
NeuralSound: Learning-based Modal Sound Synthesis with Acoustic
Transfer
XUTONG JIN, School of Computer Science, Peking University, China
SHENG LI∗, School of Computer Science, Peking University, China
GUOPING WANG, School of Computer Science, Peking University, China
DINESH MANOCHA, University of Maryland at College Park, U.S.A

Hexahedron
Model

Mesh

Radiation

Solver

Vibration Modes Acoustic Transfer
Maps

Vibration

Mixed

Solver

+
(LOBPCG)

Fig. 1. Learning-based approach for modal sound synthesis: We use neural networks to accelerate both modal analysis and acoustic transfer precomputation,
and evaluate the performance on many new and unseen objects. Our approach can solve both vibration and radiation for plausible sound effects within one
second per object on a GeForce RTX 3080 Ti GPU.

We present a novel learning-based modal sound synthesis approach that
includes a mixed vibration solver for modal analysis and a radiation network
for acoustic transfer. Our mixed vibration solver consists of a 3D sparse
convolution network and a Locally Optimal Block Preconditioned Conjugate
Gradient (LOBPCG) module for iterative optimization. Moreover, we high-
light the correlation between a standard numerical vibration solver and our
network architecture. Our radiation network predicts the Far-Field Acoustic
Transfer maps (FFAT Maps) from the surface vibration of the object. The
overall running time of our learning-based approach for most new objects is
less than one second on a RTX 3080 Ti GPU while maintaining a high sound
quality close to the ground truth solved by standard numerical methods. We

∗corresponding author
Project URL: hellojxt.github.io/NeuralSound

Authors’ addresses: Xutong Jin, jinxutong@pku.edu.cn, School of Computer Science,
Peking University, China; Sheng Li, lisheng@pku.edu.cn, School of Computer Science,
Peking University, China; Guoping Wang, wgp@pku.edu.cn, School of Computer
Science, Peking University, China; Dinesh Manocha, dmanocha@umd.edu, University
of Maryland at College Park, U.S.A.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART121 $15.00
https://doi.org/10.1145/3528223.3530184

also evaluate the numerical and perceptual accuracy of our approach on
different objects with various shapes and materials.

CCS Concepts: • Computing methodologies → Modeling and simula-
tion; • Applied computing → Sound and music computing.

Additional Key Words and Phrases: sound synthesis, deep learning, modal
analysis, vibration, convolution networks, acoustic transfer, sound radiation

ACM Reference Format:
Xutong Jin, Sheng Li, Guoping Wang, and Dinesh Manocha. 2022. Neural-
Sound: Learning-based Modal Sound Synthesis with Acoustic Transfer. ACM
Trans. Graph. 41, 4, Article 121 (July 2022), 15 pages. https://doi.org/10.1145/
3528223.3530184

1 INTRODUCTION
3D modal sound models are used for synthesizing physically-based
rigid-body sounds in animation and virtual environments [Bonneel
et al. 2008; James et al. 2006; Liu and Manocha 2020; O’Brien et al.
2002; Raghuvanshi and Lin 2006; van den Doel et al. 2001]. The
standard pipeline generally requires expensive precomputation for
sound vibration and radiation for each object in the scene. The
sound vibration data is obtained by modal analysis [van de Doel and
Pai 1996; van den Doel et al. 2001], which consists of an eigenmode
matrix and eigenfrequencies that correspond to the surface motions
and frequencies of some vibration modes. The sound radiation data
corresponds to the acoustic transfer function [James et al. 2006],

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.

https://hellojxt.github.io/NeuralSound
https://doi.org/10.1145/3528223.3530184
https://doi.org/10.1145/3528223.3530184
https://doi.org/10.1145/3528223.3530184


121:2 • Xutong Jin, Sheng Li, Guoping Wang, and Dinesh Manocha

which describes the radiation efficiency of each vibration mode at
different spatial positions.
The standard numerical methods used for modal sound synthe-

sis can be expensive, especially in terms of computing the sound
radiation data [James et al. 2006; Li et al. 2015]. For a given object,
a numerical vibration solver [Lanczos 1950] usually takes a few
minutes [James et al. 2006; Jin et al. 2020; Zheng and James 2010],
and a numerical radiation solver such as Boundary Element Method
(BEM) [Kirkup 2019] can take several minutes to a few hours [James
et al. 2006; Wang and James 2019; Zheng and James 2010]. This
makes it hard to use these methods in interactive scenarios with
dynamically generated objects corresponding to shape modification
or fractured objects.

