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Figure 1. Face reconstruction and alignment in the wild. Our method estimates very accurate face geometries as well as 3D facial landmarks

under large variations of facial expressions, poses, illumination conditions, and partial occlusions. The ground truth landmarks are denoted

as red and our estimated landmarks are denoted as white.

Abstract

We propose to address the face reconstruction in the

wild by using a multi-metric regression network, MMFace,

to align a 3D face morphable model (3DMM) to an in-

put image. The key idea is to utilize a volumetric sub-

network to estimate an intermediate geometry representa-

tion, and a parametric sub-network to regress the 3DMM

parameters. Our parametric sub-network consists of iden-

tity loss, expression loss, and pose loss which greatly im-

proves the aligned geometry details by incorporating high

level loss functions directly defined in the 3DMM paramet-

ric spaces. Our high-quality reconstruction is robust under

large variations of expressions, poses, illumination condi-

tions, and even with large partial occlusions. We evaluate

our method by comparing the performance with state-of-

the-art approaches on latest 3D face dataset LS3D-W and

Florence. We achieve significant improvements both quan-

1This work was done while Hongwei Yi was an intern at Tencent.
2Chen Li and Sheng Li are the joint corresponding authors.

titatively and qualitatively. Due to our high-quality recon-

struction, our method can be easily extended to generate

high-quality geometry sequences for video inputs.

1. Introduction

Avatar digitization aims to produce a virtual avatar by

reconstructing one’s facial geometry and appearance from

individual or multiple images. In the real world scenarios,

face reconstruction from single unconstrained image is very

challenging, especially under large head pose orientations,

extreme facial expressions, severe partial occlusions, and

complex illumination conditions.

To address the aforementioned limitations, we propose to

train a novel neural network to align a 3D face morphable

model (3DMM) [2] with an input image by regressing the

corresponding model parameters. The 3DMM represents a

face geometry in a multiple PCA-based linear space count-

ing for identity and expression variations. The PCA-based

linear face model has laid the foundations for the modern
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image-based 3D face modeling [16] and it has three major

advantages over other representations. First, the biomet-

ric constraints of human face structure are already embed-

ded in the model. Second, one can easily manipulate the

face identity parameter and/or face expression parameter for

creating animations or achieving other dramatic VR/AR ef-

fects. Last but not least, the facial topology is preserved dur-

ing the reconstruction and there are explicit point-to-point

correspondences in the model space. The semantic facial

landmarks can be associated with the corresponding points

in the reconstructed geometry and thus the 3D facial land-

marks can be easily obtained as a by-product of our method.

The parameters of 3DMM can be iteratively optimized

by using optimization-based methods [27, 7, 16, 28, 29, 8,

17, 31]. These methods all rely on 2D face landmark detec-

tors which limit their utilization since 2D landmarks detec-

tion cannot be very accurate for non-frontal faces, and in the

presence of partial occlusions. Very recently, significant im-

provement has been achieved in 2D/3D face alignment [5,

36], which utilizes convolutional neural network (CNN) to

solve the face alignment and the 3DMM parameter regres-

sion problems in one unified framework. Under the CNN

framework, the parameter can be directly [12, 33, 32] (end-

to-end) or iteratively [38, 19] estimated. However, due to

the lacking of 3D information, these methods still cannot

handle large poses and extreme expression adequately.

In contrast to the previous methods, we design a novel

face reconstruction network, MMFace, as a multi-metric

regression network which consists of two metrical regress-

ing sub-networks, namely a volumetric network and a para-

metric network. The volumetric network aims to estimate

a volumetric representation of the 3D facial geometry from

an input 2D image and the parametric network aims to pre-

dict the corresponding 3DMM parameters upon the former

volumetric representation. These two sub-networks are cas-

caded and supervised by two metric losses: a volumetric

loss and a parametric loss. The volumetric loss restricts the

volumetric network from a geometry attention perspective

by representing the ground truth facial geometry in a vol-

ume space rather than its original 3D coordinate space. In

this way, the head pose orientation and coarse geometry can

be robustly estimated. In the second stage, the paramet-

ric loss numerically restricts the parametric network in the

3DMM attention perspective where the ground truth of its

3DMM parameter is provided. Thus, parameters that cor-

respond to face identity and expression can be accurately

estimated. By jointly restricting the entire framework using

two metric losses from different attention perspectives, the

two sub-networks mutually benefit each other.

