determine the cluster centers?
= A choose c; to be the mean of all points in the cluster



i K-means clustering

= K-means clustering algorithm
1. Randomly initialize the cluster centers, c,, ..., C¢
2. Given cluster centers, determine points in each cluster
For each point p, find the closest c,. Put p into cluster i
. Given points in each cluster, solve for c;
Set c; to be the mean of points in cluster |
. If ¢, have changed, repeat Step 2

= Properties
= Will always converge to some solution
= Can be a “local minimum”
does not always find the global minimum of objective function:

> >, 1p — cil|?

clusters 2 points p in cluster 2



iConvergence of the algorithm

= The iteration always reduces the error measure
s Reassigning a point to the nearest center reauces error
s The center that minimizes MSE Is the average

d, < d,

> > 1p — ¢l

clusters 17 points p in cluster 2



Recall —
i Fitting a constant function

= For constant function y=a
= Minimizing squares gives a=mean

Min(E = " (v, -2)*)

=Y 2y ) =2y, -n-a) =0

a=>y,/n=mean(Y)



K-Means

oose a fixed number of clusters
Choose cluster centers and point-cluster allocations to

minimize error
> > I-al

I eclusters | j eelements of i'th cluster

can’t do this by search, because there are too many possible
allocations.

Algorithm
= fix cluster centers; allocate points to closest cluster
« fix allocation; compute best cluster centers

X could be any set of features for which we can compute a
distance (careful about scaling)






Clustering —
i Determine Regions




Graph Cut —
i Determine Boundaries







i Inner (dot/scalar) Product

V/ «
% v.W:(xl,xz).(yl,yz):x1y1+x2.y2

The inner product is a SCALAR!

VW= (X, %) (Y, Y2) =V W =w'v = V|- w]| cos

vw=0<V.lw

The inner product measures the similarity of two vectors




i Outer (cross/vector) Product

w& U=VXW
The cross product is a VECTOR!

Magnitude: || U |[=]||v.w]|=[| V]| wW]|sIna

ulv=u-v=(vxw)-v=0
Orientation:

Uulw=u-w=(vxw)-w=0



Homogeneous Coordinates

i (G5 IR AR )

= Mu
aing

tiply the coordinates by a non-zero scalar
add an extra coordinate equal to that

SCa

ar. For example,

(X,y) > (x-z,y-2,z) z#0

(X,y

Z) > (X-w,y-w,z-w,w) w=0

- NOTE: If the scalar is 1, there is no need
for the multiplication

Example:

(2,3) = (2,31) ~ (4,6,2) ~ (—4,-6,-2)..

(3,-1,2) —> (3,-1,2,1) ~ (6,-2,4,2) ~ (-6,2,—4,-2)...



i Back to Cartesian Coordinates:

» Divide by the last coordinate and eliminate it. For
example,

(X,¥,2) z20—>(x/z,y/2)
(X, ¥,Z,w) w=0—>(x/w,y/w,z/w)
O

Question: What if z=07? g??¥

Q



Scaling, Translating &

i Rotating
‘ Order matters!
o,

P'=SP
P*=TP'=(T.S).P
P“=R P"=R (T.S).P=(R.T.S)P

e |

RT.S#RS.T=TSR..



Projective Transformations in

i a Plane (M} 52 A8 #/i7 #1 AL i)

= Projectivity (EL4})
= Mapping from points in plane to points in plane
= 3 aligned points are mapped to 3 aligned points

s Also called
= Collineation (L4, E ANk
= Homography (¥ 14)
O O O

Same shapes are related by a projective transformation



=]

‘L Invariants(/f 25 &
Length Angle Parallelism | Collinearity
Area Shape Area ratio | Cross-ratio




Special Projectivities
_-- HEEERNN

Invariants

Projectivity
8 dof

Affine transform
6 dof

Similarity
4 dof

Euclidean transform
3 dof

Projective Geometry



Homography

= Homography is a singular case of the
Fundamental Matrix (3£ 4<% [4)

= Two views of coplanar points

= TWO views that share the same center of
projection

& -

<>

o8 B




Homographies

= Perspective projection of a plane
« Lots of names for this:
= homography, collineation, planar projective map
= Modeled as a 2D warp using homogeneous coordinates

To apply a homography H
e Compute p’=Hp  (regular matrix multiplication)
e Convert p” from homogeneous to image coordinates
— divide by w (third) coordinate



= Glven a coordinate transform (x,)) = A(x,))
and a source image A x,)), how do we
compute a transformed image g(x,)) =

