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Abstract
In this paper, we exploit the use of peridynamics theory for graphical animation of material deformation and fracture. We
present a new meshless framework for elastoplastic constitutive modelling that contrasts with previous approaches in graphics.
Our peridynamics-based elastoplasticity model represents deformation behaviours of materials with high realism. We validate
the model by varying the material properties and performing comparisons with finite element method (FEM) simulations.
The integral-based nature of peridynamics makes it trivial to model material discontinuities, which outweighs differential-
based methods in both accuracy and ease of implementation. We propose a simple strategy to model fracture in the setting
of peridynamics discretization. We demonstrate that the fracture criterion combined with our elastoplasticity model could
realistically produce ductile fracture as well as brittle fracture. Our work is the first application of peridynamics in graphics that
could create a wide range of material phenomena including elasticity, plasticity, and fracture. The complete framework provides
an attractive alternative to existing methods for producing modern visual effects.
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1. Introduction

The simulation of deformable materials has been an important re-
search topic in computer graphics for decades, since the early work
by Terzopoulos and colleagues [TPBF87]. One of the strongest
driving forces behind the active research is the persistently growing
need for higher realism from the visual effects industry. Materi-
als in the real world exhibit complex behaviours, such as coupled
elastoplastic deformations, fracture, etc. The complicated material
behaviours are difficult to replicate by any single method despite
the numerous ones that have been developed thus far. Existing ap-
proaches generally excel at some phenomena but would stumble
(if not fail) at others. For instance, mesh-based methods [MG04,
ITF04, TSIF05, SB12] are a good choice to simulate elastic defor-
mations whereas not preferred for phenomena that involve topolog-
ical changes. Particle-based methods [MCG03, PKA*05, SSC*13]
are considered suitable for modelling topological changes, however
the inherent loss of connectivity information would cause undesir-
able numerical fracture [LZLW11, ZZL*16] while simulating large
deformations.

We build on recent developments of peridynamics theory in the
computational physics community [Sil00, SEW*07, Mit11, ELP13,
MO14] and propose a novel framework for graphical animation of
varied deformation behaviours and fracture. Our aim is to enrich
available options of simulation techniques for easier and better an-
imation production. Peridynamics was first adopted to animation
applications by Levine et al. [LBC*14] where they described a
simple spring-mass system to handle brittle fracture of solids. In
contrast, we handle elastoplasticity, brittle fracture and ductile frac-
ture in a single framework. To this end, we propose several novel
contributions in this work. We first present an elastoplastic con-
stitutive model in the peridynamics-based framework with simple
extension to anisotropy, and the model is validated against results
produced by finite element method (FEM). Furthermore, we show
that both brittle and ductile fracture phenomena can be naturally
represented with nearly no effort by integrating a simple fracture
criterion into this material model. This is due to the integral-based
formulation of peridynamics, in which forces at a material point are
computed by gathering contributions from all material points in its

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and
John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

112



W. Chen et al. / Peridynamics Fracture for Elastoplastic Solids 113

interaction range through integration. On the other hand, methods
based on classical continuum mechanics formulate force compu-
tations with partial differential equations that fail to be applicable
directly on singularities such as a crack. This feature makes our
peridynamics-based framework more attractive over existing ap-
proaches for producing animations that involve fracture. Lastly, our
method is simple to implement and trivially parallelizable, providing
a useful alternative to previous methods for animation production.

2. Related Work

A large body of literature has been devoted to physical simulation
of natural phenomena as a result of active research. A complete
literature review is beyond the scope of this paper. In the following,
we comment only on the representative works most related to ours.