We perform comprehensive experiments using the latest

3D face dataset LS3D-W [5] and Florence [1] to quantita-

tively evaluate the performance of our method. Our method

achieves significant improvement over the state-of-the-art

methods [31, 5, 36, 18, 13, 32] in both 3D face reconstruc-

tion and 3D facial landmark detection. Some of our results

are shown in Fig. 1. Since our method is very robust and

accurate, our method can be easily extended to video in-

puts by processing each frame individually. We further em-

ploy our parametric reconstruction results on 3D Animoji

blendshapes to demonstrate how our method benefits other

VR/AR applications.

2. Related Work

A comprehensive survey for face modeling is out of our

scope in this paper. In this section, we limit the scope to the

face reconstruction from single image and review the most

representative recent work.

3D Face Reconstruction from single image. The PCA-

based 3D morphable model of face geometry was first pro-

posed in [2], but it was not widely used because of its high

complexity. Other approaches use shading cues [22, 30,

23, 9], internet image collections [21], and/or data-driven

methods [15, 14] for face reconstruction. Recently, the

3DMM has shown very impressive results by aligning the

3DMM with known 2D facial landmarks [27, 7, 16, 28, 29,

8, 17, 31]. Thanks to the recent deep learning based ap-

proaches [37, 11, 35], 2D landmarks can be robustly esti-

mated which makes a great advancement in the face recon-

struction [3, 10]. However, the results of these landmark-

based alignment approaches are limited by the accuracy

of the estimated 2D landmarks which are inaccurate un-

der large head pose orientations, extreme facial expression,

and/or partial occlusions.

The 3DMM parameter can also be regressed from the in-

put image using CNN directly [12, 33] or iteratively [5, 19].

In [12], an end-to-end approach is proposed to directly es-

timate the facial identity and expression from 2D images

based on the VGG-Face features [25]. Besides the sin-

gle image, multiple images for the same person are used

to restrict the estimated face identity during the training

stage[32]. Compared with these methods, our method dif-

fers in two aspects. First, we additionally estimate the pose

parameter besides the identity and expression. Second, in-

spired by [18], our face parameters are learned from an in-

termediate 3D volumetric representation to achieve a more

accurate regression rather than directly regress the parame-

ters from the input 2D images. Besides regressing 3DMM

parameters, the dense point cloud of a face geometry can

be reconstructed by predicting 3D position maps in the face

texture coordinate space [13]. However, such geometry rep-

resentation in the texture space lacks the capability for fur-

ther geometry manipulation.

3D Face Alignment. State-of-the-art 3D face alignment

[5, 6, 4] applies a two-step strategy: it first estimates the 2D

landmarks, and then predicts the corresponding depth value
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of the estimated 2D landmarks. A 2D-to-3D network takes

an RGB image and 2D landmarks as inputs and outputs

the corresponding 3D landmarks in [5]. However, directly

extending the 2D heat maps to 3D heat maps is memory-

and computation-demanding, especially when the number

of landmarks increases.

JVCR[36], on the other hand, proposes to jointly regress

a 3D volumetric representation and the 3D facial landmark

coordinates. The network is divided into two cascaded

sub-networks: a compact voxel regressor and a coordinate

regressor. The compact voxel regression sub-network re-

gresses a compact volumetric representation from coarse to

fine via multiple stacked “hourglass” networks, then the co-

ordinate regression sub-network adopts a 3D convolution

to further estimate the 3D landmark coordinates from the

volumetric representation. Different from our approach,

JVCR[36] is not based on the 3DMM model, and its vol-

umetric representation is relatively sparse compared with

ours.

These methods mentioned above have the same limita-

tion: they can only handle limited quantity of landmarks,

e.g. 68 landmarks, which are too few in many 3D face ap-

plications. Although our method has a similar framework

with JVCR[36], we propose to regress the 3DMM parame-

ter from a complete 3D volumetric representation instead

of only 68 facial landmarks. The volume of JVCR[36]

encodes only the 3D Gaussian distribution of the specific

68 3D landmarks while our volume encodes the entire face

geometry. This is significantly more challenging, and the

3DMM representation has far more applications than the 3D

landmark representation as demonstrated in the experiment

of our paper.

