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Fig. 1. Equal-time (3 mins) comparisons of the Hallway scene between Light Vertex Cache BDPT (LVCBPT) [Davidovic et al. 2014], Resampled Importance
Sampling BDPT (RISBPT) [Nabata et al. 2020a] and our approach (SPCBPT). Our approach can significantly improve the rendering quality in terms of mean
absolute percentage error (MAPE). We also highlight some local regions in a zoom-in view.

Bidirectional path tracing (BDPT) can be accelerated by selecting appropri-
ate light sub-paths for connection. However, existing algorithms need to
perform frequent distribution reconstruction and have expensive overhead.
We present a novel approach, SPCBPT, for probabilistic connections that con-
structs the light selection distribution in sub-path space. Our approach bins
the sub-paths into multiple subspaces and keeps the sub-paths in the same
subspace of low discrepancy, wherein the light sub-paths can be selected by
a subspace-based two-stage sampling method, i.e., first sampling the light
subspace and then resampling the light sub-paths within this subspace. The
subspace-based distribution is free of reconstruction and provides efficient
light selection at a very low cost. We also propose a method that considers
the Multiple Importance Sampling (MIS) term in the light selection and
thus obtain an MIS-aware distribution that can minimize the upper bound
of variance of the combined estimator. Prior methods typically omit this
MIS weights term. We evaluate our algorithm using various benchmarks,
and the results show that our approach has superior performance and can
significantly reduce the noise compared with the state-of-the-art method.
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1 INTRODUCTION

Bidirectional path tracing is a classic solution for the light transport
simulation [Lafortune and Willems 1993]. It is widely used due to
its excellent performance and robustness under various complex
lighting conditions [Veach and Guibas 1995a]. BDPT first traces sub-
path pairs (eye sub-path and light sub-path) from a light source and
a camera, respectively; it then constructs full paths by connecting
vertices on the eye sub-paths with those on light sub-paths. Multiple
importance sampling (MIS) is used to combine different sampling
strategies by weighting samples according to the probability den-
sity of each sample [Veach and Guibas 1995b]. Higher weights are
assigned to samples of higher probability density to reduce variance.

In the classic BDPT, the renderer generates (or selects) a light
sub-path for each traced eye sub-path and then connects these
two sub-paths to construct a full path. This light selection problem
cannot be handled well by the classic BDPT because the connection
is poorly importance sampled, which results in very low efficiency,
especially in scenes with complex visibility.

Probabilistic connections for BDPT (PCBPT) [Popov et al. 2015]
made an improvement by reusing multiple light sub-paths between
different eye sub-paths and selecting the appropriate light sub-path
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Fig. 2. Overview pipeline of our approach. Our approach finds an approximate solution to minimize the variance upper bound within the classified subspaces

in the pre-trained stage, and provides an MIS-aware light selection function for the two-stage sampling in the runtime probabilistic connection stage. Our
approach efficiently constructs connections in subspace and present an MIS combined estimator.

regarding the constructed path contribution. Nabata et al. [2020a]
proposed resampled importance sampling BDPT (RISBPT) by ap-
plying a resampling-aware MIS function to PCBPT and achieved
significant noise reduction in various difficult scenarios. However,
the candidate light sub-paths used for connection need frequent
updates to achieve unbiasedness. As a result, PCBPT and RISBPT
need millions of shadow rays to reconstruct the resampling proba-
bility mass function (PMF) stored in the cache points when updating
the light sub-paths. This expensive overhead limits the number of
candidate light sub-paths available and introduces visual artifacts in
the early rendering stage. Furthermore, the sampling probabilities
ignore multiple importance sampling weights, making PCBPT and
RISBPT estimators difficult to achieve optimal.

In this paper, we present an approach to efficiently solve the light
selection problem and eliminate the overhead of frequent PMF re-
construction. Different from the previous works that compute the
PMF in a subpath-to-subpath manner, we present a novel sampling
solution in the sub-path space. By grouping similar eye sub-paths
and light sub-paths, we obtain a set of subspaces. Here, subspace is
defined as a subset of the sub-path space, and sub-paths in the same
subspace should be of low discrepancy and share sampling impor-
tance. We generate the light sub-paths by first sampling the light
subspace and then sampling the light sub-paths within the subspace,
called two-stage sampling. Subspace sampling importance is consis-
tent in the rendering and facilitates optimizing the estimator. We
collect statistics in a preprocessing pass to determine the sampling
importance in subspace. The optimal subspace sampling probability
needs to consider multiple importance sampling. However, multiple
importance sampling weights depend on the sampling probability.
We solve this problem and show that the optimization of sampling
importance that minimizes an upper bound of variance is convex,
and then use stochastic gradient descent (SGD) to solve for the opti-
mized light selection distribution. Therefore, we obtain an optimized
MIS combined estimator based on the proposed MIS-aware light
selection, which facilitates efficient sub-path sampling.

We illustrate the overview pipeline of our method in Figure 2. We
highlight the novel modules in our algorithm based on the BDPT
framework. The subspaces are first specified according to a classifi-
cation function in the pre-trained stage (preprocessing). We then
determine the MIS-aware light selection function by minimizing
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the variance upper bound. The selection function is used in runtime
sub-paths sampling. In the runtime rendering stage, both light sub-
paths and eye sub-paths are binned into the subspaces, and then
the two-stage sampling method is used to sample the subspace and
sub-path for probabilistic connections. Finally, the full paths are
constructed for an MIS combined estimator.

2 RELATED WORK

The key of BDPT is to establish the connections between the eye
vertices (i.e., eye sub-path) and the light vertices (i.e., light sub-
path) [Pajot et al. 2011; Popov et al. 2015; Walter et al. 2012]. Davi-
dovic et al. proposed light vertex cache BDPT (LVCBPT), which uses
light vertex cache to store and resample light sub-paths.

Importance sampling between bidirectional probabilistic path con-
nections is a key factor affecting efficiency [Georgiev et al. 2012b].
Popov et al. [2015] proposed PCBPT to reuse multiple light sub-
paths. It samples the connections between the eye sub-path and a
few light sub-paths regarding full path contribution. PCBPT’s im-
portance sampling is a resampling method [Talbot et al. 2005]. After
that, Nabata et al. [2020a] proposed RISBPT, which provides MIS
weighting functions for PCBPT. In addition to PCBPT, Tokuyoshi
and Harada [2019] proposed a hierarchical Russian roulette (HRR)
scheme that use BVH to construct connections between eye vertex
and light vertices within the BRDF scattering range. Matrix BDPT
reorders sub-paths and builds a matrix from light sub-paths and eye
sub-paths to improve connection sampling [Chaitanya et al. 2018].
Bitterli et al. [2020] used resampling of direct lighting and achieves
significant improvement in real-time.

Many-light methods [Keller 1997; Krivanek et al. 2014] also study
the connections between eye sub-path and multiple light sub-paths.
Many algorithms select a small portion of the light vertices to con-
nect to improve efficiency [Georgiev et al. 2012b; Hasan and Pellacini
2007; Walter et al. 2006, 2005]. Walter et al. [2012] proposed bidi-
rectional lightcut and introduced MIS into the many-light method.
Previous works also find that light selection efficiency can be im-
proved by clustering light sources [Ou and Pellacini 2011; Wang et al.
2021; Wu and Chuang 2013]. Compared to the many-light method,
our algorithm focuses on those BDPT scenarios that require special
handling of clustering and multiple importance sampling.