(x,)))?



i Forward Warping

X ixy) < gixy)
= Send each pixel Ax,)) to its corresponding
location

(X,) )= h(x,)) in the second image

Q: what if pixel lands “between” two pixels?



i Forward Warping

_# h(x,y) 5
i vt
() X g(xy)

= Send each pixel Ax,)) to its corresponding location
(X,V)= h(x,)) In the second image

Q: what if pixel lands “between” two pixels?
A: distribute color among neighboring pixels (x’,y’)

— Known as “splatting”
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= Get each pixel g(x,)) from its corresponding location
= (x,)) = (X,)) in the first image

Q: what if pixel comes from “between” two pixels?



i Inverse Warping

5 o
) ©gy)
= Get each pixel g(x,)) from its
corresponding location (x,)) = A%(X,)) In
the first image

Q: what if pixel comes from “between” two pixels?
A: resample color value
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i Forward vs. Inverse Warping
= Q: which is better?

= A: usually inverse—eliminates holes

= however, it requires an invertible warp function—not
always possible...



i Bilinear Interpolation

= A simple method for resampling images

(i,7+1) (i+1,74+1)
(z,y)
a
b
(%, 7) (14 1,5)
flx,y) = (1 —=a)(1=0) f[i,j]
+a(1-0)  fli+1,5]
+ab fli+1,5+1]

+(1 —=a)  fli, 5+ 1]




Which module is most difficult ?

MultiView/Extraction/matching/tracking/morphing/optimization
/blending/inpainting/editing/...



* Wide-angle Imaging

s Goal

= Stitch together several images into a
seamless composite




i Panoramas

= What if you want a 360° field of view?

N mosaic Projection Cylinder



i Cylindrical Reprojection

Jp——
-

side view

(% y,2=1)
()2’ 9’ @
X
Z

top-down view v



i Homogeneous Coordinates

= Multiply the coordinates by a non-zero scalar
and add an extra coordinate equal to that
scalar. For example,

(X,y) > (x-z,y-2,z) z#0
(X, ¥,2) > (X-w,y-w,z-w,w) wW=0

- NOTE: If the scalar is 1, there is no need
for the multiplication

(2,3) = (2,31) ~ (4,6,2) ~ (—4,-6,-2)..

Example:
(3-1,2) - (3,-1,2,1) ~ (6,-2,4,2) ~ (=6,2,—4,-2)...



i Back to Cartesian Coordinates:

» Divide by the last coordinate and eliminate it. For
example,

(X,y,2) z#0—>(x/z,y/2)
(X, ¥,Z,w) w=0—>(x/w,y/w,z/w)
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i Homogeneous coordinates

Homogeneous representation of lines
ax+by+c=0  (ahbc)
(ka)x+(kb)y+kc=0,vk =0  (ab,c) ~k(ahb,c)
equivalence class of vectors, any vector is representative

Set of all equivalence classes in R3—(0,0,0)T forms P2

Homogeneous representation of points
=(x,y) onl=(ab,c)" ifand only if ax+by+c=0
(xylNa,b,c) =(xyD)I=0 (x,y,1) ~k(x,y1)", vk =0

The point x lies on the line | if and only if xTI=I"x=0

Homogeneous coordinates (X11X21X3)T but only 2DOF
Inhomogeneous coordinates (X, y)T



Points and lines

The point p(x,y,1)" lies on the line I(a,b,c)" if and only if pTI=I"p=0
l.e. ax+by+c=0
The line | pass through two points p,(x,,y,,1) and p,(X,,y,,1) IS
homogeneously defined by I=pl1xp2
Note that (p,xp,)"p,=0, (p,xp,)"P,=0

The intersection point p of two lines |,(a,,b;,c,) and |,(a,,b,,c,) Is
homogeneously defined by p=I,xl,

p, =(011) We verify:
p,-1,=11+0-1+1--1=0
, =(1,00) |, =(11,-1) p,xp,=(0-1-1-11-0-1.11.1-0-0)

—(-1-11) o (LL-1) =1,
p; =(0.0) \pl =(101)] 1, x1,=(0-0-0-10-0-1.01-1-0-0)

, =(010) =(0,01) = p,




i Ideal points

It is independent of the third coordinate c
It is solely dependent on the ratio a/b XO

Q: How many ideal points are there in P??
A: 1 degree of freedom family — the line at infinity



|deal

Points

All parallel lines uniquely

determine one ideal point

P, =(0,10)

e [P=(10)
! Iv = (1’0’ a) \\‘, ’ \“
t Ai=ezo] /

I, =(01,b)

> §R = (100)

We validate:
'P, =0
.'P. =0
I.'P. =0



i Line at infinity

- )
Parallel lines

= All ideal points of a 2D plane form an ideal line,
which is called the line at infinity of this 2D plane.