3. Multi-Metric Regression Network

The framework of our method is shown in Fig. 2. Af-

ter we obtain the estimation of 3DMM parameters, the face

pose are further refined using ICP (iterative closest point)

as post-processing. The detailed specification of our entire

network structure is described in the supplementary mate-

rial.

3.1. 3D morphable model

We use the 3D morphable PCA model proposed by [2]

to represent the facial geometry S with n = 53215 vertices

as:

S(αid, αexp) = S̄+Uidαid +Uexpαexp, (1)

where S̄ ∈ R3n is the mean geometry, Uid ∈ R3n×199 and

Uexp ∈ R3n×29 are the basis of face identity and expres-

sion, αid ∈ R199 and αexp ∈ R29 are the corresponding

face identity parameter and face expression parameter. S̄

and Uid are learned from Basel Face Model [26] and Uexp

is obtained from FaceWarehouse [7].

In order to further project the face geometry S onto the

image coordinate, we utilize the weak perspective projec-

tion to simplify the projection model as:

V(p) = f ∗P ∗R ∗ S+ t, (2)

where V is the projected geometry in image coordinate,

f is a scale factor, P =

[

1 0 0
0 1 0

]

is the orthographic

projection, R is the rotation matrix constructed from ro-

tation parameter r = {φ, γ, θ}, and t is a 2D transla-

tion. Thus, the 3D face reconstruction problem is trans-

formed into a facial parameter regression problem where

p = [f , r, t, αid, αexp]
T are the parameters we want to es-

timate.

3.2. Proposed framework

We propose to restrict 3DMM parameters from two

different attention perspectives, namely a geometry per-

spective by using the volumetric sub-network VMN and

a 3DMM perspective by using the parametric sub-network

PMN.

3.2.1 Volumetric network

We stack two “hourglass network” [24] with identical

structure together to encode the input to a feature space and

then decode this feature representation to the volumetric do-

main VMN : I → V [18].

Using this geometry representation, the VMN can be in-

termediately supervised by the Volumetric loss EV as:

EV =

W
∑

w=1

H
∑

h=1

D
∑

d=1

[V̂whd log(Vwhd)+

(1− V̂whd) log(1− Vwhd)], (3)

where {w, h, d} denotes a voxel position in the volumetric

space, V and V̂ are the corresponding sigmoid output and

the ground truth of volumetric representation, respectively.

3.2.2 Parametric network

The parametric sub-network takes the output feature map

of volumetric sub-network as input, and predicts the 3DMM

parameter p. We employ five 3D convolution layers to

extract the 3D geometry information from the intermedi-

ate volumetric representation. After extracting the 3D fea-

tures, we incorporate three independent branches with 2D

fully-connected layers to regress the face identity parame-

ter αid, face expression parameter αexp, and the pose pa-

rameter {f, r, t}T, respectively. Because the dimension of

shape parameter αid is much larger than that of expression
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Figure 2. The framework of the proposed single image face reconstruction network MMFace. The 3DMM parameters are constrained

from a geometry perspective by using the volumetric sub-network and a 3DMM perspective by using the parametric sub-network. The face

pose is refined using ICP as post-processing.

and face pose, we use one additional fully-connected layer

in its branch to better regress its value.

Our parametric sub-network can be restricted from the

3DMM attention perspective by directly incorporating the

ground truth 3DMM parameters. The parametric loss con-

sists of three loss functions, namely Identity loss Eid, Ex-

pression loss Eexp and Pose loss EP .

Identity loss Eid. A trivial identity loss can be defined

by using the Euclidean distance between our estimation and

ground truth as::

E′
id = ‖(αid − α̂id)‖

2

2
, (4)

where αid denotes the predicted face identity parameter and

α̂id is the ground truth parameter. Because the 3DMM is a

PCA-based model, different dimensions in αid with differ-

ent singular value influence the face geometry differently.

However, a uniform restriction in Eq. (4) may decrease the

influence from important dimensions, especially those with

large singular values.

To solve this problem, we propose to use the mean square

error (MSE) between predict face geometry and ground

truth directly as the constraints [12]:

Eid = ‖S(αid, α̂exp)− S(α̂id, α̂exp)‖
2
2,

= ‖Uid(αid − α̂id)‖
2
2, (5)

where α̂exp is the ground truth of face expression parameter.