Two-stage RISBPT [Nabata et al. 2020b] combines RISBPT with
lightcuts and uses lightcuts to sample candidate sub-paths that are
likely to contribute highly to the current eye sub-path. However,
visibility is ignored when candidates are sampled from the light tree,
and the reconstruction of light tree can be expensive. Furthermore,
the target probability density function (PDF) of the two-stage al-
gorithm omits the MIS weight, which makes it difficult to obtain a
sampling distribution that minimizes the global variance.

Path guiding methods can importance sample paths adaptively ac-
cording to the scene’s illumination distribution [Jensen 1996; Lafor-
tune and Willems 1999]. Vorba et al. [2014] proposed a Gaussian
mixture model for path guiding. Miiller et al. [2017] proposed an
adaptive spatio-directional tree (SD-tree) to represent the incident
radiance field based on the spatial binary tree structure of the scene.
Other extensions of path guiding include product path guiding [Her-
holz et al. 2016], using linearly transformed cosines [Diolatzis et al.
2020], using neural networks [Miiller et al. 2019, 2020], or guid-
ing the sampling direction in the primary space [Guo et al. 2018].
Variance-aware path guiding [Rath et al. 2020] guides the tracing
process in a distribution that can minimize variance. This inspires
us to deal with the MIS-aware distribution. MCMC methods impor-
tance sample a new path by perturbing the existing one for scenes
with highly complex visibility [Jakob and Marschner 2012; Veach
and Guibas 1997]. It can also be applied to tracing valuable light
sub-paths, but the sampled path may be stuck in a local path space.

3 PRELIMINARIES
3.1 Resampled Importance Sampling

Resampled Importance Sampling (RIS) is a sampling technique that
can generate samples approximately proportional to any target
distribution [Talbot et al. 2005]. To generate samples from target
distribution g, RIS first generates M candidate samples from a PDF
p, which is easy to sample and can be arbitrarily specified with a
constraint that p > 0 whenever g > 0. Then samples are selected
from the candidates in probability proportional to g/p. If the size
of candidates M is sufficiently large, RIS can generate samples that
approximate the target distribution [Nabata et al. 2020a].

3.2 Bidirectional Path Tracing (BDPT)

From the path integral formulation [Veach and Guibas 1995a], the
pixel measurement I is as:

1= [ @auc), 1)

where Q is the path space, and ¥ = x¢x1...x is a path of length
k > 1, xp and xi are on a light source and the camera, respectively.
du(x) = dA(xp)...dA(xy) is the differential area product, and f is
the measurement contribution function as:

J (%) = Le(x0, x1) T (%) We (Xg—1, xk) »
k-1
T(x) = GV (x0,x1) [l_[ p(xi-1, %i, Xi+1)GV (xi, Xi+1) |
i=1
where Le(xo, x1) is the radiance emitted xo — x1, W is the pixel
sensitivity, p is the bidirectional scattering distribution function
(BSDF), and GV is the geometry term including the visibility.
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Equation 1 is estimated using Monte Carlo integration. Specifi-
cally, a full path x is constructed by a light sub-path § and an eye
sub-path z as ¥ = §jz. There are k + 2 strategies to generate a path
of length k; each constructs the same full path x by sub-path pair
of different lengths. Multiple Importance Sampling (MIS) [Veach
and Guibas 1995b] is employed to combine samples from different
sampling strategies. As n strategies are used to generate samples,
the combined estimator with MIS is as

R I T B (6]
I= Zt: n ZW[(Xt’l)Pt(Xt,i) , (2)

where w; is the weighting function, n; the number of samples, p;
the PDF, and X; ; the i-th path sample of the ¢-th sampling strategy.

Weighting function w weighs different strategies for each full
path x. For unbiased estimation, the sum of the weighting function
for each path x should be equal to one (i.e., 3 ; w; (%) = 1) and the
weighting function should return zero whenever the PDF returns
zero. With these constraints, the weighting function can be designed
freely to reduce variance. The balance heuristic aims to minimize
the upper bound of variance by assigning each strategy a weight
proportional to the sampling density as:

nyps (%)
Yinipi(x)

3.3 Light Sub-paths Reuse and Probabilistic Connections

®)

wi (%) =

BDPT traces an eye sub-path from the camera and a light sub-path
from the light source for each pixel. LVCBPT extends BDPT by
reusing multiple light sub-paths in different eye sub-paths.

LVCBPT estimates the pixel intensity iteratively. In each render-
ing iteration, LVCBPT traces multiple light sub-paths in a single
pass and stores the light vertices (i.e., the prefixes of the light sub-
paths) in the cache, called Light Vertex Cache (LVC). Each prefix
sub-path in the LVC can be treated as an individual sub-path. Then,
the light sub-path is randomly selected from the LVC to connect
with each eye sub-path and eventually constructs the full path.

Sampling the light sub-path from LVC can be interpreted as sam-
pling in the sub-path space in a resampling way, setting the PDF
of light sub-path tracing p() to the target distribution. PCBPT im-
portance samples the cached light sub-paths and decomposes the
contribution f into f;fy. fy where f; and f; depend only on the eye
sub-path and the light sub-path, respectively, and f;; depends on
both the eye and light sub-paths as [Popov et al. 2015]:

s—2

fy(@) = Le(y0,y1)GV (0, y1) n P(Yi-1, i, Yi+1) GV (¥i, yiv1),
i=1

fyz(8.2) = p(yYs—2, Ys—1, 2t-1) GV (Ys—1, 2t-1) p(Ys—1, Zt-1, Zt-2),
-2

f2(2) = We(20, 21)GV (20, 21) Hp(li—l,zi, zi+1)GV (21, zit1) -
i=1

__________________
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Since f; is shared between connections and therefore can be ig-
nored, PCBPT sets p(7|2) = fyz(7, 2) fy(§) as the target distribution
for light sub-path resampling and constructs the distributions for
resampling in the PMF records, which are distributed across the
scene. Nearby eye sub-paths can share a PMF record and its distri-
bution, which avoids repeated construction of the PMF for each eye
sub-path. The MIS weighting function of PCBPT can not handle
PDF variations due to resampling. Nabata et al. [2020a] proposed
RISBPT to address this problem by using resample-aware weighting
functions, which significantly improves rendering quality.

However, RISBPT does not involve MIS in the target distribution.
It is difficult to resolve an MIS-aware sampling distribution because
MIS also needs sampling distribution to determine the weights.
Therefore, RISBPT estimator can be further optimized. Moreover,
RISBPT needs extra visibility tests to construct PMF records, and this
computational overhead will decrease the iteration counts possible
in a given time budget [Nabata et al. 2020a] and limit the number
of light sub-paths M used for resampling. The performance of RIS
depends heavily on the candidate number M. In scenes with difficult
visibility, the limited M of RISBPT is insufficient to provide sampling
close to the target distribution and is less efficient.