Main Results: We propose NeuralSound, a novel learning-based
modal sound synthesis approach. It consists of a mixed vibration
solver and a radiation solver. Our mixed vibration solver is a 3D
linear sparse convolution network used to predict the eigenvectors
of an object and an iterative optimizer that uses Locally Optimal
Block Preconditioned Conjugate Gradient (LOBPCG) [Duersch et al.
2018; Knyazev 2001]. We highlight the connection between a 3D
sparse convolution network and the matrix calculations of standard
numerical solvers for modal analysis to motivate the design of our
network. We also present a neural network architecture based on
the properties of BEM for acoustic transfer. Thus, our end-to-end
radiation network encodes the surface displacement and frequency
of a vibration mode and decodes it into the corresponding scalar-
valued Far-Field Acoustic Transfer maps (FFAT Maps) [Chadwick
et al. 2009; Wang and James 2019], which compress the acoustic
transfer function at the level-of-accuracy suitable for sound render-
ing. The total computation for sound vibration and radiation of an
object can be completed within one second on a commodity GPU
(RTX 3080Ti). Moreover, these two learning-based solvers can either
be combined or used independently. In other words, a numerical
vibration solver can be combined with our learning-based radiation
solver, or a numerical radiation solver can be combined with our
learning-based vibration solver to design a sound synthesis system.
Our dataset is based on the ABC Dataset [Koch et al. 2019] and

uses ∼100K 3Dmodels. We compare our mixed vibration solver with
the standard numerical solution using different metrics. The result
of a LOBPCG solver with a tight convergence tolerance is treated as
the ground truth. Our mixed vibration solver obtains high accuracy
(convergence error 𝜀 < 0.01) using only 0.03s and always outperforms
other standard numerical solvers within the same time budget. We
compare our radiation solver with the standard numerical solution
(BEM). Our approach achieves high accuracy (MSE of normalized
FFAT Map ∼ 0.06, and MSE of Log Norm ∼ 0.07) using only 0.04s.
We observe ∼2000× speedup using our radiation solver over BEM
in terms of synthesizing plausible acoustic transfer effect.

We conduct a user study to evaluate our sound quality compared
to two baselines in five different scenes. The statistical results (mean
value and standard deviation) indicate that our approach, including
both the mixed vibration solver and the radiation solver, shows very
high fidelity to the ground truth.

2 RELATED WORKS
Modal Sound Synthesis. Modal sound synthesis is a technique

that has been used to synthesize sounds of rigid bodies [Cook 1995;
O’Brien et al. 2002; Raghuvanshi and Lin 2006; van den Doel et al.
2001]. These methods compute the vibration modes of a 3D object
using eigendecomposition as a preprocessing. Many methods use
3D objects’ pre-computed eigendata to render runtime sound, e.g.,
reducing the computational complexity by approximations [Bonneel
et al. 2008]. Other methods use complex modal sound synthesis
models to simulate sounds such as knocking, sliding, and friction
models [van den Doel et al. 2001], acceleration noise synthesis
models [Chadwick et al. 2012], accurate damping models [Sterling
et al. 2019], contact models [Zheng and James 2011] or data-driven
approximations [Pai et al. 2001; Ren et al. 2013].

Acoustic Transfer. Directly adding the vibration modes does not
result in high-fidelity sound effects, as that process lacks the modal
amplitude variations and spatialization effects due to acoustic wave
radiation [Wang and James 2019]. In addition to BEM [Kirkup 2019],
precomputed acoustic transfer [James et al. 2006] methods are used
to more accurately model the sound pressure at the listener’s po-
sition. Other techniques use a single-point multipole expansion
with higher-order sources [Langlois et al. 2014; Rungta et al. 2016;
Zheng and James 2010, 2011], inter-object transfer functions [Mehra
et al. 2013], or Far-Field Acoustic Transfer (FFAT) Maps [Chadwick
et al. 2009; Wang and James 2019]. Since the FFAT map is a simple,
efficient representation of the transfer function, we also use scalar-
valued FFAT Maps defined in KleinPAT [Wang and James 2019] in
our approach.

