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Abstract
We extend the material point method (MPM) for robust simulation of extremely large elastic deformation. This facilitates the
application of MPM towards a unified solver since its versatility has been demonstrated lately with simulation of varied materials.
Extending MPM for invertible elasticity requires accounting for several of its inherent limitations. MPM as a meshless method
exhibits numerical fracture in large tensile deformations. We eliminate it by augmenting particles with connected material
domains. Besides, constant redefinition of the interpolating functions between particles and grid introduces accumulated error
which behaves like artificial plasticity. We address this problem by utilizing the Lagrangian particle domains as enriched
degrees of freedom for simulation. The enrichment is applied dynamically during simulation via an error metric based on local
deformation of particles. Lastly, we novelly reformulate the computation in reference configuration and investigate inversion
handling techniques to ensure the robustness of our method in regime of degenerated configurations. The power and robustness
of our method are demonstrated with various simulations that involve extreme deformations.
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1. Introduction

The graphics community endeavours in creating impressive visual
effects for animated movies and computer games. These effects
vary from exaggerated squash and stretch to melting chocolate and
flowing water. Specialized solvers are frequently used for specific
phenomena, while a unified method to achieve these varied effects
is strongly favoured and remains an active research topic.

The material point method (MPM) has recently been embraced
by the graphics community due to its versatility in simulating varied
material behaviours. Its capability is well demonstrated with com-
pelling visual simulations of snow [SSC*13] and other wide range
of materials [SSJ*14, RGJ*15, YSB*15]. However, the simplest yet
most ubiquitous hyperelastic deformation turns out to be difficult for
MPM, which hinders its application as a unified simulation solver.
The difficulty stems from the inherent limitations of MPM. First,
numerical fracture is almost inevitable because MPM is a meshless
approach. Spurious tensile instability may arise when particles are
separated beyond the influence range of grid cells. Second, MPM

constantly redefines the interpolating functions between particles
and the background grid during simulation, which introduces error.
Inaccuracies of the deformation gradient computation accumulate
as the so-called artificial plasticity. Moreover, simulating invertible
elasticity introduces challenges that are more thorny than a general
deformable solver because of potential degenerated configurations.
Despite all these difficulties, MPM reveals the greatest potential of
becoming a unified solver among existing approaches. Therefore, it
is worthwhile to explore extensions of MPM for possible unification.

In this paper, we enhance MPM with the capability to simulate
invertible elasticity, where deformations could be so wild that the
determinant of deformation gradient may become negative. To our
knowledge, it is the first time MPM has been extended for such
extremely large deformations. We present a number of novel contri-
butions to achieve this goal. First, we introduce the idea of convected
particle domains[BK04, SBB11, SBG13] to graphics by attaching a
Lagrangian mesh with the particles. Generally there is no need for
Lagrangian mesh connectivity in standard MPM, while with particle
domains our method acquires several attractive features. Numerical
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Figure 1: Buddha returns to rest state after simultaneous twisting and compression. Our enhancements extend the capability of MPM to
simulate such extreme elastic deformations.

fracture of MPM is eliminated, and we are capable of reformulat-
ing the computation in reference configuration. This reformulation
combined with proper inversion handling techniques ensures ro-
bustness in degenerated deformations. The second contribution of
ours is a novel enrichment strategy to reduce accumulated errors of
MPM. We propose a metric to monitor the inaccuracy of particle
deformation, and the simulation is enriched with the particle do-
mains as additional degrees of freedom once the metric is satisfied.
Our approach is one of the very few methods in graphical simula-
tion [GKS02, KMB*09] that adopt the idea of enrichment to obtain
additional degrees of freedom. See Figure 1 for a demonstration of
our method handling extreme elastic deformations.

2. Previous Work

A complete review of the vast methods proposed thus far in computer
graphics for physics-based simulation is beyond the scope of this
paper. We restrict the following literature discussion to previous
research on the MPM and handling of invertible elasticity.