Expression loss Eexp. Similar with the identity loss Eid,

the expression loss Eexp can also be represented using the

MSE as:

Eexp = ‖Uexp(αexp − α̂exp)‖
2
2. (6)

Pose loss EP . The MSE loss used in identity loss Eid and

expression loss Eexp can also be used to restrict the pose es-

timation. However, since pose has limited number of free-

dom, we only consider the MSE loss on its 68 facial land-

marks fi ∈ F to simplify the computation as:

EP =
1

|F|

∑

fi∈F

‖f ∗ P ∗R ∗ Sfi(α̂id, α̂exp) + t−

f̂ ∗ P ∗ R̂ ∗ Sfi(α̂id, α̂exp)− t̂‖2
2
, (7)

where f̂ , R̂ and t̂ are the ground truth of pose parameter.

One alternative way to restrict the parameter sub-

network could be using a single MSE loss with entire facial

parameter p instead of three independent losses as:

E′
p = ‖f ∗ P ∗R ∗ S(αid, αexp) + t−

f̂ ∗ P ∗ R̂ ∗ S(α̂id, α̂exp)− t̂‖2
2
. (8)

However, in practice, the facial identity parameter αid, ex-

pression parameter αexp, and pose parameter {f, r, t}T

within the same loss term will affect each other and make it

very difficult to converge to a good solution.

3.2.3 Final objective function

The final loss function E for training our face reconstruc-

tion network MMFace is define as:

E = λVEV + Eid + λexpEexp + λPEP , (9)

where λV, λexp and λP balance the weights for these con-

straints.

Because the input of our MMFace network is a cropped

facial region and scaled to an uniform 256×256 resolution,

we can assume the scale and translation are roughly accu-

rate with scale factor f ≃ 0.001 (aligning the size of mean
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shape S̄ with pixel unit) and t ≃ {128, 128}. Although

some methods eliminated the estimation of face pose from

their frameworks [12, 18, 13], we found an accurate pose

estimation is still very important. Thus, we further incor-

porate an ICP post-processing to align the predicted facial

geometry S(αid, αexp) with the predicted volume repre-

sentation V for refining the pose estimation. Considering

ICP is known to be susceptible to local minima and its per-

formance critically relies on the quality of the initializa-

tion [34], the pose parameter predicated by our parametric

sub-network is shown to be a very reasonable initialization

to ensure the ICP stage converges effectively and stably.

Compared with other relevant approaches [38, 18, 12,

33, 13, 32], our network architecture benefits from the su-

pervised training in two ways. First, both the intermediate

volumetric representation and the final 3DMM parameter

prediction are directly restricted by the corresponding met-

ric losses from different attention perspectives. Second, the

constraints for predicted parameters further affect the two

“hourglass network” in the volumetric regression network

via the backward propagation. Through such cascaded net-

work, our MMFace not only predicts more accurate 3DMM

parameters, but also gets a better inferred volume result.

4. Implementation

In this section, we describe the datasets and training

scheme. More details are included in the supplementary

material.

The 3D face dataset LS3D-W [5] consists of three sub-

datasets: namely 300W-LP-3D [38], AFLW2000-3D [38],

and 300-VW-3D [5]. 300W-LP-3D [38] contains 122, 450
face images with 68 synthesized 3D facial landmark an-

notations. AFLW2000-3D [38] is a dataset for 3D face

alignment in the wild and the images show large variations

in pose, expression, illumination and occlusion etc. 300-

VW-3D [5] dataset contains 114 facial videos and 218, 595
frames in total. Florence [1] consists of 53 subjects and

the ground truth of their 3D face geometry is scanned by a

structured-light system.

Following the common protocol [38, 5, 36, 13], we use

the entire 300W-LP-3D [38] as the training set and di-

rectly evaluate our model on AFLW2000-3D [38] and Flo-

rence [1]. Because the image condition in 300-VW-3D [5]

is different from 300W-LP-3D [38], we fine-tune our net-

work on the training set of 300-VW-3D [5] to handle such

variations of data distribution.

To train our framework, the face regions are cropped ac-

cording to the ground truth 3D facial landmarks and then

scaled to 256 × 256 as the input to our network. The

ground truth of pose parameter are modified accordingly.

We first train the two sub-networks, VMN and PMN, inde-

pendently. The input to PMN is the ground truth volume V̂

and the weights are set as {λexp, λP } = {5.0, 5.0}. Both

Table 1. The quantitative evaluation on AFLW2000-3D [38]. Dif-

ferent face orientation along Y-axis are averaged separately for

NME
68

2D%.