Precomputation Speedup. Some methods focus on reducing the
time-consuming precomputation of modal sound synthesis and
acoustic transfer functions. Li et al. [2015] proposed a method to en-
able interactive acoustic transfer evaluation without recalculating
the acoustic transfer when changing an object’s material. Klein-
PAT [Wang and James 2019] can accelerate the precomputation
of acoustic transfer on the GPU by packing-depacking modes and
using a time-domain method. A deep neural network [Jin et al. 2020]
was proposed to synthesize the sound of an arbitrary rigid body
being hit at runtime and it predicts the amplitudes and frequencies
of sound directly. However, this approach cannot model acoustic
transfer. Moreover, it may incur a severe loss of accuracy because it
treats all the modes within a frequency interval as one mode.

Learning-based Approaches. The computation of modal vibration
and radiation is highly dependent on the geometric shape of the ob-
ject, where solving for shape-related features is the key issue. Many
methods have been proposed to utilize three-dimensional geometric
features for learning, including perspective-based methods, which
regard the combination of 2D image features from different viewing
perspectives as the 3D geometry feature [Su et al. 2015], voxel-based
methods [Wu et al. 2015], which regard an object as a 3D image by
hexahedral meshing, and point cloud-based methods [Meng et al.
2021; Qi et al. 2017], which represent the model as a point cloud.

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



NeuralSound: Learning-based Modal Sound Synthesis with Acoustic Transfer • 121:3

3 BACKGROUND
We first provide the background of the 3D physically-based modal
sound synthesis as well as the acoustic transfer function for high-
quality sound effect.

3.1 Vibration Solver
We begin with the linear deformation equation for a 3D linear elastic
dynamics model [Shabana 1991] that is commonly used in rigid-
body sound synthesis [James et al. 2006; O’Brien et al. 2002; Zheng
and James 2010]:

M¥u + C ¤u + Ku = F(𝑡) , (1)
where u is nodal displacements, and M, C = 𝛼M + 𝛽K, and K repre-
sent the mass, Rayleigh damping, and stiffness matrices, respectively.
𝛼, 𝛽 are Rayleigh damping coefficients. F(𝑡) represents the external
nodal forces. The generalized eigenvalue decomposition as

KU = MUΛ (2)

is required first to solve the linear system, where U is the eigenmode
matrix (consists of eigenvectors) and Λ is the diagonal matrix of
eigenvalues. Then the system can be decoupled as:

¥q + (𝛼 + 𝛽Λ) ¤q + Λq = U𝑇 F(𝑡) , (3)

where q satisfies u = Uq. The solution to the equation is a bank of
damped sinusoidal waves corresponding to each mode. The gener-
alized eigenvalue decomposition KU = MUΛ is the core of modal
analysis. Therefore, a generalized eigenvalue decomposition solver
is required (e.g., Lanczos method [Lanczos 1950], LOBPCG [Duersch
et al. 2018; Knyazev 2001]).

3.2 Acoustic Transfer Solve
Acoustic transfer function 𝑝𝑖 (x) describes the sound pressure in
space (at position x) generated by the ith mode with unit ampli-
tude. A radiation solver is required to solve the acoustic transfer
function from the surface displacement and frequency of a mode,
where the surface displacement is computed from the eigenmode
matrix U solved in Sec. 3.1, and the frequencies are computed from
the eigenvalues Λ. BEM is a standard method used to solve this
acoustic transfer problem. After solving the acoustic transfer func-
tion, compression methods are needed to represent the function for
runtime sound rendering. These methods include Equivalent-Source
Representations [James et al. 2006; Mehra et al. 2013], Multipole
Source Representation [Zheng and James 2010], Far-Field Acoustic
Transfer (FFAT) Maps [Chadwick et al. 2009], etc. In this paper, we
choose FFAT Maps as our compression method.

3.3 Sound Synthesis
To synthesize modal sound at runtime, the eigenvalue matrix Λ =

𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, ..., 𝜆𝑘 }, eigenmode matrix U, and acoustic transfer func-
tion P(𝒙) = {𝑝𝑖 (𝒙) |𝑖 = 1, ..., 𝑘} are precomputed and stored [Lan-
glois et al. 2014]. The external nodal force F(𝑡) is projected into
the modal subspace by U𝑇 F(𝑡) = {𝑓0 (𝑡), 𝑓1 (𝑡), ..., 𝑓𝑘 (𝑡)}𝑇 , then the
sound waveform𝑤 (𝒙, 𝑡), i.e., the sound pressure at position 𝒙 and
time 𝑡 , is solved as [James 2016]:

𝑤 (𝒙, 𝑡) =
𝑘∑︁
𝑖=1

𝑝𝑖 (𝒙)
∫ 𝑡

0

𝑓𝑖 (𝜏)
𝜔 ′
𝑖

𝑒−𝜉𝑖𝜔𝑖 (𝑡−𝜏) sin
(
𝜔 ′
𝑖 (𝑡 − 𝜏)

)
d𝜏,

where 𝜔𝑖 =
√
𝜆𝑖 is the undamped natural frequency of 𝑖th mode,

𝜉𝑖 =
𝛼+𝛽𝜆𝑖
2𝜔𝑖

is the dimensionless modal damping factor of 𝑖th mode,

and 𝜔 ′
𝑖
= 𝜔𝑖

√︃
1 − 𝜉2

𝑖
is the damped natural frequency of 𝑖th mode.