Elastoplasticity Animation. The modelling of deformable plas-
ticity in graphics dates back to the pioneering work by Terzopoulos
and Fleischer [TF88]. O’Brien and colleagues [OBH02] incorpo-
rated a similar additive plasticity model into a finite element simu-
lation to animate ductile fracture. The strain measure was decom-
posed into two components, where one is due to elastic deformation
and the other due to plastic deformation. Müller et al. [MKN*04]
applied this model in their point-based framework and simulated
plastic behaviours of objects. Irving et al. [ITF04] presented a mul-
tiplicative formulation of plasticity and pointed out that their model
was better handling finite plastic deformation than the additive one.
In contrast to the additive model, they decomposed the deformation
gradient into two components through multiplication. The multi-
plicative model was extensively used by later works to animate
phenomena that involve plasticity. Bargteil et al. simulated large
viscoplastic flow [BWHT07], Gerszewski and his colleagues ani-
mated elastoplastic solids [GBB09] and Stomakhin et al. modelled
plasticity of snow [SSC*13], just to name a few. Unfortunately,
neither of the above plasticity models applies in the peridynamics
framework because there is no concept of strain nor deformation
gradient in the integral-based formulation. As a result, we present
a new constitutive model for peridynamics in this work to animate
elastoplastic solids.

Fracture Animation. Numerous methods have been proposed on
fracture animation [MBP14, WWD15] because the stunning phe-
nomenon of fracture and failure is an indispensable visual element
in animated movies and video games. Early approaches use sim-
ple schemes to model fracture, such as the finite difference method
[TF88], the mass-spring system [NTB*91] and the mass-point con-
straint system [SWB01]. O’Brien and Hodgins [OH99] adopted
techniques from continuum mechanics and presented a FEM-based
method to simulate brittle fracture of solids. They later extended
their method to ductile fracture by incorporating a plasticity model
[OBH02]. Müller et al. [MMDJ01] employed a quasi-static finite
element analysis to animate brittle fracture of stiff materials under-
going collisions. Parker and O’Brien [PO09] presented some useful
techniques for real-time simulation of fracture in game environ-
ment. One major issue in FEM-based methods is the generation
of fracture patterns on meshes, which could alter the underlying
mesh topology. Early methods typically made use of simple separa-
tion along mesh element boundaries [NTB*91, MMA99, SWB01,
MMDJ01] or even element deletion [FDA02]. Mesh subdivision
prior to splitting could somewhat increase the available geometric

details [MK00, BG00], whereas this tended to introduce elements
with poor aspect ratios. Allowing failure along more arbitrary paths
could generate more geometrically rich fracture patterns [NF99,
OH99, OBH02], albeit at the expense of complicated re-meshing.
Molino et al. [MBF04] proposed a virtual node algorithm to avoid
the complexity of remeshing, where elements were duplicated into
partially filled counterparts with virtual nodes. The virtual node
algorithm was frequently used by subsequent works on fracture
animation [BHTF07] and mesh cutting [SDF07, WJST14] due to
its simplicity compared to re-meshing methods. Kaufmann et al.
[KMB*09] adapted the extended finite element method (XFEM) that
enriches approximation by custom-designed basis functions, instead
of actual/virtual element cutting. Other representative mesh-based
methods resorted to modal analysis [GMD13] and pure geometric
mesh decompositions [MCK13, SO14] for real-time brittle fracture.
Most recently, several works explored the boundary element method
for rigid body fracture [ZBG15, HW15] where only surface meshes
were employed for both representation and computation.

In contrast to mesh-based approaches, meshless methods are
generally considered as a better solution for animating topological
changes. Based on the moving least square (MLS) meshless frame-
work by Müller et al. [MKN*04], Pauly and colleagues [PKA*05]
developed a novel meshless method for fracture animation of elasto-
plastic solids. Their method generates detailed crack surfaces and
allows arbitrary crack initiation/propagation. Steinemann et al.
[SOG09] employed surface mesh representation in meshless frame-
work and presented a novel surface tracking technique to efficiently
split the meshless deforming objects. Inspired by the rigid body
assumption for simulating brittle fracture, Liu et al. [LHLW11] em-
ployed quasi-static analysis in a meshless local Petrov–Galerkin
framework. Stomakhin et al. modelled the fracture of snow us-
ing a meshless material point method [SSC*13]. Hegemann et al.
[HJST13] combined a level set–based mesh embedding technique
with the material point method to animate dynamic ductile fracture.