NME68

2D
NME3D

0-30 30-60 60-90 Mean Std. Mean

3DFAN [5] 2.77 3.48 4.61 3.62 0.86 -

JVCR [36] 2.94 3.46 4.53 3.64 0.65 -

Face2Face [31] 3.22 8.79 19.7 10.5 8.4 9.95

DisFace [32] 4.90 12.16 45.0 20.7 9.82 11.6

PRN [13] 2.75 3.51 4.61 3.63 0.87 4.40

3DMMITW [3] 3.09 9.21 17.20 9.83 7.07 8.33

ExpNet [10] 4.01 5.46 6.23 5.23 1.13 7.39

MMFace-PMN 5.05 6.23 7.05 6.11 1.00 8.29

MMFace-ICP-64 2.98 3.83 4.89 3.90 0.91 4.23

MMFace-ICP-128 2.61 3.65 4.43 3.56 0.83 3.78

MMFace-ICP-192 2.50 3.63 4.25 3.46 0.78 3.66

E2FAR-GT [12] 2.65 2.79 2.83 2.76 0.1 3.12

MMFace-GT 1.33 1.64 1.83 1.61 0.25 2.01

VMN and PMN are trained using the Adam solver with ini-

tial learning rate 1.0e−4 and the learning rate is reduced to

1.0e−5 after 40 epochs for another 20 epochs. After training

each sub-network, we concatenate them and fine-tune the

entire network for 10 more epochs with {λV, λexp, λP } =
{1.0e6, 5.0, 5.0}.

5. Experiments and Results

We compare the performance of our proposed method

MMFace with the state-of-the-art approaches, including

three face reconstruction approaches Face2Face [31], Dis-

Face [32],PRN [13], as well as two 3D face alignment ap-

proaches 3DFAN [5] and JVCR [36].

5.1. Evaluation

We use two measurements, NME68

2D and NME3D to

quantitatively evaluate the performance from both align-

ment and reconstruction perspectives:

NME68

2D =
1

|F|F

∑

fi∈F

‖f ∗ P ∗R ∗ Sfi(αid, αexp) + t

−f̂ ∗ P ∗ R̂ ∗ Sfi(α̂id, α̂exp)− t̂)‖22, (10)

NME3D =
1

|S|S
‖f ∗R ∗ S(αid, αexp) + t

−f̂ ∗ R̂ ∗ S(α̂id, α̂exp)− t̂)‖22 (11)

where F and S are the the diagonal size of the face re-

gion in image space and 3D coordinate space, respectively.

NME68

2D evaluates the normalized 2D facial landmarks

prediction error and the NME3D evaluates the normalized

3D face geometry estimation accuracy. Due to the ambi-

guity caused by the weak perspective projection model, the

reconstruction results of different methods have ambiguities

along Z-axis. We employ a rigid translation along Z-axis to

align each result within the ground truth range.

Table 1 lists the quantitative evaluation on AFLW2000-

3D [38]. Images with different face orientations are ana-
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lyzed separately for the metric NME68

2D. The optimization-

based approach, Face2Face [31], shows unsatisfactory re-

sults in both reconstruction and alignment measurements.

This is due to the fact that the 2D landmark detectors, e.g.

[20], which Face2Face [31] heavily relies on, usually es-

timate inappropriate results or even fail to localize a face

region under large face orientations. DisFace [32] aims

to reconstruct a more distinguishable face identity param-

eter but optimizes the face pose and expression by fitting

the pre-detected 2D facial landmarks. So it suffers from

the same drawbacks with optimization-based approaches,

such as Face2Face [31], that it cannot handle large pose

orientations and partial occlusions. Although 3DFAN [5],

JVCR [36], and PRN [13] have different architectures, be-

cause they are all restricted only from a 3D perspective, they

perform similarly in face alignment. 3DMMITW [3] and

ExpNet [10] aim more than reconstructing the face geome-

try, so less attention is paid on handling extreme face poses

and lead to unsatisfied errors once the face orientation is

larger than 30 degrees.