3.4 Network Architectures for Modal Sound Synthesis
Modal analysis and acoustic transfer precomputations can be expen-
sive, making the current numerical solvers too slow for interactive
applications. In contrast to these solvers, the inference process of
a neural network can be completed in a very short time (even mil-
liseconds) on current GPUs. Therefore, a learning-based approach
to resolving modal sound synthesis can inherit the advantage of
high efficiency.

Our approach exploits the intrinsic correspondence between the
convolution neural network and physically-based sound synthesis
methods. Specifically, local connections and shift-invariance are
two characteristics of convolution neural networks (CNNs). We also
observe similar characteristics for (i) the assembled matrix (i.e., stiff-
ness matrix) in modal analysis and (ii) the interaction/convolution
matrix in the BEM for acoustic transfer [Kirkup 2019]. Our approach
is also inspired by the fact that multi-scale structure in convolution
neural networks (e.g., in ResNet [He et al. 2016] and U-Net [Ron-
neberger et al. 2015]) has also been applied to (i) the multigrid
method in linear solvers and (ii) the hierarchical strategy in the fast
multipole method (FMM) [Liu 2009].

We design two neural networks that coincide with the fundamen-
tals of numerical solvers for modal analysis and acoustic transfer
but can predict approximate results much faster. This is the motiva-
tion behind our learning-based approach. Specifically, our approach
includes (i) a mixed vibration solver for modal analysis and (ii) a
radiation solver for acoustic transfer (see Figure 1). For our mixed
vibration solver, we highlight its correspondence with the numerical
solvers and present its details in Sec. 4. The correspondence with
BEM and the details of our radiation solver are given in Sec. 5.

4 VIBRATION SOLVER: LEARNING EIGENVECTOR
APPROXIMATION

In this section, we propose a self-supervised learning-based solver
to resolve vibration problems introduced in Sec. 3.1, i.e., to resolve
the core generalized eigenvalue decomposition (Equation 2). We
explain the design of our vibration solver, present the architecture,
and describe training our 3D sparse network by reducing residual-
based error instead of using data generated from a numerical solver.

4.1 Network and Matrix Computations
The assembled matrix and its inverse are key components in nu-
merical solvers for generalized eigenvalue decomposition in modal
analysis. We first analyze the intrinsic connections between the as-
sembled matrix and the 3D sparse convolution as well as the inverse
assembled matrix and the 3D sparse U-Net.

4.1.1 Assembled Matrix and 3D Sparse Convolution. We use 3D
sparse convolutions [Choy et al. 2019; Graham et al. 2018; Graham
and van der Maaten 2017] as the basic components of our network.
3D sparse convolution can be applied to sparse tensors of any shape
due to the shift-invariance of convolution kernel. In a 3 × 3 × 3

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



121:4 • Xutong Jin, Sheng Li, Guoping Wang, and Dinesh Manocha

sparse convolution, the convolution kernel defines the linear rela-
tionship between the output feature of each voxel and the input
features of neighboring voxels (including itself). In an assembled
matrix, the element matrix defines the linear relationship between
the output displacement of each vertex and the input displacements
of neighboring vertices (including itself) in a voxel. So, there is an
intuitive connection between 3D sparse convolutions and assembled
matrices. Assuming that the element matrix is fixed (voxel size and
material are fixed), the assembled matrix-vector multiplication can
be represented by a corresponding 3 × 3 × 3 sparse convolution
(see bottom-right of Figure 2). We provide detailed analysis and
experimental validation in Appendix A.1.