Points from lines and vice-versa

Intersections of lines

The intersection of two lines | and I'is X = Ix]'

Line joining two points
The line through two points Xand X'is |=XxxX'

Example




Ildeal points and the line at
INfinity

Intersections of parallel lines

1=(a,b,c)" andI'=(a,b,c')’ IxI'=(b,—-a,0)"

Example
(b,—a) tangent vector

(a, b) normal direction

X=1x=2
Ideal points (%, %,,0)"
Line at infinity 1 =(0,0,1)'

P2 =R? | Note that in P2 there is no distinction
between ideal points and others



i Practice

= All ideal points are on |_:
= Proof: (0,0,1)¢(x,,x,,0)T =0

= Any line | intersects with | line at an ideal point
= Proof: (a,b,c)x(0,0,1) =(b,-a,0)

= Two parallel lines | and I' always meet at an ideal
point
= Proof: Let | = (a,b,c)T and I’ = (a,b,c")T’



2D Projective Geometry: Basics

i- point: (x,y,2) eP* < (?,%)T el]*?

= A line: ax+by+cz=0 < a(§)+b(l)+c:0
' Z Z

we denote a line with a 3-vector  (&,b,¢)’

= Points and lines are dual: pis on /if I"p=0

- : | x|
s Intersection of two lines: 17720

= A line through two points: CRAY



A hierarchy of transformations

Euclidean group (upper left 2x2 orthogonal)
Similarity groun (scaled Euclidean)
Affine group (last row (0,0,1))

Projective linear group (general)

m Can be described algebraically
= characterized by invertible 3x3 matrices
= Orin terms of invariants




Overview transformations

Projective
8dof

Affine
o6dof

Similarity
4dof

Euclidean
3dof

hy,

h21

| 131

h12
22

32

¢

Concurrency, collinearity,
order of contact (intersection,
tangency, inflection, etc.),
cross ratio

Parallellism, ratio of areas,
ratio of lengths on parallel
lines (e.g midpoints), linear
combinations of vectors
(centroids).

The line at infinity |

Ratios of lengths, angles.
The circular points I,J

lengths, areas.



Shrinking the aperture

. 6mm 0.35 mm

Why not make the aperture

as small as possible? LUz
sLess light gets through

OFTICA
s Diffraction effects... roroanss a

o

0.15 mm .07 mm



i Lens

= |ldeal lens realizes the same projection
as a pinhole but gathers much more
light!




i Thin Lens: Properties

1. Any ray entering a thin lens parallel to
the optical axis must go through the
focus on other side

2. Any ray entering through the focus on
one side will be parallel to the optical
axis on the other side

3. Any ray passing through the optical
center does not change its direction




Thin-lens Law (Gaussian Lens

N

A\ 4

f
center of
projection
______________________ |: SIS IETEIE IR
< : >[< 5 >
f : focal length
1 1 1
“+to=—
I o f

For example,

f =50mm o0=300mm

optical axis

| =60mm



iThin Lens: Model

P




i The Thin Lens Law

VA

Q..

N\

P.

N>

N>

N N

+ o+
s I



i Limits of the Thin Lens Model

3 assumptions :

1. all rays from a point are focused onto 1 image point
e Remember thin lens small angle assumption

2. all Image points in a single plane

. f'
3. magnification m = — is constant
ZO

Deviations from this ideal are aberrations



i Aperture and F/stop

iris dlaphragm

F/stop: forinstance, £/1.0 /1.4 £/2.0 £/2.8 /4 {/5.6 £/8 f/11

»
»

less light
aperture areas is halved at each stop

filstop= /1.4 20 f28 4 f56 8 f11
oed"=1/1000 1/500 1/250 1/125 1/60 1/30 1/15






Vignetting

Optical Vignetting - Aperture dependency

At wider aperture, on the edge of the field, the entrance pupil can be partially shielded by the
lens body. This is why optical vignetting increases with aperture.