The MPM is relatively new in computer graphics. As far as we
know, Zhu and Bridson [ZB05] first mentioned it in their work
without deeper investigation. Its debut as a practical technique
was not made until Stomakhin et al. used it for snow simulation
[SSC*13]. Subsequent works further explored its strength in simu-
lating a broader spectrum of material behaviours [SSJ*14, RGJ*15,
YSB*15]. Jiang et al. [JSS*15] recently presented a method to re-
duce the dissipation between particles and grid by augmenting par-
ticles with a locally affine description of velocities. In fact, graphics
researchers have studied employing Eulerian grid in simulation be-
fore. McAdams et al. [MSW*09] used a cartesian grid to model hair
collisions in a dynamics solver based on mass-spring systems. Levin
et al. [LLJ*11] dealt with elasticity in an Eulerian framework and
resolved contacts with constraints. These methods are analogous to
MPM in the way of using the grid.

Although new to graphics, the analysis and applications of MPM
have been extensively studied in engineering field. It was first pro-
posed by Sulsky et al. [SCS94] as an extension of the fluid-implicit
particle (FLIP) method [BR86], and substantial improvements were
presented thereafter. Bardenhagen [Bar02] analysed the energy con-

servation error in MPM by comparing different stress updating
strategies. Steffen et al. [SKB08] studied the quadrature error and
grid crossing error of MPM. They advocated the use of smoother
basis functions to reduce these errors. Further investigations were
carried out by Andersen and Andersen [AA10]. An alternative way
to obtain a smoother field representation was the so-called general-
ized interpolation material point method (GIMP) [BK04], in which
the notion of particle domains was first proposed. Quantities are
smoothed inside the particle domains by combining the shape func-
tion of grid and the particle characteristic function. Sadeghirad and
colleagues presented the convected particle domain interpolation
method (CPDI) [SBB11], where particle domains are transformed
as parallelograms with the local tangent affine deformation of parti-
cles. Accuracy was improved for large tensile deformations, while
gaps between particles were not completely removed. They later
improved accuracy to second order by tracking particle domains as
quadrilaterals in 2D [SBG13]. We draw inspiration from these meth-
ods for using particle domains, but also propose novel contributions.
Instead of using formulation in world space like them, we take ad-
vantage of the Lagrangian nature of particle domains and conduct
reformulation in the reference configuration. Robustness in extreme
deformations is ensured, and it simplifies our enrichment with inver-
sion handling. Enrichment was also employed in [SBG13], but with
a different goal of handling weak material discontinuities. Other re-
search focuses on aspects of MPM that are less related to ours, such
as contact algorithms [HZMH11, MWR14], crack growth [TN02,
DLCK07] and implicit time integration [GW03, SK04].

Simulating invertible elasticity requires robust handling of phys-
ically invalid deformation mapping whose Jacobian has a negative
determinant. Irving et al. [ITF04] developed the invertible finite
element (IFE) framework for tetrahedral elements that extends ar-
bitrary elastic constitutive models to inverted configurations. They
later extended the method to hexahedral elements [ITF06]. Teran
et al. [TSIF05] considered the difficulty in implicit time integra-
tion and presented a modified Newton–Raphson algorithm which
can robustly iterate through inverted configurations. All these meth-
ods detect inversion via diagonalization of deformation gradient,
and fix the invalid first Piola-Kirchhoff stresses. Stomakhin et al.
[SHST12] proposed an energy-based approach that is more robust.
They provide both C1 and C2 extensions to arbitrary isotropic en-
ergy densities. All these methods were designed for Lagrangian
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Figure 2: Armadillo is hit by a ball. MPM enhanced with particle domains prevents numerical fracture in large tensile deformations.

Finite Element Method (FEM), and we adopt the ideas in our MPM
approach with Lagrangian particle domains.

3. Method Overview

The basic change we have made to standard MPM is the adoption
of particle domains, which act as a middleware in the interplay of
particles and background grid. The transfer of particle data to grid
(equivalently referred as rasterization) can be regarded as a two-
step procedure where quantities are first mapped to the corners of
particle domains and then to the grid nodes, and vice versa. The
key contributions of our work are built upon this seemingly simple
enhancement. First, connectivity information of particle domains
removes numerical fracture because initially neighboured particles
interact with each other consistently through the common particle
domain corners (see Figure 2). Second, data transfer between par-
ticles and domain corners is free from the accumulated error as the
interpolation functions are defined in material space. This inspires
us to halt the rasterization at the domain corner layer in case of
severe inaccuracy and remedy the simulation by employing domain
corners as additional degrees of freedom. We have designed an
enrichment metric based on particle deformation and dynamically
enable/disable the simulation on domain corners with this metric.
Finally, the Lagrangian particle domains allow us to reformulate
the computation in reference configuration, and by borrowing tech-
niques from the invertible FEM methods, we can robustly handle
deformations that involve degenerated states. The full update proce-
dure of our method is outlined in Algorithm 1, and we will describe
the details in following sections.