4.1.2 Inverse Assembled Matrix and Sparse U-Net. Using a multigrid
method [Briggs et al. 2000] can accelerate solving inverse matrix-
vector multiplication through a hierarchy of discretizations, which
refine the solution first from a fine to coarse model and then from
coarse to fine. Each correction operation corresponds to matrix-
vector multiplication and addition, equivalent to a 3D sparse con-
volution with bias if the involved matrix is an assembled matrix.
Therefore, there is an intuitive connection between a 3D sparse
linear U-Net [Ronneberger et al. 2015] and the inverse of an assem-
bled matrix. We provide experimental validation in Appendix A.1
to show that 3D sparse linear U-Net can be a good approximation
of an assembled matrix inverse.

4.1.3 Sparse Linear U-Net for Eigenvector Approximation. The ma-
trix K−1M can be used to span the standard Krylov space where
the Rayleigh–Ritz method [Knyazev 1997, 1998, 2001] is applied to
resolve approximate eigenvectors within this space. We explain the
feasibility and rationality of such a process used for modal analysis
with example in Appendix A.2. In principle, a linear neural network
with certain parameters can represent a linear mapping. Based on
the above analysis, a 3D sparse linear U-Net can represent a linear
mapping that approximates an assembled matrix (or inverse matrix).
Therefore, we conjecture that the U-Net can be used to approxi-
mate a polynomial of an assembled matrix (or inverse matrix) when
the network with multiple layers is deep enough. A 3D sparse lin-
ear U-Net with different parameters can represent various linear
mappings. All these possible linear mappings make up the feasible
domain of this U-Net. Like Krylov space, U-Net representation of
the linear mappings can span a subspace and employ Rayleigh-Ritz
method for eigenvector approximations. Based on the large feasible
domain of deep neural networks, we can train the U-Net to search
for the best possible linear mapping in its feasible domain rather
than to simulate a specific one like K−1M of the krylov space.

4.2 Vibration Network Architecture
As discussed above, we design a 3D sparse linear U-Net to trans-
form some random initial vectors into output vectors. The output
vectors span a subspace, and the Rayleigh–Ritz method is used to
compute the approximate eigenvectors and eigenvalues in this sub-
space. We use a self-supervised training strategy without any labels
or groundtruth data. The convergence error of the approximate
eigenvectors solved by Rayleigh–Ritz method is used as the loss
function.

The overall pipeline is shown in Figure 2. Our U-Net consists
of several linear residual blocks. The down-sampling layer in the
U-Net is a 3D sparse convolution with a stride of 2. The upsampling
layer in the U-Net is a 3D sparse transposed convolution with a
stride of 2.

4.2.1 Projection between Vertex & Voxel. First, we introduce the
mechanism to ensure the accurate correspondence between 3D
sparse tensors and eigenvectors. Voxels in the network correspond to
hexahedrons in the finite element model. An eigenvector represents
the displacement of vertices in the direction of 𝑥,𝑦, 𝑧 caused by
a unit vibration mode. A 3D sparse tensor in the neural network
represents the feature of voxels. We design a projection from vertex
representation to voxel representation and vice versa. The vertex
to voxel projection concatenates all the features (displacement in
𝑥,𝑦, 𝑧) of the current voxel’s eight vertices. Therefore, the feature
number of each voxel after projection is 24. For each vertex, 3 of
the 24 features of adjacent voxels belong to this vertex. The voxel
to vertex projection averages the corresponding three features of
all adjacent voxels.

4.2.2 Training Process. We denote our neural network as 𝑔 and
its optimizable parameters as 𝜃 . There are 𝑁 voxel models in the
training dataset, each consisting of 𝑘 randomly initialized vectors
x𝑖 =

(
x𝑖1, x

𝑖
2, ..., x

𝑖
𝑘

)
, which represent the randomly initialized nodal

displacements. The goal is to find an optimal set of network param-
eters 𝜃 to minimize the average loss function:

𝜃 = argmin
𝜃

1
𝑁

𝑁∑︁
𝑖=1

ℓ

(
Rayleigh-Ritz

(
𝑔(x𝑖 ;𝜽 ), x𝑖

))
, (4)

where 𝑔(x𝑖 ;𝜽 ) =
(
𝑔(x𝑖1;𝜽 ), 𝑔(x

𝑖
2;𝜽 ), ..., 𝑔(x

𝑖
𝑘
;𝜽 )

)
represents 𝑘 out-

put vectors from the network, and ℓ is the loss function. All com-
putation are differentiable, so the common gradient optimization
method can be employed. The loss function and the Rayleigh-Ritz
method will be described in detail in the next subsection.