4 OVERVIEW

Our algorithm follows the same probabilistic connections scheme
as LVCBPT and PCBPT. So, our goal is to resample the candidate
light sub-paths and select the appropriate light sub-path for each
eye sub-path to construct connections efficiently. The target PDF for
resampling should be easy to evaluate for rendering efficiency, and
the resampling distribution should avoid reconstruction as much
as possible. Therefore, the key to our approach is to classify the
sub-paths into multiple subspaces, thereby keeping the sub-paths
in the same subspace of low discrepancy. Then, we can determine
the optimal subspaces connection probability by taking multiple
importance sampling into account.
We organize the exposition of our approach as follows:

o We first set up the theoretical basis of subspace-based sam-
pling and probabilistic connections (Sec. 5). We start from
the optimal distribution of probabilistic connections, and de-
rive the formulation of our subspace-based light selection
function, which can be used to approximate the optimal dis-
tribution.

o Next, the key issue is to find an effective solution to practi-
cal sub-path sampling (Sec. 6). By setting the approximate
distribution as the target PDF, we present a subspace-based
two-stage sampling method along with an estimator (Sec. 6.1).
MIS requires the sampling density of each sampling strategy
to compute the MIS weight, and the sampling density depends
on the distribution of light selection. Therefore, we propose
our MIS weighting function considering subspace sampling
(Sec. 6.2). We also involve the MIS weighting function to make
the light selection optimal in the subspace. We prove that the
minimization of the upper bound of estimated variance is con-
vex regarding subspace sampling distribution, which leads
to an MIS-aware sampling distribution and can be resolved
by stochastic gradient descent (SGD) (Sec. 6.3). This can also
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help resolve the circular dependency problem between MIS
weighting function and sampling distribution. Classification
of the subspace affects the performance of subspace-based
sampling. Therefore, we present a method to divide the sub-
path space into subspaces along with a classification function,
making sub-paths within a subspace with low discrepancy
and the subspace can be indexed quickly (Sec. 6.4).

o Lastly, some technical details for subspace sampling are present
in Sec. 7. We run a preprocessing pass and trace a path
dataset D (Sec. 7.1). Based on this dataset, we classify the sub-
spaces and build decision trees used for fast subspace binning
(Sec. 7.2). The subspace-based MIS-aware sampling distribu-
tion can be obtained by minimizing the upper bound on the
variance of paths in this dataset (Sec. 7.3). In addition, we em-
ploy cross-iteration light sub-path reuse to further improve
the efficiency (Sec. 7.4).

5 SUBSPACE-BASED PROBABILISTIC CONNECTIONS:
PRINCIPLE

In this section, we propose our subspace-based light selection func-
tion, which is the foundation for our sampling method.

5.1 Optimal Distribution of Probabilistic Connections

We first consider the basic connection principles in probabilistic
connection algorithms such as LVCBPT and PCBPT. Eye sub-paths
are traced from the camera and connected with light sub-paths
resampled from the candidate light sub-paths, and the weighted
contribution of each full path is estimated. The sampling strategy is
identified by the number of vertices of the eye sub-path; strategy
t refers to generating full paths by connecting eye sub-paths of ¢
vertices with light sub-paths of arbitrary length. Therefore, the pixel
measurement I in Equation 1 can be reformulated as:

I:anzﬁg@wm, @)

1®=meWWW@, %)

where A? is the t-dimensional Cartesian product over the scene
surface A, and S = U;A? is the space of sub-path. ¢ denotes the
number of vertices of eye sub-path Z and is used to identify the
sampling strategy.

Monte Carlo estimation is used to evaluate I(z) for eye sub-path
Z via connections, and estimation of I(Z) can be improved by gener-
ating the light sub-path z regarding the eye sub-path z. The optimal
distribution p*(§|z) to estimate I(Z) should satisfy

P*(G12) o« we (92)f (52) = we (92) fy (9) fy= (5. 2) o (2) ,
where f;(Z) is ignorable since it is independent of 7, therefore,

P (912) = y(3, 2) o we (§2) fy(9) fy=(.2) - (6)

Here we define the optimal light selection function y(7, z),a SXS —

R function that returns the optimal sampling density for a given

(@, 2) pair. For any given Z, we marginalize Z in function y to get an
optimal distribution of .

I(z) can be estimated efficiently when y and its marginal distri-

bution are easy to implement. However, complicated scene settings
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Fig. 3. (a) BDPT generates the light sub-path in a distribution irrelevant to
eye sub-path, which may be far from optimal. (b) Optimal light selection
distribution can be constructed from y regarding eye sub-path z. (c) Our
approach discretizes y for each subspace-subspace pair to sample light sub-
path in a distribution close to the optimal one.

with difficult visibility usually make direct evaluation of y expensive.
Instead, we seek an alternative way to approximate the function y
while maintaining the convenience of evaluation and sampling.

5.2 Approximate Formulation of y

y is a continuous function defined in S X § and of much complexity
that is difficult to be described by simple continuous functions. We,
instead, approximate y discretely and introduce subspace to get a
piecewise representation of S. A subspace is a subset of the sub-path
space S. By dividing S into subspaces, we approximately evaluate
y in each subspace-subspace pair separately.

Formally, we introduce the sub-path classification function « :
S — Z. k function defines the division of sub-path space S, and can
be used to bin a sub-path into its associated subspace, and returns
with an ID of that subspace. Considering that the distributions of
light sub-path and eye sub-path are usually different, we apply
different classification functions to the light sub-path (denoted as
k r) and the eye sub-path (denoted as kg), respectively. Then we
approximate y by y, in a formulation as:

y(3,2) = yr(4,2) = T(x £ (), kg (D) fy(9) /Q(k £ (@) . (7)

where T is a left stochastic matrix that satisfies >}; I'(i, j) = 1 for
any j > 0, i. e., the marginal distribution I'(i|j) is a PMF. We retain
the f () term since fy(g) is irrelevant to the eye sub-path z and
can be obtained easily during path tracing. Q is a normalization
factor, and Q(i) is an integral of f;;(f) for all § in the light subspace

ias:
o)) = /S o @) (k2@) = Ddu(g) ®)

Q is introduced to ensure that / s vr(9,2)dp(7) = 1 holds for every
zZ,i.e., yr(g|2) is a probability density function.

Figure 3 illustrates the key idea of discretization and approxima-
tion of the optimal light selection function y. By dividing S into
subspaces, we can sample the light sub-path in a distribution close
to the optimal one.
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Fig. 4. Two-stage sampling. For an eye sub-path Z, we bin it into its associ-
ated subspace by kg, use matrix I to sample the light subspace regarding
the eye subspace, and resample the candidate sub-path within the subspace
LVC constructed by x .

6 SUBSPACE-BASED PROBABILISTIC CONNECTIONS:
METHOD

In this section, we first introduce a two-stage sampling method
that efficiently selects the light sub-path in y, for our estimator
(Sec. 6.1); next, we propose our MIS weighting function (Sec. 6.2)
and a method to optimize matrix I' that can minimize the upper
bound of variance (Sec. 6.3); finally, we propose a method to divide
space S into subspaces and construct x to keep sub-paths in a
subspace of low discrepancy (Sec. 6.4).