Peridynamics. The peridynamics theory was first proposed by
Silling [Sil00] as a nonlocal reformulation of classical solid me-
chanics. It contrasts with classical (local) theory in that the state
of a material point is influenced by not necessarily the material
points located in its immediate vicinity, but also those over long
distances. The governing equations of the peridynamics theory are
spatial integral equations instead of partial differential equations.
The theory was further developed by subsequent works [SEW*07,
ELP13], and its applications to the engineering field such as multi-
scale material modelling [ABL*08, SC14] and fracture modelling
[AXS06, SWAB10, SA14] were studied. A comprehensive review
of the research literature in the computational physics community is
beyond our scope, we refer the readers to the book by Madenci and
Oterkus [MO14]. Levine et al. [LBC*14] first introduced peridy-
namics to graphics for fracture animation. Their method was limited
to brittle fracture of isotropic elastic materials with a single Poisson
ratio of 0.25. Our work, on the other hand, is a complete framework
that models elastoplasticity and anisotropy under various parameter
settings, representing brittle and ductile fracture with high realism.

3. Background

In the peridynamics theory, any material point x interacts with other
material points within a distance δ. The distance δ is called the
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Figure 1: A sphere shoots through walls made of different materials, causing varied fracture behaviours. From left to right: isotropic brittle
fracture, anisotropic brittle fracture, isotropic ductile fracture and anisotropic ductile fracture.

horizon of x, and the material points within the horizon are referred
as its family, Hx. There are infinite number of family members for
a material point before discretizing the continuum into discrete par-
ticles. Figure 2 is an illustration of the peridynamics discretization
with particles. It seems analogous to other meshless methods based
on classical theory [MCG03, MKN*04], and the difference lies in
the scale of interaction radius δ. In the case of the classical (local)
continuum model, the state of a particle is influenced by only parti-
cles in its immediate vicinity. For case of the peridynamics theory,
however, the state of a particle is influenced by particles within a
region of finite radius. The peridynamics theory is thus referred as
a non-local theory. As the radius becomes infinitely large, the peri-
dynamics theory becomes the continuous version of the molecular
dynamics model. As the radius becomes smaller, it becomes the
continuum mechanics model. Therefore, the peridynamics model
establishes a connection between the continuum mechanics and
molecular dynamics models.

Figure 2: Illustration of peridynamics discretization. A continuum
is represented as particles (pink dots), and any particle (green dot)
interacts with the particles within its horizon (green circle).

Our motivation for choosing peridynamics is that it is more
favourable to handle material discontinuities, such as cracks. This
benefit inherently from an integral force formulation of its govern-
ing equations, which stands in contrast to the partial differential
equations used in the classical formulations. As we know, spatial
derivatives are not well defined at discontinuities. Therefore, spe-
cial treatment is generally required for fracture modelling in existing
methods that are based on classical continuum mechanics. For in-
stance, the mesh-based methods [OH99, OBH02] employed remesh-
ing operations and the meshless method by Pauly et al. [PKA*05]
altered the particle weight functions. The peridynamics governing
equations remain valid at discontinuities, and material damage is
represented as part of the peridynamics constitutive model. These
attributes permit fracture initiation and propagation to be modelled
with arbitrary paths in the peridynamics framework.

In peridynamics, the governing equation at any point x is formu-
lated in integral form as below:

ρü(x) =
∫

Hx

[T〈x′, x〉 − T〈x, x′〉]dH + b(x), (1)

where ρ is the mass density, u denotes the displacement, b is the
external loads due to gravity and impact forces and x′ is one material
point that belongs to the family Hx of x. T〈x′, x〉 and T〈x, x′〉 are
two essential terms in which the constitutive laws of materials are
encoded. T〈x′, x〉 represents the internal force density exerted by x′

on x, and T〈x, x′〉 is the other way around. The two terms both appear
in the governing equation to enforce the Newton’s third law, and