4.2.3 Rayleigh-Ritz Method & Loss Function. The Rayleigh-Ritz
method is used to find the approximate eigenvectors and eigenvalues
in a subspace:

(S𝑇 KS)Û = (S𝑇 MS)ÛΛ̂ , (5)
where S is a set of basis of the linear subspaceS = span{𝑔(x𝑖 ;𝜽 ), x𝑖 }
and K,M are stiffness matrix and mass matrix, respectively. The Ritz
pairs (Λ̂, SÛ) are approximations to the eigenvalues and eigenvec-
tors in the original problems. It turns out that 𝑘 ≪ 3𝑁 , where 𝑁
is the number of vertices. Therefore, a solution to the generalized
eigenvalue problem in subspace (Equation 5) is much faster than di-
rectly solving the original generalized eigenvalue problem in modal
analysis (Equation 2).

The vectors in𝑔(x𝑖 ;𝜽 ) may be linearly dependent. In this case, the
dimension of the spanned subspace S = span{𝑔(x𝑖 ;𝜽 )} is less than
𝑘 and the number of eigenvectors that can be solved in the Rayleigh-
Ritz process is also less than 𝑘 . To ensure 𝑘 eigenvectors, we supple-
ment random vectors x𝑖 into subspace S as S = span{𝑔(x𝑖 ;𝜽 ), x𝑖 }
because x𝑖 are linearly independent.

A numerical instability issue may occur in the Rayleigh-Ritz pro-
cess in Equation 5. This is due to the fact that the projection S𝑇 MS

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



NeuralSound: Learning-based Modal Sound Synthesis with Acoustic Transfer • 121:5

3D Sparse U-Net

Random
Vectors

Any
Vector

Vertex
to 

Voxel

Vertex
to 

Voxel

Voxel 
to 

Vertex

Voxel 
to 

Vertex

Eigen-
vectors

Eigen-
values

Eigen-
vectors

Eigen-
values

LOBPCG
For

Optimization

3×3×3
Conv.

3×3×3
Conv.

Batch
Norm

Batch
Norm

3D Sparse Linear Residual Block in U-Net

Rayleigh–
Ritz 

Method

3×3×3
Conv.

Assembled
Matrix

multiplication

Equivalentkernel element 
matrix

consistency

Fig. 2. (Top) Architecture of our vibration solver. 𝑘 random initial vectors are fed into the 3D sparse U-Net. The output vectors are concatenated with
random vectors and converted into the approximate eigenvectors and eigenvalues using the Rayleigh-Ritz method. LOBPCG will optimize The approximate
eigenvectors to further reduce errors. (Bottom left) Linear residual block in our U-Net. (Bottom right) The connection behind our network design: a 3 × 3 × 3
3D sparse convolution is equivalent to an assembled matrix with a corresponding element matrix.

can be ill-conditioned or rank deficient [Duersch et al. 2018]. We
use the SVQB algorithm [Duersch et al. 2018] to convert the gener-
alized eigenvalue problem of Equation 5 into a standard eigenvalue
problem, which can be solved by numerically stable method.

Since Rayleigh-Ritz method is critical to our approach, we provide
the validation experiments in Appendix A.3.

Loss function is also a critical part of the self-supervised training
strategy.When the Ritz pairs (Λ̂, SÛ) is solved, we denote the approx-
imate eigenvalues as Λ̂ = 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, ..., 𝜆𝑘 } and the approximate
eigenvectors as SÛ = [v̂1, v̂2, ..., v̂k]. The loss function is defined as:

ℓ (Λ̂, SÛ) = 1
𝑘

𝑘∑︁
𝑖=1

| |Kv̂i − 𝜆𝑖Mv̂i | |2
( | |K| |2 + |𝜆𝑖 | | |M| |2) | |v̂i | |2

+ 𝛾 1
𝑘

𝑘∑︁
𝑖=1

|𝜆𝑖 | , (6)

where 𝛾 is a manually set hyper-parameter. The left item of Equa-
tion 6 is the residual-based error defined in the convergence criterion
of LOBPCG [Duersch et al. 2018]. Reducing this residual-based error
increases the accuracy of the solved eigenvectors. The right item
of Equation 6 is the average of the solved eigenvalues. Reducing
the average eigenvalue can facilitate resolving the first 𝑘 smallest
eigenvalues for modal analysis.
Our U-Net is trained with a fixed material and voxel size. The

eigenvectors and eigenvalues of an object with different materials
or voxel sizes can be solved by linearly scaling the results obtained
by our vibration solver. For more details about the scaling, please
refer to Jin et al. [2020]; Zheng and James [2010].