4. MPM With Particle Domain

In standard MPM, particles interact with grid nodes as mate-
rial points with concentrated mass. Better approximations can be
achieved by modelling particles as material regions of a continuum.
We propose to attach one particle domain with each particle, which
represents the underlying portion of material. The particle domains
are represented as quadrilaterals in 2D and hexahedrons in 3D. See
Figure 3 for an illustration of MPM with particle domains in 2D. In
this section, we defer the discussion of enrichment and describe our
method without enrichment first.

Algorithm 1 Dynamically Enriched MPM

1: repeat
2: //mark particle domain enrichment state
3: for all particles do
4: if enrichment metric is satisfied then
5: mark its domain corners as enriched
6: //rasterize
7: for all particles do
8: rasterize data to its domain corners
9: for all domain corners of the particle do
10: if domain corner is not enriched then
11: rasterize data to the grid

12: //solve on grid and enriched domain corners
13: for all active grid nodes do
14: update velocity by time integrating the dynamics

15: for all enriched domain corners do
16: update velocity by time integrating the dynamics,

handle inversion during the solve

17: resolve body collisions on grid nodes
18: update particle deformation gradient
19: //update particle velocities via two-step interpolation
20: for all unenriched domain corners do
21: update velocity via hybrid PIC/FLIP interpolation

of grid velocities

22: resolve body collisions on domain corners
23: for all particles do
24: update velocity as interpolated corner velocities

25: //update domain corner positions
26: for all domain corners do
27: if domain corner is enriched then
28: update position by time integrating velocity
29: else
30: update position with interpolated grid velocities

31: for all particles do
32: update position as interpolated corner positions

33: until simulation terminated
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Figure 3: Illustration of MPM with particle domains in
2D (bottom). The dots in red/yellow/green stand for en-
riched/transitional/unenriched particles, the squares are enriched
domain corners. Rasterization of quantities in the highlighted region
is shown in the top of the figure.

Inside particle domains, alternative grid basis functions are con-
structed to be an interpolation of standard grid basis functions at the
corners of particle domains:

ω∗
i (x) =

∑
α

Np
α (x)ωi

(
xp

α

)
. (1)

ωi(xp
α ) is the standard grid shape function associated with grid

node i evaluated at domain corner xp
α , and Np

α (x) is the FEM-style
shape function defined for the αth corner of the particle domain
evaluated at point x inside the domain.

We use the FEM shape function for linear hexahedral (quadrilat-
eral) elements as our shape function of particle domains. We refer
the readers to textbooks such as [Hug00, Bel00] for detailed expla-
nations of such function. For the grid shape functions ωi , we use
dyadic products of 1D piecewise linear functions

ωi(x) = ω

(
1

h
(x − xi)

)
ω

(
1

h
(y − yi)

)
ω

(
1

h
(z − zi)

)
, (2)

where xi = (xi, yi, zi) is the position of grid node, x = (x, y, z) is
the evaluation position, h is the grid spacing and

ω(x) =
{

1 − |x|, 0 ≤ |x| < 1

0, otherwise
. (3)

Data transfer between grid and particle domain corners are
performed via ωi(x), while inside particle domains it is typical
FEM approximation for linear hexahedral elements. Putting it to-
gether, particles interact with the grid using domain corners as a
middleware.

Figure 4: Egea falls through a shrinking tunnel and is compressed
violently. Robustness of simulation is ensured with our reformulation
in reference configuration.

As particles are in essence material regions, quantities carried
by particles are computed as averages over their particle domains.
Averaging over the particle domains involves spatial integration
of quantities and dividing the results by volumes of the domains.
This could result in numerical failure in case of degenerated con-
figurations during simulation, for example, flat particle domains by
compression (see Figure 4). Hence, we opt for the reference config-
uration to evaluate the result such that robustness is ensured. This
differs our method from previous methods [BK04, SBB11, SBG13]
that employ similar idea of particle domains. The interpolating func-
tion between particles and grid along with its gradient is evaluated
as below:

ωip = 1

V 0
p

∫
�0

p

ω∗
i (X)d�,

∇Xωip = 1

V 0
p

∫
�0

p

∇Xω∗
i (X)d�.