Figure 3: An armadillo is initially anchored on its back and four
limbs, and it deforms elastically when its back is released.
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similar strategy was employed in smoothed particle hydrodynamics
(SPH) methods [MCG03]. The angle brackets representation 〈·〉 was
defined by Silling et al. [SEW*07] as a function inside the family
Hx, which they called as a state. Please note the integral form of
the equation, which is the key difference between peridynamics and
classical theory. The entire framework is built on displacements
u instead of their spatial derivatives, thereby making discontinuity
modelling trivial. With particle discretization, the integration within
Hx is represented as summation over family particles:

ρü(x) =
∑

x′∈Hx

[T〈x′, x〉 − T〈x, x′〉]Vx′ + b(x), (2)

with Vx′ as the volume of particle x′.

4. Elastoplastic Model

In this section, we describe our constitutive model for peridynam-
ics in detail. We start with the basic isotropic elastic model, then
plasticity is incorporated, and finally we extend the model with
anisotropy.

4.1. Isotropic elasticity

As is discussed in Section 3, the key to peridynamics-based consti-
tutive modelling is the design of proper internal force density T〈·〉.
Silling et al. [SEW*07] showed that peridynamic constitutive mod-
els can be designed to match many hyperelastic constitutive models
under the classical elasticity theory. We derive our model based
on the model described by Madenci and Oterkus [MO14], which
matches the isotropic linear elasticity model in classical theory. The
elastic internal force density exerted by particle j on particle i is
defined as below:

Ti〈xj , xi〉 = 1

2
A

yj − yi

|yj − yi | , (3)

where x and y denote the positions of particles before and after
deformation, respectively. The direction of the force density is along
the deformed bond between the particles given by

yj −yi

|yj −yi | . A is a
scalar that represents the force magnitude, and it is composed of
two terms by addition A = Adil + Adev, namely, the dilatation term
Adil and the deviatoric term Adev.

The dilatation term Adil is due to the dilatation part of deformation,
i.e. volume change without any shape distortion. It is defined as

Adil = 4ωij a
yj − yi

|yj − yi | · xj − xi

|xj − xi | θi, (4)

where a is a peridynamics material parameter and ωij is the weight
function between particle i and particle j . For isotropic materials,
ωij is monotonically decreasing with respect to the distance between
particles

ωij = δ

|xj − xi | . (5)

Note that ωij is defined in the material space, therefore can be pre-
computed. The term θi measures the dilatation at particle i, which
is defined with respect to the stretch of all bonds between particle i

and its family:

θi = 9

4πδ4

N∑
k=1

ωiksik

yk − yi

|yk − yi | · (xk − xi)Vk, (6)

where N represents the number of family points k for point i, and
Vk are their volumes. The stretch sik of the bond between particles
is defined as

sik = |yk − yi |
|xk − xi | − 1. (7)

The deviatoric term Adev is a result of distortion that does not
cause change in volume. It is defined with respect to the deviatoric
component of bond extension:

Adev = 4ωij b

(
eij − δ

4

yj − yi

|yj − yi | · xj − xi

|xj − xi | θi

)
, (8)

where b is a material parameter. We denote eij = |yj − yi | − |xj −
xi | as the extension of the bond between particle i and particle j .
The term in brackets of Equation (8) is the deviatoric component of
bond extension ed

ij :

ed
ij = eij − δ

4

yj − yi

|yj − yi | · xj − xi

|xj − xi | θi . (9)

Intuitively, ed
ij is constructed by removing the dilatation component

of bond extension from the total bond extension eij .

In summary, the behaviour of our isotropic elastic model is con-
trolled by two material parameters a and b. The model is equivalent
to the isotropic linear elasticity model in classical theory, please re-
fer to the supplementary document for elaborated derivation. Here,
we directly provide the conversion between the material parameters
in this model and those from continuum mechanics:

a = 9κ

8πδ4
, b = 15μ

2πδ5
, (10)

where κ and μ denote the bulk modulus and the shear modulus,
respectively. In Figure 3, we demonstrate an example of the hyper-
elastic deformations animated with our model.