6.1 Two-stage Sampling and Estimator for y;,

To sample from the sub-path space S with an approximate function
vr, we employ a resampling method similar to LVCBPT. In each
rendering iteration, we trace M sub-paths from the light source in
the PDF p(7), treat each prefix of the sub-paths as an individual
candidate sub-path Y, and construct the LVC. Unlike LVCBPT, we
construct an LVC for each light subspace individually rather than
a whole for the entire sub-path space S. Each light sub-path ¥ is
assigned to the LVC for subspace x (Y).

For each eye sub-path Z traced from the camera, we resample the
light sub-path Y in two steps:

Stage 1: for a given eye sub-path Z, we sample the marginal-
ized PMF I'(x £ (Y)|kg(Z)) to get the light subspace k (Y) for the
second-stage sampling.

Stage 2: for the light subspace x (Y), we resample Y in the light
subspace with a target PDF proportional to f;.

The resampling PMF P, (Y) for the second-stage sampling is con-
structed as

fy(¥)/p(Y)
Syervem fy(Y)p(Y)

The normalization factor Q of y, is shared in the light subspace
and canceled out in the second stage. Resampling does not require
normalization of the target distribution [Nabata et al. 2020a], but Q
is necessary for the MIS computation in the next section.

Pr(Y) = )
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Figure 4 shows the procedure of two-stage sampling. For each eye
sub-path Z, we find its associated subspace kg (Z) by the binning
process and select the light subspace according to I'. Finally we
resample the light sub-path within the subspace x (). Considering
that fy(l_’) /p(Y) is uncorrelated with the eye sub-path Z in the
second-stage sampling, we construct the sampling PMF only once
in each iteration without extra visibility test. Therefore, only a little
computational overhead is necessary.

Finally, we provide the estimator based on our sampling method.
For an eye sub-path Z of ¢ vertices traced from the camera with
probability density p(Z), I; is estimated by I(Z)/p(Z) (Equation 4).
The average weighted contribution of the paths constructed by the
eye sub-path Z and prefixes of M light sub-paths makes an unbiased
estimation of I(Z) (Equation 5). We sample N light sub-paths {V;}
to connect with Z. For the i-th light sub-path ¥;, the resampling
probability is that the probability for the first stage to sample the
light subspace as T'(k s (Y;), kg (Z)) times the probability for the
second stage to sample Y; as P(Y;). So the estimator I; for strategy
t based on the two-stage sampling is as:

- 1

- we(Ti2)f (Yi2)
=

MN Z4 p(Z)T(k £ (), k6 (Z)Pr(Ty)

(10)

and the combined estimator I is defined as I = 3, I; (Equation 4).

6.2 MIS Function for Subspace-Based Connection

Probabilistic connections will change the sampling PDF of full path
x. We, therefore, derive the MIS weighting function for our subspace-
based probabilistic connections.

In our method, the selection of light sub-path 7 is directed by
function y, (7, 2), so the target PDF p;(x) for strategy ¢ is

pe(x) = p(2)yr(3.2), (11)

where full path X is constructed by connecting eye sub-path Z of ¢
vertices with light sub-path 7 as x = jz.

For a full path of length k, no connection is involved in strategies
t € {0,k + 1}, and classic BDPT can efficiently handle strategy t = 1.
Therefore, p; (x) for strategies t € {0, 1, k+ 1} can be resolved in the
same way as the classic BDPT. Our method works for strategies ¢ €
{2,3...k} only, and the p;(x) of these strategies should be resolved
by Equation 11.

We apply the balance heuristic to the weighting function as:
_ Nipe(®)

Zk+1 NiPi(f) ’

where N; is the sample count for strategy t. We set N; = N for
strategies t € {2,3...k}, where N is the number of connections for
each eye sub-path, as referred to in Equation 10. Other strategies
adopt the same settings as classic BDPT. More discussion about the
selection of N; to reduce variance of path correlation can be found
in Grittmann et al. [2021]; Popov et al. [2015].

Note that the p;(x) in Equation 11 is the target PDF rather than
the actual PDF of strategy t for resampling. The actual PDF for
resampling is unavailable in most cases, but a converged target
PDF can be achieved as the number of candidate samples M in-
creases [Talbot et al. 2005]. As long as >}, w;(X) = 1 is satisfied,

wi(X) = (12)
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using an approximate probability density to compute MIS weight-
ing function will not affect the unbiasedness of the estimation, as
discussed in Veach and Guibas [1995b].

6.3 MIS-Aware I' Minimizing Upper Bound of Variance

Based on the MIS weighting function w;(§Z) defined in Equation 12,
we next evaluate matrix I' in function y,.

Traditionally, MIS is ignored in the light selection distribution,
so I' can be evaluated in terms of full path contribution between
subspaces as:

full du(5Vd
v /3 » /S T (13)

where S (i) and Sg(j) refer to the light subspace i and eye sub-
space j, respectively.

rfull in Equation 13 is not optimized due to the absence of the MIS
term. A straightforward way to recover the MIS term and obtain an
MIS-aware T is to integrate the weighted contribution w; (§2) f(§2)
instead of the full contribution f(§Zz) in Equation 13. However, w;
depends on p; (Equation 12) and p; depends on y, (Equation 11),
which in turn depends on I' (Equation 7). The circular dependency
of T = w; — p; — yr — I will make it difficult to converge to
an optimal T in isolated optimization, i.e., starting from a random I'
and updating w; and T alternately [Rath et al. 2020].

To deal with circular dependency, we analyze the variance resul-
tant from sampling and then propose a solution to an MIS-aware
I' that minimizes the upper bound of variance and proves that the
minimization is a convex optimization problem as follows.

Our proof is derived based on two practical assumptions. (i) Dif-
ferent samples of paths for estimation are considered uncorrelated,
ignoring the correlation of paths in variance minimization [Veach
and Guibas 1995b]. Therefore, covariance of estimator I equals 0.
(ii) Strategy t generates samples in terms of the target PDF p;(x)
in Equation 11, ignoring the difference between the target PDF and
actual PDF.

Similar to the balance heuristic, rather than minimizing the vari-
ance V[I] = E[I?] — E[I]2, we consider E[I?] as the upper bound
of V[I] and minimize the upper bound as

W)
o Z Sy o .

Then we substitute w; with Equation 12 and obtain:

DN D) oo [ LD
/Q(thtpt(x»zf (Ddp(x) = | o )dy( ). (15)

Here 7 (x) = 2y N¢ps(x). For t € {0, 1, k+ 1}, p;(X) is uncorrelated
to T since no subspace sampling is involved in these strategies.
Otherwise, p;(X) will be proportional to a specific Ij ;, according to
Equation 11 and Equation 7. Therefore, # is computed as

FE) = 2Nt =90 + 905D (1
LJj

where go(x) refers to the PDF sum of those strategies handled by
d T(x)

classic BDPT and irrelevant to I'. The gradient g;,j (%) = can

be obtained by substituting Equation 11 and Equation 7 1nt0 pi(X).



Fig.5. F (orange curve) is the mixture of a serial of pdfs g; ; (dashed curves)
and I' is the mixture coefficient to describe the ratio of the mixture. I' should
be optimized to minimize /fz (%)/F(x)dp(x) and makes F close to the
target function f (blue curve).