B

L2 L1

L3

More light passes through lens L3 for scene point A than scene point B.
Results in spatially non-uniform brightness (in the periphery of the image)



Vignetting

Natural Vignetting - Lens Dependency
*Natural vignetting is inherent to lens design, regardless of aperture.
*With a zoom lens, it generally increases as the focal length decreases.

|

Effect. Darkens pixels near the image boundary



Pinhole cameras

s PIinhole cameras
work in practice

s Abstract camera
model - box with a
small hole In It
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T - | -
—— B -
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— ~ . .
- _ . B B
—— - ___?‘. J
— I B I L =
ST L ___,--"H I
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—1 o
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- | F— I I
e 1 1 : 1

image T

plane |l T

- __})inh(}le

-~ virtual
image



Distant objects are smaller

+




* Parallel lines meet

mon to draw film plane
In front of the focal point.
Moving the film plane merely
scales the image.




i Vanishing points

 Each set of parallel lines meets at a different
point
— The vanishing point for this direction

o Sets of parallel lines on the same plane lead to
collinear vanishing points.

— The line Is called the horizon (or vanishing line) for
that plane



‘L Perspective Projection

0
=)
BE
|

4

ﬁf——ﬁ:?’”f/ | B’

A “similar triangle’s” approach to vision.

Marc Pollefeys



i Perspective Projection




i Properties of Projection

Points project to points

= Lines project to lines

= Planes project to the whole image or a half image
= Angles are not preserved

O Degenerate cases
= Line through focal point projects to a point.
= Plane through focal point projects to line




i Conseqguences: Parallel lines meet

= There exist vanishing points

\ \<




i The Effect of Perspective




H VPL

Different directions correspond
to different vanishing points

VPR

Marc Pollefeys



i Perspective Projection

= Objects farther appear
smaller

= Points go to Points

= Lines go to Lines

= Polygons go to Polygons
= Parallel lines meet




i Miller-Lyer Illusion

Votes for George Bush Votes for John Kerry

A clear and resounding victory

N

http://www.michaelbach.de/ot/sze muelue/index.html




Estimating the Projection Matrix

= Place a known object In the scene
= Identify correspondence between image and scene
= compute mapping from scene to image

-
!"‘l'
.

mio M1 mi2 MM13
m20 Mm21 M22 M23

+l-
L3
[ B
*
Ry
1
=& £
| — |
|2

[mOO mo1 mo2 MMoe3

HﬂNc:<ﬂ><

Issues
e must know geometry very accurately
 must know 3D->2D correspondence



Measurements on planes
i

. |
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1 2 3

Approach: unwarp then measure
What kind of warp is this?




'= S 3 g
To un‘vvarg (rectify) an image
» solve for homography H given p and p’
» solve equations of the form: wp’ = Hp
— linear in unknowns: w and coefficients of H
— His defined up to an arbitrary scale factor
— how many points are necessary to solve for H?



i Vanishing points

image plane

T~

vanishing point

camera
center

ground plane

= Vanishing point
= projection of a point at infinity



i Vanishing points (2D)

image plane
\
_vanishing point

/

camera
line on ground plane



Vanishing points

Image plane

\

_vanishing point V
/

@ >

camera
center
C :
line on ground plane
line on ground plane
Properties

= Any two parallel lines have the same vanishing point v
= The ray from C through v is parallel to the lines
= An image may have more than one vanishing point

= In fact every pixel is a potential vanishing point



Vanishing points

rImage by Q-T. Luong (a vision researcher & photographer)



i Vanishing lines

Vi \D

= Multiple Vanishing Points
= Any set of parallel lines on the plane define a vanishing point
= The union of all of these vanishing points is the Aorizon line
« also called vanishing line
= Note that different planes define different vanishing lines



i Vanishing lines

= Multiple Vanishing Points
= Any set of parallel lines on the plane define a vanishing point
= The union of all of these vanishing points is the Aorizon line
« also called vanishing line
= Note that different planes define different vanishing lines



i Computing vanishing points

at

t
@ >
P
/ 0
D P=P,+tD

P, +tD, P, /t+D, D,

R +tD R /t+D D

Pt: Y+ Y ~ Y + Y t — 0 POOE Y

P, +tD, P, /t+D, D,

1 1/t | 0 |

= Properties v=IIP,
=« P_ Is a point at /nfinity, v is its projection
= They depend only on line direction
= Parallel lines P, + tD, P, + tD intersect at P_,



Computing vanishing lines

Ad plane

9

= Properties
= | is intersection of horizontal plane through C with image plane

= Compute | from two sets of parallel lines on ground plane
= All points at same height as C project to |

= points higher than C project above |
Provides way of comparing height of objects in the scene



S.4

i Measuring height

Camera height

3.3

= N

2.8

2

-
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