4.2. Plasticity

Plasticity model for peridynamics is less studied in literature due to
its complexity. To our knowledge, Silling et al. [SEW*07] proposed
the first plasticity model that is analogous to the von Mises flow
model in classical theory. Mitchell presented a new framework for
peridynamics-based plasticity modelling [Mit11] based on Silling
et al.’s model, whereas the model has not been verified by experi-
ments thus far. We adopt Mitchell’s model for practical applications,
and propose novel modifications based on their work.

c© 2017 The Authors
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Figure 4: Comparison of elastic and plastic deformations by shoot-
ing a sphere at two walls made of different materials with identical
initial configuration as in (a). The elastic wall deforms on impact
(b), and recovers afterwards (c). The plastic wall undergos perma-
nent deformation (e) after the impact (d).

Our plasticity model is based on purely deviatoric plastic flow
theory, therefore we start by decomposing the deviatoric bond ex-
tension ed

ij (see Equation (9)) into two components by addition:

ed
ij = ee

ij + e
p

ij , (11)

where ee
ij and e

p

ij are the elastic and plastic part of the total devia-
toric bond extension, respectively. To incorporate plasticity into the
constitutive model, the deviatoric part of internal force density (see
Equation (8)) is now redefined as below:

Adev = 4ωij b
(
ed
ij − e

p

ij

)
(12)

with the contribution of plastic deviatoric bond extension removed
from force computation. In case of elastic deformations, the term
e

p

ij vanishes and Equation (12) conforms to Equation (8).

A simple yield function f (Adev) is used to determine whether
deformation has entered the plasticity regime:

f (Adev) = (Adev)2

2
− �0, (13)

where �0 is a critical parameter. The deformation is elastic if
f (Adev) ≤ 0, and plasticity is present if f (Adev) > 0.

In case of plastic deformations, we project Adev onto the yield
surface to obtain a critical value of deviatoric force density Ac

dev:

Ac
dev =

√
2�0sign(Adev), (14)

where sign(·) is the sign function. Ac
dev is used to compute the

increment of plastic deviatoric bond extension:

�ep
n = 1

2b
(Adev − Ac

dev), (15)

Figure 5: Simulation of ductile fracture with different amount of
maximum plasticity. From left to right, the parameter γ

|xj −xi | is 0.1,

0.15 and 0.2.

Figure 6: Comparison of crack patterns generated by isotropic
(left) and anisotropic (right) brittle fracture. The colour represents
the damage of particles, with blue as no damage and red as complete
damage.

e
p

n+1 = (
ep
n + �ep

n

)
min

(
1,

γ

|ep
n + �e

p
n |

)
. (16)

The subscripts n and n + 1 denote the discretized point of time at
which the bond extensions and corresponding increments are evalu-
ated. The parameter γ which does not appear in the original model
of Mitchell’s [Mit11] is used to enforce a limit on the amount of
plasticity. We found in experiments that with this parameter we ob-
tain more control over the plastic behaviours (see Figure 5) and the
stability of simulation is improved as well. Figure 4 shows a com-
parison of the simulation results using our elastoplastic constitutive
model. Our elastic model produces correct elastic behaviours, and
permanent deformation is captured when plasticity is involved.

4.3. Anisotropy

Our constitutive model is isotropic up to now, and we extend it
to anisotropy in this section. We model anisotropy by manipulat-
ing the weight functions between particles (see Equation (5)) with
direction information. The key idea is to associate an anisotropy
matrix G with each particle, so that applying the transformation to
the bond between particles biases the influence weight towards pre-
ferred directions. The weight function ωij for anisotropic materials
is computed as below:

ωij = δ

|G(xj − xi)| . (17)

c© 2017 The Authors
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Appealing anisotropic effects could be generated with our
anisotropy model. See Figure 1 for a demonstration of the model ap-
plied to brittle and ductile fracture animation. Figure 6 compares the
crack patterns generated by the brittle fracture examples in Figure 1.