(4)

The gradient is computed with respect to reference coordinate X,
ω∗

i is the grid basis function inside particle domains, and �0
p is the

undeformed configuration of particle domains. Replacing ω∗
i with

the form in Equation (1), we get:

ωip = 1

V 0
p

∑
α

ωi

(
xp

α

) ∫
�0

p

Np
α (X)d�,

∇Xωip = 1

V 0
p

∑
α

ωi

(
xp

α

) ∫
�0

p

∇XNp
α (X)d�.

(5)

The integral over undeformed particle domain averaged by do-
main volume is defined as the interpolating function between parti-
cles and domain corners:

ωαp = 1

V 0
p

∫
�0

p

Np
α (X)d�. (6)

It can be pre-computed, and the integral is approximated with
Gauss quadrature in our implementation. We can write ωip as ωip =∑

α ωαpωi(xp
α ).
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With interpolating functions expressed in the reference config-
uration, the deformation gradient for each particle is updated as:

Fn+1
p = Fn

p + �t∇Xvn+1
p , (7)

where we have computed ∇Xvn+1
p = ∑

i v
n+1
i (∇Xωn

ip)T . Please note
the difference compared with the update rule of standard MPM
where formulation is constructed with respect to spatial configura-
tion [SSC*13].

The force on grid node i resulting from elasticity is now written
in terms of the first Piola–Kirchhoff stress P as:

f i(x) = −
∑

p

V 0
p P∇Xωip. (8)

Particle velocities are interpolated from grid in a hybrid PIC/FLIP
manner: vn+1

p = (1 − α)vn+1
PICp

+ αvn+1
FLIPp

, where the PIC part

is vn+1
PICp

= ∑
i v

n+1
i ωip , and the FLIP part is vn+1

FLIPp
= vn

p +∑
i(v

n+1
i − vn

i )ωip. We typically used α = 0.95. Considering the
construction of ωip , this is identical to first interpolating grid veloc-
ities to particle domain corners and then to particles.

Particle domains are convected with velocities on grid if no en-
richment is present. Evolving particle geometry is described by
tracking locations of the particle domain corners:

xn+1
α = xn

α + �t
∑

i

ωi

(
xn

α

)
vn+1

i . (9)

ωi(xn
α) is the value of standard grid basis function at the αth

corner of particle domain. We compute new positions of particles as
interpolated positions of domain corners such that particles do not
drift from particle domains: xn+1

p = ∑
α ωαp xn+1

α . It is worth noting
that the convected domains move particles through the background
grid, while the particles and corresponding domains remain fixed
with each other.

4.1. Embedded surface meshes

Obtaining high-quality rendering for particle methods is gener-
ally more challenging than mesh-based methods. Existing ap-
proaches include volume rendering [FAW10], screen space ren-
dering [vdLGS09], surfel model [PKKG03, PKA*05] and meshing
techniques [YT13]. Among these methods, rendering with surface
meshes reconstructed from particle data is the most prevalent. While
the meshing solution is widely used for liquid rendering, additional
tuning such as mesh smoothing is often required. In the case of
deformable objects, it is difficult to obtain a time-consistent mesh
sequence with as much detail as needed.

Fortunately, particle domains equip our method with the luxury of
using embedding techniques for rendering. We embed high-quality
surface meshes in particle domains, and update mesh vertex po-
sitions during simulation via interpolation. The deformed surface
meshes are rendered offline to generate the figures presented in this
paper.

5. Dynamical Enrichment

We have not discussed enrichment thus far. In this section, we will
provide a detailed description of our enrichment strategy and explain
the changes that have to be made with respect to the method without
enrichment.