According to Equation 16, ¥ is a mixture function of go and g; j,
and I is the mixture coefficient that defines the ratio of the mixture,
as shown in Figure 5. Equation 15 is exactly a convex function of
T, which has been proven in Douc et al. [2007]; Sbert et al. [2016].
Therefore, finding the optimized I' becomes a convex optimization
problem. we employ stochastic gradient descent (SGD) [Kingma
and Ba 2014] to find the optimal numerical solution to I', which will
be explained in detail in Sec. 7.3.

With the MIS-aware I' discussed above, the MIS term w is com-
bined with I" to form the light selection function y,. As shown in
Figure 6, our MIS-aware T achieves robust performance in complex
scenes and outperforms the full-contribution-based T/%!, labeled
as "Full ctrb.".

6.4 Classification Function

The classification function x divides space S into a set of subspaces
and is the basis of our approach. Direct illumination is essential for
rendering, and partitioning and clustering of the light sources have
been widely discussed in previous works [Vévoda et al. 2018; Walter
et al. 2005]. Therefore, k for sub-paths of the light source can be
easily constructed. However, for general sub-paths, S is the union
of spaces covering arbitrary dimensions. The number of subspaces
is usually limited due to O(N?) overhead of the subspace sampling
matrix T It is impractical to divide sub-path space S by simple
segmentation. Therefore, we adopt the centroid-distance scheme to
define the classification function.

Using a centroid sub-path set {C;} to denote the subspace centers
and distance function d to evaluate the distance between sub-paths,
the subspace of a sub-path depends on its closest centroid sub-path.
Therefore, we define the centroid-based k as

K(g) = argmin d(C;, §) . (17)

In practice, we sample the centroid sub-paths set {C;} from the
prefix/suffix of high-contribution paths to adaptively improve the
approximate estimate of y, of important paths. Formally, we run a
preprocessing pass to trace multiple full paths {X}. When sampling
the centroids for light/eye subspaces, we treat each prefix/suffix
sub-path of X as a candidate sub-path with a sampling probability
proportional to f(X)/p(X). The centroids can then be resampled
from the candidates sub-paths.

We next specify the distance function d in Equation 17 to measure
the difference between sub-paths with respect to y. As defined in
Equation 6, y(, 2) is proportional to w;(§z), fyz(7,Z), and fy ().
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Ours Full ctrb.

24

Zoom-in MAPE 23.30% 30.96%

Fig. 6. Full-contribution-based T/%! vs. our MIS-aware T. Our T shows
advantage in reducing variance.

In our method, the f; () term can be handled by the second-stage
sampling (Sec. 6.1). Because all vertices of a sub-path have effect on
w, we leave the difference of w aside, similar to Popov et al. [2015],
and keep the f;, similarity within subspace. fy. (7, Z) depends on
the position, normal, and incident direction of the last vertex of a
sub-path. Therefore, the distance function d between sub-paths is
measured as:

d= dg + 052(1 —cosOy) + kdcrsz(l —cosby) , (18)

where ds is spatial distance, 6), is angle between normals, and 6,
is angle between incident, of the last vertices of two sub-paths,
respectively; o2 measures the spatial scale of the scene, and we
trace a set of full paths and determine o2 by the spatial difference
for vertices in the paths; k; weighs the difference in the incident
direction. In practice, k4 is set to a small value (generally 0 ~ 0.05)
since position and normal play more important roles in most cases.

Centroid-distance computation is expensive because a set of cen-
troids with Ng elements has O(Ns) complexity to compute k. In
practice, we generate a set of sub-paths and bin them into subspaces
using the centroid-based x. We then use the labeled sub-paths as the
training set to grow a decision tree to fit centroid-based k. The label
of a node in the decision tree is determined by the subspace with
the most labeled sub-paths, or the same as its parent node if there
is no sub-path in the node. We split the node when less than 99%
of the sub-paths in the node are correctly classified. When a node
splits, we randomly select an attribute from position, normal, and
incident direction, and compute its bounds with sub-paths included.
We set the center of the bounds as the decision threshold.

k is implemented using the decision tree with low computational
overhead. Figure 7 shows the procedure of building a decision tree,
and we also visualize the classification results accordingly, using
Cornell Box as an example and ignoring the incident difference.

7 TECHNICAL DETAILS AND ALGORITHM
7.1 Pre-traced Path Dataset D

Statistics of the path space are required to determine the relevant
terms in our function, including the classification function «, sub-
space sampling matrix I', and normalization factor Q. We, therefore,
construct a full path dataset D as the path space in the pre-trained
stage. D stores the necessary information of each full path X, in-
cluding f(X), p(X), positions of each vertex X; € X, p(Z) for each
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Fig. 7. Decision tree is used to fit the centroid-based x. We trace multiple
sub-path samples (marked with diamonds) and label each sub-path by its
closest centroid (marked with circle). The decision tree is trained based on
the labeled sub-paths. We visualize the result of light sub-path classification
by decision tree in Cornell Box.

suffix eye sub-path Z, and f;(Y) for each prefix light sub-path ¥.
We run BDPT to generate D, and other path tracing and sampling
methods are also workable. Those paths that can not be improved
by probabilistic connections will be discarded.

The optimization should be performed based on the relative lumi-
nance of each pixel [Rath et al. 2020]. Therefore, we use the relative
contribution f(X) /I}( for training instead of the absolute contri-
bution f(X), where I ' is the pixel’s luminance corresponding to
path X, which can be estimated from dataset D. Because the paths
in D is usually insufficient to accurately estimate each pixel, we
use a lower-resolution downsampling strategy when estimating iX
(generally set to 0.1x the image width and height).

7.2 Classification Function k

7.2.1 Light Source Division. Since direct illumination is usually es-
sential for the rendering, we give around 20% of the subspace budget
N to divide the light source and make a specific classification func-
tion k ¢ for light source sub-paths. In our implementation, the light
source is evenly divided, and the light source sub-paths are binned
into the subspace based on the UV coordinate of the light surface or
environment map, which is sufficient for robust performance. For
complex light source settings, the centroid-based method discussed
in Section 6.4 is still available.

7.2.2  Centroid-based k and Decision Tree. We sample the centroid
sub-paths from the prefix/suffix of the full paths stored in D. The
probability of a sub-path being sampled is proportional to the con-
tribution of the corresponding full path. For d in Equation 18, we
set 62 = max (o2, 0'5, o?2), where o2, 05 and o2 are variances of the
path vertices in D in Cartesian coordinate, respectively. In prac-
tice, a large k; setting in d can improve the rendering of glossy
material, while the normal and position are more important in most
cases. Therefore, we set kg to 0.05 as default. Two decision trees are
trained as practical k ; and kg, respectively, using the prefix/suffix
sub-paths stored in D and labeled by the centroid-based « as the
training set.

7.3 Estimation of Q and T

Once k s is specified, we trace M’ >> M light sub-paths from the
light source and classify each light sub-path by « y. The normaliza-
tion term Q for y, is evaluated as

00 =+ DUATLEIES B
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Fig. 8. Cross-iteration reuse of the light sub-paths. The subspace LVC retains
the latest My sub-paths for resampling, making it possible for a light sub-
path to be reused in successive iterations.