5. Fracture

In this section, we present our fracture model and introduce the
mesh embedding strategy we employ to generate crack surfaces.

5.1. Fracture criterion

Material damage can be modelled in peridynamics by permanently
eliminating the bonds between particles. The dynamics with discon-
tinuities is trivial due to the integral-based nature of peridynamics.
For elastic brittle materials, a simple critical stretch is generally
used as the fracture criterion. This criterion conforms to the physi-
cally plausible energy release rate, and it has been validated before
[SA05]. Levine et al. [LBC*14] also utilized this criterion for brit-
tle fracture modelling in computer graphics. In order to account for
plasticity and model ductile fracture, we redefined the elastic critical
stretch criterion as

se
ij = eij − e

p

ij

|xi − xj | . (18)

Unfortunately, we found in experiments that this fracture crite-
rion would cause unrealistic artefacts since bonds with smaller rest
lengths are sometimes more prone to breaking. We alleviate this
problem by incorporating the weight function ωij into the criterion
to increase the fracture criterion of closer family members. Shatter-
ing effects could arise for brittle materials, which lead to many tiny
fragments. We could avoid the generation of too small fragments
by continuously increasing the crack threshold as the material gets
damaged. The final fracture criterion that we employ in our model
is formulated as below:

sω
ij = (1 + αφ)

se
ij

ωij

= (1 + αφ)
eij − e

p

ij

δ
, (19)

Figure 7: Glass wall fracture with different α values.

where φ = 1 − ni

Ni
measures the damage level of material point i. ni

and Ni are the numbers of active bonds connecting i with its family
members in the deformed and initial configurations, respectively. ni

gradually decreases as more bonds around i are broken, increasing
the damage level of i. The parameter α is set to 0 by default, and
could be used to mitigate the shattering effect while non-zero values
are given. Figure 7 provides an example of controlling the dust with
different α values. It shows that our criterion is able to produce
compelling results in practical use.

5.2. Embedded mesh

While particle-based discretization offers great simplicity, this sim-
plicity does come at a cost that it is difficult to generate surface
representation. This naturally motivates the use of mesh embed-
ding approach, in which the boundary of volumetric meshes could
represent the original object surface and the newly generated crack
surfaces during simulation. We use tetrahedron meshes to represent
object geometry, and the particles are initialized at the barycentres
of each mesh element. The particle family members are initialized
according to the mesh connectivity and a pre-specified horizon δ.
To accommodate the topology changes resulted from fracture, we
propose a simple strategy that dynamically split the embedded mesh
along the elements.

We achieve this by maintaining a crack face set and continuously
adding the shared triangles to it for fracture happened between
immediate elements. At each time step, we investigate merely those
vertices that involved in crack face set and determine whether its
connected tetrahedra have been separated by crack faces. If this is the
case, we split the vertex, assign corresponding tetrahedra to each
of them, and make a topological change on the embedded mesh.
After splitting, we could safely remove only those crack faces that
directly results in our vertex splitting. If the connected tetrahedra
are separated into more than two groups, we accordingly split vertex
into multiple copies. Simultaneous splitting of multiple vertices at
one crack face are also compatible in our method. Figure 8 shows an
example of using our strategy to produce complex crack surfaces.

After handling mesh topology, we update the vertex positions
using the velocities of corresponding particles. A simple weighted-
average approach is employed to update the vertex positions:

ωv =
∑

p

1

4
mp, (20)

vv = 1

ωv

∑
p

1

4
mpvp, (21)

xt+1
v = xt

v + �tvv, (22)

where subscripts p and v represent the particle and the mesh vertex,
respectively. mp and vp are the mass and velocity of the particle, vv

and xv are the velocity and position of the mesh vertex.