Standard MPM employs a fixed background grid as a scratch-pad
of the stress-based computation. The coupling between Lagrangian
particles and Eulerian grid requires redefining interpolating func-
tions in each time step according to their spatial positions. The data
transfer between different representations leads to an inevitable loss
of information due to the mismatch of resolutions. This error is re-
flected in the deformations and positions of the particles, and it is
accumulated by constant redefinition of weight functions through
the simulation. Objects could not return to rest state because of
the deviations in particle positions, even if pure elastic constitutive
models are employed. This behaviour may be ideal for plasticity,
while it must be removed for elasticity simulation. Our enrichment
idea is based on the observation that shape functions of the particle
domains are fixed in material space and therefore no extra error is
accompanied with the interpolation inside particle domains. With
this in mind, we propose to halt the interplay between particle do-
main corners and grid if severe inaccuracy is detected, and employ
domain corners as enriched degrees of freedom. The enrichment is
a dynamical process determined by a metric that we have designed
to measure inaccuracy.

5.1. Enrichment metric

We design the enrichment metric based on an intuitive assumption
that more severe deformation is accompanied with more error in
MPM computation. With this convention, our metric is defined as a
measure of the amount of particle deformation. It is the reciprocal
of the condition number of particle deformation gradient:

K(Fp) = 1

‖F−1
p ‖F · ‖Fp‖F

, (10)

where ‖ · ‖F is the Frobenius norm. K(Fp) is a scalar function of Fp

in the range of 0 to 1, where greater values denote better condition
and vice versa. Therefore, the enrichment criterion is K(FP ) ≤ ε,
with ε typically set to 0.6.

It is difficult to numerically evaluate F−1
p if Fp is ill-conditioned.

This corresponds to extreme deformation with configurations close
to degeneration. We will introduce the inversion handling procedure
of our method in Section 5.3.

5.2. Simulation with enrichment

At the beginning of each time step, we evaluate the metric function
for each particle and mark all of its domain corners as enriched if
the enrichment criterion is satisfied. Particles are thereby divided
into three categories: enriched, transitional and unenriched. En-
riched particles are the ones with all their domain corners marked as
enriched, transitional particles have both enriched and unenriched
domain corners, and unenriched particles have no enriched domain
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corners (Figure 3). After the enrichment, the domain corners marked
as enriched are also employed as computation nodes.

The dynamical enrichment alters the behaviour of data transfer in
our approach. During rasterization, the two-step data mapping stops
at the enriched particle corners and will not continue to the grid.
Enriched particles affect only the enriched particle corners, particles
with no enriched corners map data to the grid in an ordinary way and
the particles in transition rasterize to both enriched domain corners
and grid nodes. We illustrate the rasterization with enrichment in
the top of Figure 3.

We update the velocities and positions of enriched domain corners
by time integration. The mass of domain corners is pre-computed
by rasterizing particle masses via ωαp (Equation 6). Forces on the
enriched domain corners are computed in the same manner with the
forces on grid, replacing the corresponding weight functions. By
contrast, the unenriched corners are updated through interpolation
from the grid as introduced in Section 4.

In our enriched MPM, the approximation of a quantity F (x)
carried by the particle is described as

F (xp) =
∑

i

ωipFi +
∑

α̂

ωα̂pFα̂, (11)

where α̂ is the enriched domain corners. As we can see, it is a gen-
eralization of our method without enrichment. The CPDI2 method
[SBG13] also uses enrichment, the difference is that they use it
for weak material discontinuities while we focus on reducing accu-
mulated error due to weight function redefinition. Our dynamical
enrichment metric is specially designed for this goal.

Particle velocities are still updated with the hybrid PIC/FLIP style
interpolation, where both vn+1

PICp
and vn+1

FLIPp
are computed with

Equation (11). Interpreted in the other way, they are still computed
via two-stage interpolations, only that velocities of enriched corners
are not determined by the grid.

For particles with enriched domain corners, we compute the gradi-
ents of velocity ∇Xvn+1

p = ∑
i v

n+1
i (∇Xωn

ip)T +∑
α̂ vn+1

α̂ (∇Xωn
α̂p)T ,

and update deformation gradients with Equation (7).

Figure 5 is an example of simulation with our dynamical en-
richment. Corresponding percentage of enriched particles during
simulation is illustrated in Figure 6.

5.3. Inversion handling

Since we have tackled accumulated error with enrichment, we take
one step further by handling inversion in simulation. Enriched sim-
ulation on particle domains is analogous to Lagrangian FEM, and
hence we could use invertible FEM techniques to handle inversion
of the enriched domains. Several solutions have been presented
previously for FEM [ITF04, TSIF05, ITF06, ST08, SHST12], and
we choose to build on the method by Irving et al. [ITF04] for the
simplicity of implementation.