I' can be obtained by minimizing the upper bound of variance for
all the paths stored in D. We thereby define the loss function as

fA(X)
Loss(T') = _—
x;@ POOF(XID)

where p(X) is the PDF used to sample X in 9, and F is the mixture
function as discussed in Sec. 6.3.

We minimize the loss function by gradient descent. Similar to
Vorba et al. [2019], to keep the constraint I' > 0, we represent T’
as a sigmoid function applied to an R matrix © and normalized by
columns, i.e., I} j = Sigmoid(®; j)/ .y Sigmoid(©y ;). We optimize
O instead of T' directly, and an Adam optimizer [Kingma and Ba
2014] is employed to minimize the loss function, where © gradient
can be computed by back propagation.

Generally, an interpolation of T' with a 10% uniform distribution
as conservative sampling [Georgiev et al. 2012b] is necessary. We
compute the gradient of I' knowing the interpolation.

7.4 Cross-iteration Light Sub-path Reuse

We employe a two-stage method to sample light sub-paths in y,
(Sec. 6.1), wherein the second-stage resampling requires a large
number of candidate light sub-paths for sampling in a distribution
that approximates f; (§). However, in the highly complex scenes,
even a fairly large M can not guarantee that each subspace gets
sufficient sub-paths.

We solve this by retaining the light sub-paths in difficult-to-
sample subspace for more than one iteration. As shown in Figure 8,
for a light subspace, we maintain the LVC as a first-in-first-out
queue, keeping at most My candidate light sub-paths. At each itera-
tion, we push the newly traced light sub-paths into the associated
subspace’s LVC and pop the old sub-paths (i.e., discard) when there
are more than M sub-paths remaining. Therefore, in difficult sub-
spaces, a light sub-path can be retained and reused for multiple
iterations, ensuring that there are sufficient candidate sub-paths for
resampling.

We denote the number of sub-paths retained in the LVC as M, (Y)
and the number of sub-paths generated from subspace k »(Y) as
M(Y), including those retained and discarded sub-paths. Because
the order of sub-paths is random during the stochastic generation,
retaining sub-paths can be treated as sampling M, (Y) sub-paths
from M(Y) sub-paths. The probability for a generated sub-path ¥



to be retained is 22X | In this case, P,(Y) is computed as

M(Y)
M (Y) fy(V)/p(Y)

M(Y) M) AV AN
In j-th iteration, there are in total jM sub-paths traced from the
light source. Therefore, we reformulate the estimator in Equation 10
as:

Pr(?) =

(20)

N [ [
i=- 1 Z _ wt(Y}_Z)f(Yi?) - 21)
JMN H p(2)T (k£ (Yi), kg (Z))Pr(Yi)

Empirically, My = 200 is sufficient to provide a fair resampling (see
experimental result in Sec. 8.5.3).

7.5 Algorithm

Algorithm 1: SPCBPT

pre-trace paths by BDPT and construct the path dataset D;
construct k from path dataset D;

estimate Q by tracing M’ light sub-paths from light sources;
estimate I' in given x, Q, D by Adam optimizer;

for n = 1 to maxliteration do
generate candidate light sub-paths by tracing M sub-paths from

light sources;
update the sub-paths retained in subspace LVCs according to x s;
reconstruct resampling distribution for the second-stage sampling ;
for each pixel do
trace one eye sub-path from camera;
deal with strategies ¢ € {0, 1, k + 1} using BDPT;

for each valid eye sub-path Z with t > 2 vertices do
fori=11t N do
sample light subspace k(YY) from PMF
D(xz(Y) ke (2));
resample light sub-path Y from subspace ks (Y);
perform visibility test;
if pass visibility test then
‘ estimate I, for the full path YZ;
end

end
end

update pixel intensity;

end
end

We present the pseudocode in Algorithm 1. k, Q and T are de-
termined in the preprocessing stage. The cross-iteration reuse is
applied to the light sub-path tracing pass at the beginning of each
iteration. We compute the MIS weighting function using recursive
MIS (RMIS) [V. Antwerpen 2011], and we provide the details in the
supplementary material.

Our method is different from PCBPT and RISBPT [Nabata et al.
2020a; Popov et al. 2015]; given that T, Q, and k are pre-trained in the
preprocessing, no additional visibility test is required to construct
the light selection distribution in the runtime stage (see algorithm 1),
and the intersection overhead can be significantly saved. Those
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terms involved in the contribution of a connection (like visibility,
MIS weight, etc.) are covered by the first-stage sampling using T,
which is consistent when the light sub-paths changes.

8 EXPERIMENTS AND RESULTS

We present the experimental results of our algorithm in different
scenarios. We make comparisons with LVCBPT [Davidovi¢ et al.
2014], which has GPU acceleration of BDPT as the baseline, and
the state-of-the-art method RISBPT [Nabata et al. 2020a] on GPU.
Mean absolute percentage error (MAPE) is used as the metric for
comparison. We also discuss the effect of using different parameters
in our algorithm, as well as the applicable scenarios and limitations.

8.1 Experimental Setting

8.1.1 Renderer Setting. All the algorithms are implemented based
on the OptiX architecture [Parker et al. 2010], and run on an NVIDIA
GeForce RTX 2080 SUPER GPU with an Intel Core i7-10700 CPU
on a Windows system. All images are rendered in a resolution of
1920 X 1000. RISBPT adopts the same parameter configuration as
recommended in [Nabata et al. 2020a]. In each iteration, PCBPT
traces M = 200 light sub-paths for resampling while both LVCBPT
and our algorithm set M = 100, 000. For each traced eye sub-path,
the number of light sub-paths resampled for connection N = 3
is set for all algorithms. We enable all the strategies involved in
BDPT, including unidirectional path tracing and light tracing (i.e.,
strategies s =0 and t = 1).

Our approach traces 1, 000, 000 full paths to construct the dataset
D in the preprocessing stage, trace M’ = 2,000, 000 light sub-paths
to estimate Q. I is optimized by an Adam optimizer with a = 0.1,
P1=0.9, Bz =0.999, € = 1e — 8. Each batch we compute the gradient
for 10, 000 full path and run 2 epochs to figure out I'. The number of
subspaces Ng = 1,000 is set for light sub-path and eye sub-path. We
use the above settings for the experiments unless otherwise stated.