4.2.4 Warm starting to LOBPCG. In principle, a neural network-
based method does not have the characteristic of convergence
through iterations like traditional numerical solutions. Therefore,
the predicted values from our vibration solver will inevitably pro-
duce some errors. To reduce the accuracy loss and further improve
sound quality, we design a mixed vibration solver that uses the
results of our learning-based module to warm-start an LOBPCG

solver [Duersch et al. 2018; Knyazev 2001]. These two modules can
be integrated naturally because the output of our network is consis-
tent with the representation of standard finite element model (see
Sec. 4.1 and 4.2.1).

Since our network can yield outputs close to the actual eigenvec-
tors, the warm-started LOBPCG solver tends to converge quickly. In
other words, our mixed vibration solver can obtain more accurate
results quickly, as shown in Sec. 7.

5 RADIATION SOLVER: LEARNING FFAT MAP
We propose a learning-based radiation solver for the acoustic trans-
fer problem introduced in Sec. 3.2. Our radiation network predicts
the acoustic transfer function from the surface displacement and
frequency of a vibration mode. We select the scalar-valued FFAT
Map as the compressed representation of the acoustic transfer func-
tion. The scalar-valued FFAT Map compresses the acoustic transfer
function of a mode into a 2D image as [Chadwick et al. 2009] :

𝜓𝑖 (𝜃, 𝜙)
𝑟

≈ |𝑝𝑖 (x) | , (7)

where 𝜃, 𝜙 are spherical coordinates with the center of the object
as the origin, and 𝑟 is the distance from x to the origin. The pixel
value of (𝜃, 𝜙) position in the 2D image is 𝜓𝑖 (𝜃, 𝜙). We provide
the details of the scalar-valued FFAT Map in Appendix A.4. In the
following subsections, we first highlight the connection between
the convolution neural network and a standard numerical method,
i.e., BEM. Next, we introduce our end-to-end radiation network for
fast precomputation of the acoustic transfer function.

5.1 Network and Radiation Solver
BEM is a standard method used to compute the acoustic transfer
function. We first analyze the intrinsic connections between the

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



121:6 • Xutong Jin, Sheng Li, Guoping Wang, and Dinesh Manocha

Decoder

Vibration
Frequency

Voxel Coordinates
+Displacement Vectors
+Surface Binary Vectors FC FFAT map 

Norm

Encoder

Small Size Encoder

Global
Pool

Normalized
FFAT map

FFAT map

Sig-
moid

FC ReLU FC

3×3×3
Conv.

3×3×3
Conv.

Batch
Norm

RELU RELUBatch
Norm

3D Sparse Residual Block in Encoder

2×2
ConvTranspose

Batch
Norm

RELU

2D Block in Decoder

Fig. 3. (Top) Architecture of our radiation solver. It consists of two branches for normalized FFAT Map and FFAT Map norm. In each branch, the encoder
consists of a 3D sparse ResNet for encoding the features of surface voxels and two fully connected layers for encoding vibration frequency. Two encoder parts
fuse by multiplying their results. The ResNet consists of several residual blocks (Bottom left). The decoder for normalized FFAT Map consists of several 2 × 2
transpose convolutional blocks (Bottom right). In addition, the decoder for FFAT Map norm is a fully connected layer.

Fig. 4. Distribution of FFATMap norms in our dataset. The surface vibration
vectors are normalized to a unit norm before being fed to BEM to solve FFAT
Maps. We trained our network to predict the norm in log scale due to its
distribution’s smoothness.

neural network and the BEM, and use that to design our radiation
network.
Assume that the surface acoustic transfer value p𝑠𝑢𝑟 𝑓 and its

normal derivative 𝜕𝒏p𝑠𝑢𝑟 𝑓 on a surface are known. The acoustic
transfer values p𝑜𝑢𝑡𝑒𝑟 on an outer sphere is needed for FFAT Map
(see Figure 11 in Appendix) and can be computed by the potential
operators [Betcke and Scroggs 2021; Liu 2009]:

p𝑜𝑢𝑡𝑒𝑟 = V𝜕𝒏p𝑠𝑢𝑟 𝑓 − Kp𝑠𝑢𝑟 𝑓 , (8)

where V,K are the single layer potential operator and the dou-
ble layer potential operator, respectively. Fast Multipole Method
(FMM) [Liu 2009] can be applied to compute the projection (V and
K) from the object surface to the outer sphere. The element-to-
element interactions in the conventional BEM can be analogized
to cell-to-cell interactions within a hierarchical tree structure of
cells containing groups of elements. Therefore, there is an intu-
itive connection between a neural network with a downsampling-
upsampling architecture and this sound radiation process.