In each time step, we diagonalize the particle deformation gra-
dient Fp via rotations U and V to obtain Fp = UF̂pVT . F̂p is a

Figure 5: Gorilla collapses into flat configuration due to disabled
physics (top), and quickly recovers from the degenerated state after
the material strength is enabled (bottom).

Figure 6: Percentage of enriched particles in the Gorilla example.
The percentage changes dynamically during simulation. The colour-
mapped gorillas illustrate the distribution of enriched particles at
time points denoted by green dots.

diagonal matrix that denotes particle deformation in principal di-
rections. An entry that is near zero corresponds to the case of flat
particle domain, and negative value indicates inversion. Following
Irving et al. [ITF04], we clamp the entries at some critical value if
they are below that value. The first Piola–Kirchhoff stress P for each
particle is computed as P = UP̂VT , where P̂ denotes the stress com-
puted from F̂p . Fp after the clamp operation is in good condition,
and we use it to compute the enrichment metric K(Fp) without
numerical failure issues.

c© 2016 The Authors
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Figure 7: Kitty is forced to fall through a funnel. The hyperelastic
constitutive behaviours are correctly captured by our method despite
the extreme compressions.

Figure 8: Bunny is rolled over by a cylinder. Our method prevents
numerical fracture in the stretching and robustly handles the degen-
erated deformations caused by the cylinder.

This simple inversion handling strategy ensures that the enriched
simulation on particle domains can robustly recover from inverted
configurations.

6. Robust Implicit Update

We update the velocities using implicit time integration to
achieve practical performance with acceptable time step. Following
Stomakhin et al.’s work [SSC*13, SSJ*14], we linearize the implicit
system with one step of Newton’s method, which yields a (mass)
symmetric system for vn+1

ĩ
:

∑
j̃

(
Iδĩj̃ + �t2m−1

ĩ

∂2�n

∂x ĩ ∂x j̃

)
vn+1

j̃
= v∗

ĩ
, (12)

where the right-hand side is the result of explicit time integration:

v∗
ĩ

= vn

ĩ
+ �tm−1

ĩ
f ĩ . (13)

It is worth noting that ĩ = {i, α̂} here includes not only the back-
ground grid nodes i but also the enriched particle domain corners
α̂. We will omit the tilde in the remainder of this section for more
compact notation.

We solve the linear system in Equation (12) using the Conjugate
Gradient method (CG) [She94]. Since CG is an iterative solver, we
never explicitly form the coefficient matrix and instead evaluate its
multiply with an arbitrary increment. The Hessian of the potential
energy � acted on an increment δu is expressed as

− δ f i =
∑

j

∂2�

∂xi∂xj

δuj =
∑

p

V 0
p Ap∇Xωip, (14)

where

Ap = ∂2�

∂Fp∂Fp

:

(∑
j

δuj (∇Xωjp)T
)

. (15)

The expressions are different compared with Stomakhin et al.’s
[SSC*13] due to our reformulation in material space.

The system could become indefinite in case of severe deforma-
tions and causes solver failure. It is undesirable, especially for sim-
ulations involving massive degenerated configurations. To enforce
positive definiteness of the system and thereby robustness of the
solving, we employ the remedy proposed by Teran et al. [TSIF05]
and manipulate Equation (15) into

Ap = U

{
∂2�

∂F∂F

∣∣∣∣∣
F̂p

:

⎛
⎝UT

(∑
j

δuj (∇Xωjp)T
)

V

⎞
⎠}VT , (16)

where U, V and F̂p are obtained from the diagonalization of particle
deformations as introduced in Section 5.3.
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Figure 9: Rabbit is sucked out of the cup through a straw. The massive inversion and accumulated errors are well handled by our method.

Figure 10: Illustration of dynamical enrichment with the percentage of enriched particles for the examples presented in the paper.