8.1.2  Scene Settings. Eight benchmarks, including Bedroom, Door,
Garden, Hallway, House, Kitchen, Sponza, and Diningroom, are
tested. These benchmarks cover a variety of scenes, illumination
conditions, and surface materials. Bedroom is illuminated by an
environment map and the curtains mask most of the light transport.
Door is illuminated by the area light located in the next room and
features difficult shadowing. Garden and Hallway are illuminated by
an environment map with directionality; Garden features an outdoor
environment while Hallway features an interior one. The glossy
wood floor in Hallway would reflect sunlight to the ceiling and make
caustics. House is an interior scene lit by two large-area lights out-
side. Garden, Hallway, and House are complex scenes and sampling
paths with distinct characteristics is a challenge. Kitchen contains
rich glossy materials, and the glass windows prevent straightfor-
ward next-event estimation (NEE) because they are in front of the
light source, so path guiding is necessary to handle this scene (see
Sec. 8.4). Sponza features a sharp irradiance change that comes from
the strong directionality of the environment map. Diningroom is
illuminated by cold indoor light and a warm environment map and
features tone differences. The reference images are rendered by
LVCBPT in 150K iterations for Bedroom, Hallway and Diningroom,
and 50K iterations for other scenes.
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(a) Reference (b) LVCBPT (c) RISBPT

(d) SPCBPT (Ours)

Fig. 9. Equal-time (1 min) comparisons: LVCBPT [Davidovi¢ et al. 2014], RISBPT [Nabata et al. 2020a], and our approach. Our preprocessing time has been
counted in the total time budget. Our approach obtains higher quality in terms of MAPE and the zoom-in regions. Seven benchmarks include Bedroom, Door,
Garden, House, Kitchen, Sponza, and Diningroom (from top to bottom), covering various types of scenes with different illumination conditions and materials.
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Fig. 10. Convergence over time (10 mins) in terms of MAPE: LVCBPT [Davidovi¢ et al. 2014], RISBPT [Nabata et al. 2020a], and our approach. Eight benchmarks,
including seven scenarios corresponding to Figure 9 and a Hallway scene corresponding to Figure 1. Although the extra time cost used for our approach’s
preprocessing has been included, our algorithm outperforms others with superior performance and exhibits a stable convergence tendency.

8.1.3 Overhead. Our training-based method needs additional time
and storage overhead. Table 1 provides the preprocessing time cost
for each scene, which is used to construct the training dataset for
the specific scene and to resolve subspace information including
k and I'. Construction of k with optimization of T takes less than
2s for each test scene. Meanwhile, at most 20 seconds are required
to construct the training dataset O by using BDPT, especially in
scenes with difficult visibility.

The extra runtime storage for decision tree and T' of each scene
does not exceed 100MB in our experiment. In the preprocessing
stage, dataset D requires at most 512MB memory (depending on
the average path length of the scene) to store the path information.
However, we can discard D once we obtain k, Q, and I'.

8.2 Performance Evaluation

We demonstrate the performance of different methods within the
same time budget in Figure 1 and Figure 9. We also highlight the
zoom-in regions using error visualization with heat map. Our algo-
rithm can significantly reduce the noise and obtain superior quality
in terms of MAPE in all test scenarios. Note that our algorithm’s
additional preprocessing time cost has been included in all experi-
ments. Although the preprocessing takes a particular time cost (a
few seconds), the benefits gained are considerable in terms of the
significant improvement of performance.

In Table 1, we show the statistics of time cost and iterations
required to reach the same MAPE (12%). We highlight that our
approach obtains higher efficiency over RISBPT with several times
speedup, e.g., over 10X in Hallway and Bedroom. Moreover, our
approach uses fewer iterations than RISBPT, and takes less time for
each iteration. In all, our approach reduces both the time cost and
the number of iterations significantly in all test benchmarks due

to our powerful two-stage sampling and the MIS-aware I', which
minimizes the rendering variance.

Figure 10 shows the convergence over time (10 mins) in terms
of MAPE in all scenarios. Our approach outperforms others in
terms of convergence speed and exhibits a stable convergence ten-
dency. From Figure 10, RISBPT’s overall performance is better than
LVCBPT, but the overhead of PMF record generation and KD-tree
query decreases the possible iteration counts, as stated in Nabata
et al. [2020a]. In different scenarios, our approach shows a consistent
advantage over other methods except at the early stages of itera-
tions. Our approach can sample probabilistic connections efficiently
both in simple scenarios and complex scenarios (e.g., Hallway with
very complicated light path) with lower computational overhead.

8.3 Comparison and Analysis

Unlike RISBPT, our approach considers MIS weights when con-
structing and sampling from light sub-path selection distribution. In
addition, using thousands of shadow rays for each light sub-path at
each iteration to construct the PMF cache is unnecessary, allowing
us to resample more light sub-paths (M = 100k >> 200).

We make further comparisons with RISBPT, and Table 2 shows
the results of MAPE and time cost with the same 100 iterations.
The rendering quality in terms of MAPE reflects how well different
methods can handle the probabilistic connections. Our approach
achieves better performance in all scenes, especially in complex
scenes, where RISBPT would suffer from the limited resampled
light sub-paths number M = 200. The powerful two-stage sam-
pling allows our algorithm to use a massive M setting and make an
outstanding rendering in various scene settings.

Kitchen may be an exceptional case, where M = 200 seems suffi-
cient to capture the illumination condition. In this case, the subpath-
to-subpath style importance sampling of RISBPT would provide
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Table 1. Time cost (measured in seconds) and iterations to reach the same MAPE (all scenes are 12%) with different methods testing on eight benchmarks.
Our method shows higher efficiency over the state-of-the-art method (RISBPT) with several times speedup (esp. over 10x in Hallway and Bedroom). The
preprocessing time used for our algorithm has been included, which is 16.58s for Bedroom, 3.41s for Door, 6.90s for Garden, 6.49s for Hallway, 15.5s for House,

3.03s for Kitchen, 3.21s for Sponza, and 5.43s for Diningroom.

Scene Bedroom Door Garden Hallway House Kitchen Sponza Diningroom
Time Itr. | Time Itr. | Time Itr. | Time Itr. | Time Itr. | Time Itr. | Time Itr. | Time  Itr

LVCBPT | 3182.7 6075 | 724.2 2328 | 756.0 2023 | 3295.8 4498 | 1471.0 4741 | 325.6 562 | 599.6 1852 | 4207.5 7068
RISBPT | 2136.8 1407 | 273.4 269 | 255.7 357 | 1983.8 766 364.2 550 | 2329 165 | 60.7 94 569.8 268

Ours 147.48 171 | 35.6 59 64.5 124 | 146.6

132 80.6 150 | 134.5 150 | 28.8 68 160.9 187

Table 2. Comparison of time cost and accuracy (MAPE) after 100 iterations
between RISBPT [Nabata et al. 2020a] and our method.

Method RISBPT Ours
Scene Time (s) MAPE | Time (s) MAPE
Bedroom 149.43 36.95% 95.12 14.92%
Door 100.89  18.34% 58.34 9.47%
Garden 70.99 19.72% 53.18 13.01%
Hallway 252.94 23.45% 112.27 13.42%
House 65.83 22.47% 58.70 14.19%
Kitchen 140.63 14.87% 90.98 14.23%
Sponza 64.54 11.48% 41.05 9.94%
Diningroom 211.68  18.18% 88.44 15.48%

Reference Ours

MAPE: 17.64%

RISBPT M=200 RISBPT M=10,000

MARPE: 28.86%*

MAPE: 43.34%

Fig. 11. Our approach outperforms RISBPT with different settings (M = 200
and M = 10, 000, respectively), all using 64 iterations.

fine-grained guidance to the probabilistic connections, so our al-
gorithm achieves only a slight advantage over RISBPT in Kitchen.
In addition, we investigate the performance of using different M
for RISBPT. since Bedroom has many difficult visibility, a large M
will be helpful. Figure 11 shows the zoom-in image for compari-
son, where in each iteration M = 10, 000 light sub-paths are traced
for RISBPT to resample, which is 50 the recommended setting.
In such a situation, RISBPT takes extra seconds to construct the
PMF distribution in each iteration and obtains an improvement in
MAPE 43.34% — 28.86%. However, RISBPT still falls far behind our
approach using the same number of iterations, not to mention the
extra computational costs required. An increment of M will not
significantly improve RISBPT’s overall performance.