6. Results

We present the results produced with our method in this section.
All our examples are run on a 3.5 GHz, Intel Core i7-5930K CPU
with 32 G RAM. The embedded tetrahedron meshes are generated

c© 2017 The Authors
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Figure 8: Shooting a bullet through a jello, producing complex
crack surfaces.

Figure 9: Simulation of stretching beams with different Poisson
ratios.

using the open-source TetGen software [Si15]. All the figures in the
paper are rendered offline using the open-source POV-Ray software
(http://www.povray.org/). We use explicit time integration for ease
of implementation. We also performed a naive parallelized imple-
mentation of our method using OpenMP.

Figure 10: Simulation of bending beams with different stiffness
(top: soft; bottom: stiff) using our method and FEM. The results
of our method are indistinguishable from the results produced by
FEM.

Constitutive model validation. We validate our constitutive
model by simulating deformations with varied material properties
and performing comparisons with the results of FEM. Figure 3
shows an example of isotropic elastic deformations, where the back
and four limbs of an armadillo are initially anchored and then the
anchor on the back is removed. The deformations are plausible and
no undesirable numerical fracture occurs when the arms of the ar-
madillo are overstretched. In Figure 4, we compare the results of
elasticity and plasticity, and our model produces correct deforma-
tion behaviours. Figure 5 demonstrates the varied effects produced
by tuning the amount of maximum plasticity. Figure 9 compares
the elastic deformations of stretching beams with different Poisson
ratio values. Unlike Levine et al.’s model [LBC*14], our consti-
tutive model is not limited to a single Poisson ratio. Finally, we
conduct comparisons with FEM through Figures 10–13. The defor-
mations of a bending beam in Figure 10 produced with our method
are almost identical to those generated by FEM, under both stiff
and soft material settings. We further demonstrate the accuracy of
our method in constitutive modelling using comparisons with quan-
titative error analysis. The swing (see Figure 11) and twist (see
Figure 12) deformations of the bar produced by our method are as
accurate as those by corotated linear FEM with position deviations
less than 10%. The position deviations are measured over the di-

agonal of the object’s bounding box: Error = |xp−xref
p |

d
where d is

the length of the diagonal. Note that our constitutive model alle-
viates artefacts of the classical linear model albeit derived from it.
It is because peridynamics does not employ the geometric linear
approximation as the Cauchy strain in continuum mechanics does.
Thus peridynamics does not suffer from ghost forces while undergo-
ing rigid rotations. We also obtain nice accuracy for the non-cyclic
vibrations of the armadillo presented in Figure 13. Therefore, we

c© 2017 The Authors
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Figure 11: Simulation of a swinging bar using linear FEM (left),
corotated linear FEM (middle left) and our method (middle right).
Our method is accurate as the corotated linear FEM (right).

Figure 12: Simulation of a twisting bar using linear FEM (left),
corotated linear FEM (middle left) and our method (middle right).
Our method is accurate as the corotated linear FEM (right).

Figure 13: Simulation of noncyclic vibrations for an armadillo
using FEM (left) and our method (middle). The accuracy of our
method is acceptable compared with FEM (right).

believe our peridynamics-based constitutive model is plausible for
graphical animations.

Fracture animation. Our method could simulate brittle and duc-
tile fracture with compelling visual realism. In Figure 1, a wide
range of fracture behaviours are generated, including isotropic brit-
tle fracture, anisotropic brittle fracture, isotropic ductile fracture
and anisotropic ductile fracture. This demonstrates the capability of
our method in simulating fracture. We believe our approach is the
first peridynamics-based framework in graphics with such flexibil-
ity. Figure 8 shows an example of shooting a bullet into a jello-like
object. Our method handles well the generation of the complex
crack surfaces. The armadillo in Figure 14 is stretched until its
limbs tear off. The behaviour of ductile fracture is correctly demon-
strated, including the progressive generation of multiple cracks (see
Figure 18). The glass wall in Figure 15 is pressed by a heavy metal
ball. Cracks develop and propagate without shattering the glass into
fragments. This phenomenon cannot be reproduced by the level
set approach [HJST13] as mentioned in their paper, and it is chal-
lenging for the remeshing-based FEM methods [OH99, OBH02]
considering the mesh operations. In contrast, our method handles
the complicated propagation process well, including the branching
and merging of cracks. The approach by Pauly et al. [PKA*05]
could produce results comparable to ours, employing explicit han-
dling of the topology events. Our method, however, requires none.
In Figure 16, a bunny made of elastic material falls to the ground and
shatters. Our method is able to realistically capture the secondary
fracture of the fragments. Figure 17 is another demonstration of our
method in handling crack tips. A thin sheet with initial cracks is
torn on two sides. The cracks gradually proceed and finally shatter
the sheet. Please note the filaments generated as a result of crack
branching and merging.