We use a Jacobi pre-conditioner to accelerate convergence of
the CG solver and thus reduce the simulation run times. The pre-
conditioner for Equation (12) is of the form

Pii =
∑

p

diag
(
mpωipI + �t2V 0

p H
)
, (17)

where

H = ∂2�

∂Fp∂Fp

: (∇Xωip(∇Xωip)T ), (18)

and taking positive definiteness into consideration H now becomes

H = U

{
∂2�

∂F∂F

∣∣∣
F̂p

:

(
UT (∇Xωip(∇Xωip)T )V

)}
VT . (19)

The pre-conditioned solver normally converged within 20 itera-
tions in practice. Occasionally it would take more iterations due to

sudden impact of collision objects. The overall iterations reduced
greatly compared with solving without a pre-conditioner.

7. Results

We have simulated a variety of examples that demonstrate the power
of our method. All these simulations involve extreme deformations,
most of which result from impact by collision objects. We process
collisions with objects following Stomakhin et al. [SSC*13], except
that we apply collisions to domain corners in the second phase in-
stead of to particles. Collided domain corners are projected to the
surface of collision objects in the normal direction to prevent pene-
tration, while the impulse due to collision is applied on particles.

Figure 1 is an example of buddha model with prescribed twist-
ing and compression. The buddha returns to rest state quickly af-
ter the prescribed deformation is removed. In Figure 2, we repro-
duce the scenario where an armadillo is hit with a ball [SHST12]
and demonstrate that we can achieve similar results using MPM.
Egea model in Figure 4 falls under the influence of gravity and
is compressed severely in the process by a shrinking tunnel. The
egea model correctly recovers after several bounces on the floor.
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Figure 11: Bunny bounces elastically before the bottom of the container is heated (top), and melts into viscous phase after heating (bottom).

Figure 12: Armadillo hit by a snow ball. The snow ball shatters while the armadillo deforms elastically.

With the example presented in Figure 5, we show that our method
can handle completely flat configuration. Figure 6 explains this
dynamical process by visualizing the percentage of enriched parti-
cles as a time-varying function. In Figure 7, we force a kitty to pass
through a thin funnel and our method is capable of robustly han-
dling the inversion therein. The bunny in Figure 8 is rolled over by
a cylinder, and deforms with complex compression and stretching.
In Figure 9, we present an example where a rabbit is sucked out of
a cup through a straw. There is massive inversion while the rabbit is
in the straw, and our method can handle the degeneration robustly.

An illustration of the dynamical enrichment for all these examples
is shown in Figure 10. We can see that the enrichment is enabled
only if severe inaccuracy is detected.

Finally, we demonstrate that our enriched MPM could still han-
dle the kind of material behaviours that makes standard MPM at-
tractive in the first place. In Figure 11, the initially elastic bunny
melts into viscous phase after being heated. This is achieved by
disabling the particle domains of the particles influenced by the
heat source during simulation to allow topological changes between
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Table 1: Particle counts, grid resolutions, simulation times and average
particle deviations for each of our examples. The timings are measured at
graphics frame rate of 30 frame s−1. Simulations are performed on a single
core of Intel Core i5, 2.8 GHz.

Example Particles Grid min frame−1 Error

Buddha 2918 32×40×32 6.34 2.4e-4
Armadillo 3134 30×16×13 6.15 2.5e-3
Egea 4269 24×64×24 14.94 2.3e-5
Gorilla 4649 32×80×32 8.42 5.4e-3
Kitty 5226 96×88×96 13.85 3.7e-3
Bunny 3559 56×16×16 12.38 1.2e-3
Rabbit 2635 24×104×24 7.15 1.8e-4
Melting bunny 60000 24×22×24 15.10 N/A
Armadillo snow ball 16587 120×72×52 15.17 N/A

Figure 13: The running time per-frame (blue) and the percentage of
enriched particles (red) for the armadillo example. The simulation
time changes in accordance with the amount of enrichment and
remains at acceptable low values.

particles. We update the temperature and constitutive model param-
eters with a simplified implementation of Stomakhin et al.’s work
[SSJ*14] without enforcing incompressibility. The surface mesh
for rendering here is reconstructed from particles using the method
by Bhatacharya et al. [BGB11]. In Figure 12, the armadillo is at-
tacked from behind by a snow ball. The snow ball shatters and hits
against the wall, while the armadillo deforms elastically. The differ-
ent phenomena presented here are simulated with the unified MPM
framework, and the coupling is handled trivially by the background
grid. We use the elasto-plastic constitutive model [SSC*13] for
the snow ball, and it is set artificially heavy to keep the armadillo
‘bowing’.