To sum up, our algorithm provides stable sampling effective-
ness for paths that have difficulty sampling in previous algorithms.
Our approach achieves better performance than RISBPT in various
scenes, whether measured in equal time or equal iterations.
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Fig. 12. Equal-time (1 min) comparisons: LVCBPT + path guiding (upper
left), RISBPT + path guiding (upper right), our approach (bottom left), and
our approach + path guiding (bottom right).

8.4 Combination with Path Guiding

We integrate the path guiding method based on the SD-tree [Miiller
et al. 2017] with our approach. Following the same setup, we use 1
min to pre-train the SD-tree and then trace eye light sub-paths and
light sub-paths with guidance.

We test the performance in Kitchen, where the glass window
prevents the application of NEE. Figure 12 shows equal-time (1
min) results with four settings: LVCBPT with path guiding, RISBPT
with path guiding, and our method without/with path guiding. Our
approach works well with the path guiding algorithm and benefits
from the guided paths by improved quality in MAPE 22.59% —
17.1%. Even though all methods combine with path guiding, our
method still outperforms LVCBPT and RISBPT.

8.5 Parameters

We study the reliability of our approach by tuning key parameters
that may affect the performance. These parameters include the
number of samples N used for a single eye vertex to sample and
build connections, the effect of light sub-path reuse, the size of
pre-traced dataset O, and the classification subspace number N.

8.5.1 Number of Samples N. Table 3 shows the performance using
different N, the number of light sub-paths for an eye sub-path to
connect. Obviously, a higher N can improve the performance of
each iteration and decrease the iterations needed to achieve the
same MAPE, but it needs more visibility tests per iteration and
slows down the speed. The best performance of our algorithm can
be obtained when N = 2~4, so we use N = 3 as default.
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Table 3. Using different N, the time cost and iterations to reach MAPE=8%.

Scene Hallway Sponza
N Itr. | Time (s) | Itr. | Time (s)
1 932 499.40 335 76.50
2 570 462.61 204 63.36
3 408 443.35 158 63.50
4 352 474.17 134 64.17
8 264 641.60 97 75.94
House Diningroom
Ns=400 Ns=400
Ns=700 \ Ns=700
Ns=1000 A\\ N Ns=1000
Ns=1500 10 L — Ns=1500
s Ns=2000 | 3 Ns=2000
g0 5
£ g’
8 8
7 - >
10° 106 T3 10

Size of D Size of D

Fig. 13. Different settings: number of subspace (Ns) and size of dataset (D)
used in House and Diningroom, all MAPE obtained after 512 iterations. The
horizontal axis indicates the scale of D.

House Kitchen

MAPE(%)

—— M=1000000
M=100000
—— M=100000-reuse

—— M=1000000
M=100000
—— M=100000-reuse

10 20 30 40 50 60 100 10 20 30 40 50 60 100
Iteration Iteration
Fig. 14. Convergence over iterations with three different settings: M =
100, 000 with/without sub-path cross-iteration reuse, M = 1, 000, 000 without
cross-iteration reuse, in House and Kitchen.

8.5.2 Size of Path Dataset D and Number of Subspace Ns. Figure 13
shows the equal iteration performance with different size of O and
N5 used in House and Diningroom, where we focus on the rendering
quality regardless of the preprocessing time.

The approximation function y, can approximate the ideal function
y better as N increases, but it requires a larger D to train I to avoid
overfitting. In relatively simple scenes like Diningroom, the size
of D has a greater impact on render performance, and a small Ng
is sufficient. On the contrary, House requires more subspaces to
capture the complex light transport.

In the experiments, setting Ng to 1000 and D to 1, 000, 000 works
well even for complex scenes, since paths with high contributions are
usually concentrated in a few regions rather than evenly distributed
in the scene. When the time budget is limited, i.e., in a time-critical
condition, the number of pre-traced paths can be appropriately
reduced. With a small D, we still achieve significant improvements.

8.5.3 Effect of Light Sub-path Cross-iteration Reuse. Light sub-path
cross-iteration reuse can improve the performance of the second-
stage resampling. Figure 14 shows the performance comparison of

Reference Ours

MAPE;: 20555065

MAPE: 20:33%

Fig. 15. Highly glossy scene rendered within 1 min. The improvement of
our approach over other methods is relatively low.

M =100, 000 with/without cross-iteration reuse and M = 1, 000, 000
without cross-iteration reuse. Compared to simply increasing M,
cross-iteration reuse makes use of difficult-to-sample light sub-paths
and shows better performance in complex scenes (House on the left)
without extra overhead of sub-path tracing. For scenes with easy
visibility (Kitchen on the right), only reusing My = 200 sub-paths
lowers the rendering slightly, but the difference is not noticeable
(14.35% vs. 14.12% after 128 iterations). This demonstrates that our
reuse of light sub-paths benefits those scenes with difficult visibility.

9 CONCLUSION, LIMITATION, AND FUTURE WORK

Based on our formulation of subspace for probabilistic connections,
we present a feasible subspace-based method for importance sam-
pling from a large number of candidate light sub-paths. By first
sampling the light subspace and then resampling the light sub-path
from the light subspace, our algorithm can significantly improve
the rendering quality in the complex scene with little computation
overhead. Our work for the probabilistic connections has no specific
restrictions on the way the sub-path is generated. Therefore, any
specific light path generation method like path guiding (see Sec. 8.4)
can be available for our algorithm.

In the pre-processing stage, our approach requires a large number
of paths to train the approximate function y,. However, even pre-
tracing these paths for training remains a challenge in a scene with
difficult visibility. Adaptive sampling strategies like MCMC [Veach
and Guibas 1997] may be a solution to this problem and need further
investigation. Online training strategies can be an alternative to
solving the function y, instead of pre-training and deserve future
investigation. Our proposed MIS-aware I' is based on the balance
heuristic. The combination of our method with other MIS weighting
functions like correlation-aware MIS [Grittmann et al. 2021] should
be discussed further.

In this paper, y is evaluated approximately by dividing S into dif-
ferent subspaces. However, the way of light subspace division may
not applied to all eye subspaces. A coarse-to-fine division may pro-
vide a better approximation, but the sampling and MIS computation
for such a division need further investigation.

Because of the limitation of BDPT, some difficult path config-
urations are still hard to handle, e.g., highly glossy material (see
Figure 15) or caustics caused by perfect specular bounce. Our ap-
proach also can not handle this type of scene very well. Generally,
path guiding is necessary to help render the glossy surface smoothly.
The VCM/UPS framework [Georgiev et al. 2012a; Hachisuka et al.
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2012] provides approach to combine BDPT with PPM to solve the
caustics paths and can also be combined with our algorithm. Recent
works on PPM have achieved great improvement by reducing the
radius of photon collection [Hachisuka and Jensen 2009; Lin et al.
2020] and extending the form of photon into a high-dimensional
photon surface [Deng et al. 2019]. A combination of our algorithm
with these methods to further improve the efficiency will be an
interesting future work.
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