Ablation study and computational cost. In order to bet-

ter analyze the performance of our method, we incorpo-

rate several variants of our method with different esti-

mations of face pose, namely MMFace-PMN, MMFace-

ICP64/128/192, and MMFace-GT. Specifically, MMFace-

PMN directly uses the estimated pose from the paramet-

ric sub-network; MMFace-ICP-64/128/192 refine the pose

estimation by doing ICP with the volume geometry from

our volumetric network in different resolutions; MMFace-

GT replaces the estimated face pose by the correspond-

ing ground truth. Not surprisingly, MMFace-GT gives the

best results. The mean error of NME68

2D and NME3D

of MMFace-GT demonstrates our parametric sub-network

achieves an accurate estimation of face identity parame-

ter and expression parameter. As we have discussed, the

face pose is difficult to learn and MMFace-PMN performs

worse than some other methods. In practice, the face pose

can be refined via ICP with a volumetric geometry repre-

sentation in a higher resolution and the results of MMFace-

ICP-128/192 significantly improve over MMFace-PMN.

We additionally compare with E2FAR-GT [12] which only

estimates face identity and expression. It performs consis-

tently in varying face poses and achieves the lowest stan-

dard deviation. Although our results with known ground

truth pose, denoted as MMFace-GT, the overall metrics,

NME68

2D and NME3D, are improved about 30%, thanks

to more accurate estimation of face identity and expression

by our multi-metric regression network.

Comparing with other methods, MMFace achieves sig-

nificant improvements in both 3D face alignment and re-

construction. Even for MMFace-ICP-64, it generates better

reconstruction results than PRN [13]. Through guiding the

proposed multi-metric regression network by a volumetric

3
D
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R
P

R
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M
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Figure 3. Comparison on 3D facial landmark detection with

3DFAN [5], JVCR [36] and PRN [13] on AFLW2000-3D [38].

The NME
68

2D is listed in the lower right corner. The ground truth

landmarks are denoted as red and the estimated landmarks are de-

noted as white.

loss and a parametric loss from different attention perspec-

tives, we obtain high quality results robust to large varia-

tion of facial expressions, poses, illumination conditions,

and even large partial occlusions.

Our forward network takes 20ms on NVIDIA Ti-

tanV GPU and ICP128 takes 15ms on Intel i7-6700 with

3.40GHz. We include additional analysis on 3D face align-

ment and face reconstruction as follows. The subsequent re-

sults presented in our paper are generated using MMFace-

ICP-128 and we denote it as MMFace for simplification.

Comparison on 3D face alignment. One benefit of using

the 3DMM rather than other geometry representations, e.g.

normal map, is that the semantic facial landmarks can be as-

sociated with the corresponding points in reconstructed ge-

ometry. Thus, besides the reconstructed face geometry, the

3D facial alignment result is a by-product of our method. As

a supplementary to the quantitative evaluation in Table. 1,

we demonstrate some results from AFLW2000-3D [38] in

Fig. 3. Since the images from AFLW2000-3D [38] are

captured in the wild and show large variations in pose and

appearance, it is the most challenging 3D face alignment

dataset so far. Because our multi-metric regression network

is restricted by both the volumetric loss and parametric loss,

it outperforms the state-of-the-art 3D face alignment ap-

proaches JVCR [36], 3DFAN [5], and PRN [13] which

only consider training loss from one perspective, especially

for images whose face orientation along Y-axis ranges from

60◦ to 90◦.

Comparison on 3D face reconstruction. In addition to

the quantitative evaluation in Table. 1, we further evaluate

our face reconstruction results on Florence [1] as shown in

Fig. 4. Because Florence [1] only provides the ground truth
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Figure 4. Evaluation for 3D reconstruction accuracy on Flo-

rence [1]. The mean NME% of each method is listed in the legend.

of face geometry but no camera geometry calibrations, we

employ the ICP to align our results to the ground truth as

done in [13]. Although our improvement in the estimation

of face pose is eliminated due to this alignment, our method

still outperforms others and achieves 17.5% improvement

over PRN [13] in the NME3D measurement.