Table 1 lists the simulation times and resolutions for each of
the examples. Our implementation is sequential and no particular
code optimization is employed. For all of the examples the grid
cell size is h = 0.5 m and the time step size is generally �t �

2.5 × 10−4 s. A less restrictive time step size �t � 5.0 × 10−4 s is
used for the melting bunny example because the deformation therein
is moderate. The compressible Neo–Hookean model with Young’s
modulus E � 5.0 × 106 Pa and Poisson ratio ν = 0.3 is employed
for examples that demonstrate hyperelasticity.

In order to quantitatively evaluate the efficacy of our method in
reducing accumulated error, we compare the particle positions at
the rest state before and after deformations. The position devia-
tions are measured over the diagonal of the object’s bounding box:

Error = |xp−xref
p |

d
, where d is the length of the diagonal. For uncon-

strained motions, we first align xp and xref
p to eliminate the rigid

motions using the shape matching technique [MHTG05]. As de-
picted in the table, we have reduced the effect of error to a negligible
magnitude.

8. Discussion and Conclusion

Comparison to FEM. MPM could be conceived as an extension
of FEM, in which the computational mesh is fixed in space. The
enriched particle domains are Lagrangian degrees of freedom that
we use to alleviate accumulated error of standard MPM. It might
seem contradictory to carry Lagrangian particle domains with MPM
for hyperelasticity since FEM can easily handle such problems. We
assert, however, that we switch to particle domains for additional de-
grees of freedom only when necessary and most of the computation
is still performed on the static grid. The use of the static grid allows
us to take advantage of the automatic grid-based collision handling
of MPM. Besides, our modification to MPM does not harm the
original strength of MPM because we can easily disable the particle
domains during simulation if topological changes are required. It is
a well-known fact that it is not trivial for FEM to handle topological
changes. Our approach combines the best aspects of both MPM and
Lagrangian FEM, such that it can handle elasticity as good as FEM
and at the same time retain the advantage of MPM in simulating
other varied materials. In this way, multi-physics simulations can be
addressed in a unified manner without the complexity of coupling
between multiple methods.

Performance. Our enhancements to MPM come with some com-
putational cost. First, the evaluation of interpolating functions is
more expensive. Interpolating functions between particle domain
corners and grid must be computed, as well as those between par-
ticles and grid. However, we believe this additional cost can be
alleviated with parallelization as previous research has shown good
scaling performance of MPM. In the future, we might consider ac-
celeration of our method via General Purpose Graphics Processing
Unit (GPGPU) techniques to improve the performance. Alterna-
tively, employing model reduction techniques [BJ05, TLP06] for
MPM to reduce run times is also an interesting avenue of future
work. Another source of additional cost comes from our enrichment
strategy, where more computational nodes are employed. Figure 13
shows the relation between enrichment and the performance of our
method with the armadillo example (Figure 2). The running time
rises from 50 s frame−1 to 195 s frame−1 when the percentage of
enriched particles is increased to 80% from none. Fortunately, the
percentage of enrichment changes dynamically during simulation
and remains at low values (below 10%) most of the time. Consider-
ing the benefits of the enrichment, we believe this cost is acceptable.
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Limitations. Although we handle pure elasticity well with our
dynamical enrichment, there is no warranty that the accumulated
error is completely eliminated because we use a binary metric for
enrichment. Increasing the enrichment threshold removes more er-
ror, but with the cost of more computation. Nevertheless, we did
not encounter undesirable inaccuracy with the threshold used in our
experiments (see Table 1 for the error evaluation). Another minor
limitation of our method is that we did not handle self-collisions.
The background grid handles collision well in most cases, but it
cannot fully resolve the penetrations due to the extremely wild de-
formations presented in our examples. Since it is not the focus of
this paper, we leave it as future work.

Conclusion. In summary, we have introduced a novel enhance-
ment of MPM for invertible elasticity using dynamical enrichment.
The enriched MPM is capable of robustly simulating extreme elastic
deformations with degenerated configurations. Therefore, we have
broadened the already wide range of materials that MPM can handle,
and promoted the use of MPM as a unified solver.
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