Choice of δ. We use a δ value of 1.0λ for most of the FEM com-
parisons, where λ is the average edge length of the embedded tetra-
hedron mesh. As peridynamics converges to classical continuum
mechanics while δ approaches zero [WA05], this specific choice of
δ amounts to the nodal force computation of FEM using the 1-ring
neighbours. Although not always necessary, fine-tuning the δ value
is a viable way of getting well-synchronized results. For instance,
in Figure 13, we adjust it to 1.38λ to achieve our best result. We
studied the effect of different δ values with experiments, and the
results reveal that simulation plausibility is not very sensitive to

Figure 14: An armadillo is stretched until its limbs tear off.

c© 2017 The Authors
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Figure 15: A glass wall on ground is pressed by a heavy metal ball and cracks without separating. Our method can model the complicated
crack propagation process, including branching and merging.

Figure 16: An elastic bunny falls to the ground and shatters into pieces. Note the secondary fracture of the fragments.

the parameter δ. In practice, we recommend a value in the range
between 1.0λ and 2.0λ. Larger values could result in inadequate
family members for particles close to object boundary, causing the
material to behave softer than it should be. In this case, a correction
for boundary particles needs to be taken into account. Please refer
to the accompanied video for the comparison of different δ values.

In Table 1, we list the detailed parameter settings and the perfor-
mance data for all the examples presented in the paper. The results
in this paper are produced with practical computation time. Note
that we employ damping forces in a few of the examples, mainly
to ease the burden of self-collision handling, which is not the major
concern of this work. The experimented damping models include a
simple air damping vnew = (1 − λa)vold, and a Laplacian smoothing
vnew = vold + λlL(vold). Please refer to Table 1 for the specific val-
ues of the damping coefficients λa and λl in each example. Although
effective in practice, these damping forces are not a necessity for
our method since the issue of self-penetration could be (and should
be) addressed by superior detection and resolution strategies.

7. Discussions

We have introduced a novel meshless framework for graphical mod-
elling and animation of elastoplastic solids. Our work is the first

peridynamics-based framework in computer graphics that can sim-
ulate a wide range of material behaviours, including elasticity, plas-
ticity and fracture.

Our work is not without limitations. Currently, we cannot afford
large time steps because we used explicit time integration in our
implementation. In the future, we plan to incorporate implicit time
integration into our framework to achieve less restricted time step
size. Another limitation of our work stems from the mesh embedding
strategy for crack surface representation. The level of crack detail
is highly dependent on the embedded mesh resolution. In addition,
we generate crack surfaces by separating the mesh elements, which
could cause the zig-zag artefact (see Figure 18). This artefact might
be alleviated by smoothing the crack surfaces somewhat, or employ-
ing the virtual node algorithm. While we used multi-threading in
our implementation, the performance of our method could be further
improved with general purpose graphics processing units (GPGPU)
techniques.

Other interesting avenues for future work include combining peri-
dynamics theory with existing methods from classical theory such
as FEM and SPH. These methods complement each other, and their
combination could produce a new method that is more powerful for
animation production.

c© 2017 The Authors
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Figure 17: A thin sheet with initial cracks is torn apart. The cracks
proceed with branching and merging, separating the sheet into
pieces.
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