Figure 6 presents a detailed comparison with

Face2Face [31], DisFace [32], and PRN [13]. Our results

are generally better in the estimation of face pose and ex-

pression. Face2Face [31] generally works well for frontal

faces which are stable to a 2D landmark detector. Even

though, it may estimate incorrect face geometry, for exam-

ple the first case in Fig. 6, especially incorrect head orien-

tations when the face is partially occluded. DisFace [32]

can only estimate discriminative face identity parameters,

but does not perform well on the estimation of face pose

and expressions. So its result for the first and second cases

are obviously not good. Because PRN [13] predicts smooth

position maps rather than 3DMM parameters, it can esti-

mate accurate face orientation but infers blurred position

maps which lack facial structures in the reconstruction re-

sults. Our method, shown in the column (e) in Figure 6,

provides a good approximation to the ground truth geom-

etry. In the fourth and fifth row, we show the results on

Florence [1]. Although our results lack of high-frequency

details due to our low-dimensional 3DMM model, it still

approximates better face shape and expression than Dis-

Face [32] and PRN [13].

5.2. Video results

Besides handling the static unconstrained images across

extreme facial expressions, large head poses, partial occlu-

sions, and complex illumination, our method can be easily

extended to handle video inputs.

We evaluate the results using face video dataset 300-

VW-3D [5] and show some results from one testing video

in Fig. 5. Although the results of Face2Face [31] and Dis-

Face [32] look generally ok, they generate unacceptable fa-

cial poses or expressions under large face orientations or

severe occlusions due to the poor 2D facial landmarks. In

frame 2217/2393, the face orientation is wrongly estimated

Frame 2118 Frame 2217 Frame 2393 Frame 2428 Frame 2433
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Figure 5. Comparison on video input. From the first row to the fifth

row are namely, the input frames, the results of Face2Face [31],

DisFace [32], PRN [13], our MMFace and the corresponding

ground truth. Please refer to our supplementary material for the

results on the entire video sequence.

and the expressions in frame 2118/2428/2433 are incorrect.

Because PRN [13] directly learns to regress point clouds

rather than 3DMM parameters, the internal biometric ge-

ometry constraints are not well preserved. Consequently,

it cannot correctly handle the occlusions and generates un-

stable estimations for occluded regions caused by the voice

tube.

In contrast to pervious methods, our method generates

very similar results when comparing with the ground truth.

In frame 2433, the voice tube completely occludes the

mouth and nose region, and the ground truth synthesized

by 3DFAN [5] does not handle such occlusion correctly. In

contrast, our method has not been affected by partial occlu-

sions and produces a good approximation of the expression

at occluded area. We refer readers to our supplementary

material for more results.

5.3. Application

As shown in Sec. 5.1 and Sec. 5.2, our method gen-

erates accurate and robust estimation of face pose, iden-

tity and expression parameters for both static images and

video streams. Such parametric reconstruction results ben-

efit many downstream VR/AR applications, for example,

the 3D Animoji. We directly employ the estimated face
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(a) Input image (b) Face2Face (c) DisFace (d) PRN (e) MMFace (f) Ground truth

Figure 6. Comparison on 3D face reconstruction. (a) The input image. (b-f) The result and close-up views of Face2Face [31], DisFace [32],

PRN [13], our MMFace and the ground truth. Close-up views for better visualization are aligned right to their corresponding results. The

first three images are from AFLW2000-3D [38] and the rest images are from Florence [1].

Figure 7. 3D Animoji application driven by our method. The first

row shows input images; the second row shows reconstructed face

geometries; the rest show deformed Animoji models using our es-

timated face poses and expressions.

poses and expressions on Animoji blendshapes created by

3D artists, and the deformed Animoji models shown in

Fig. 7 have highly consistent expressions and orientations

with the input images even under large variation of face

poses. Please refer to our supplementary martial for more

interesting Animoji animations driven by our method.

6. Conclusion

In this paper, we present a multi-metric regression net-

work, MMFace, for unconstrained 3D face reconstruction.

The challenges arise from various facial expressions, head

pose orientations, illumination conditions, and partial oc-

clusions are addressed by aligning a 3D face morphable

model to the input image through the proposed multi-metric

regression network. This network consists of two sub-

networks: a volumetric sub-network to estimate an inter-

mediate face geometry representation in 3D volume space

and a parametric sub-network to infer the corresponding

3DMM parameters. By further incorporating the volumet-

ric loss and parametric loss, the entire framework is jointly

restricted from different attention perspectives and achieves

an accurate parametric 3D face reconstruction results. Our

method performs significantly better than other state-of-the-

art methods both quantitatively and qualitatively. Because

of the robustness of our method, we also demonstrate stable

and accurate results for video inputs.
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