Specifically, the downsampling part of our network is inspired by
the particles to multipole (P2M) and multipole to multipole (M2M)

processes in FMM. We observe two important features of FMM: (i)
shift-invariance, since interactions depend on the relative position
between elements; (ii) spatial locality, since nearby elements are
aggregated into cells. They are also features of 3D sparse convolution
network, as described in [Choy et al. 2019]. Therefore, we apply 3D
sparse convolution as the downsampling part of our network.

Similarly, the upsampling part is inspired by the local to local (L2L)
and local to particles (L2P) computations in FMM. Shift-invariance
and spatial locality are also applicable. Therefore, we apply 2D
transpose convolution as the upsampling part of our network.
It turns out that 𝜕𝒏p𝑠𝑢𝑟 𝑓 can be computed from the surface vi-

bration, whereas p𝑠𝑢𝑟 𝑓 is still unknown. Without considering the
fictitious frequency [Li et al. 2015; Liu 2009], p𝑠𝑢𝑟 𝑓 can be solved
from the linear equations of the conventional boundary integral
equation (CBIE) [Betcke and Scroggs 2021; Liu 2009]:

( 1
2

I + K)p𝑠𝑢𝑟 𝑓 = V𝜕𝒏p𝑠𝑢𝑟 𝑓 , (9)

where I,V,K are identity operator, single layer boundary opera-
tor, and double layer boundary operator, respectively. V is derived
from Green’s function 𝐺 (𝒙;𝒚) = 𝑒𝑖𝑘 ∥𝒙−𝒚∥

4𝜋 ∥𝒙−𝒚 ∥ , and K is derived from
𝜕𝐺 (𝒙 ;𝒚)
𝜕𝒏(𝒚) . 𝐺 (𝒙 ;𝒚) and 𝜕𝐺 (𝒙 ;𝒚)

𝜕𝒏(𝒚) are inversely proportional to the rel-
ative distance from 𝒙 to 𝒚, which shows the spatial locality and
shift-invariance between the elements of 𝜕𝒏p𝑠𝑢𝑟 𝑓 and the elements
of p𝑠𝑢𝑟 𝑓 . We infer that 3D sparse convolution can also handle the
translation from 𝜕𝒏p𝑠𝑢𝑟 𝑓 to p𝑠𝑢𝑟 𝑓 .

5.2 Radiation Network Architecture
As analyzed above, we design a 3D sparse ResNet [He et al. 2016]
as the encoder and transposed convolutions as the decoder to trans-
form the surface vibration information to the scalar-valued FFAT
Map. The overall architecture is illustrated in Figure 3.

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



NeuralSound: Learning-based Modal Sound Synthesis with Acoustic Transfer • 121:7

5.2.1 Inputs & Outputs. The input consists of (i) features of surface
voxels and (ii) vibration frequency. The features of each surface
voxel are concatenated by three components: normalized coordinate,
vibration displacement of a voxel (averaging the displacement of
8 vertices), and a binary vector (6 elements). The binary vector
indicates whether each face of a voxel is exposed to the outer space.
The vibration frequency is normalized by min-max scaling in Mel
scale (corresponding to 20Hz - 20000Hz).

We also design the output formulation to improve the quality of
predicted scalar-valued FFAT Map. Note that the overall radiation
efficiencies of different modes are different [Cremer and Heckl 2013].
As mentioned in James et al. [2006], some modes are thousands of
times more radiative than others. Therefore, the matrix norm of
the FFAT Map (represented as a matrix) corresponding to different
modes is different, as shown in Figure 4. This large difference can
lead to difficulties in network training. Therefore, we train the net-
work to predict the matrix norm in the log scale (i.e., FFAT Map
norm) and the normalized FFAT Map separately. In other words, the
network is trained to predict the overall radiation efficiency and
directional difference separately.

5.2.2 Network Architecture & Loss Function. There are two branches
in our radiation network to predict the normalized FFAT Map and
the FFAT Map norm (see Figure 3). Each branch is an encoder-
decoder-based architecture. The encoders in both branches have the
same architecture, which mainly consists of a 3D sparse ResNet and
two fully connected layers with activation functions. The ResNet
encodes features of surface voxels and the fully connected layers
encode vibration frequency. These two information codes are fused
by multiplication. The encoder in FFAT Map norm branch is de-
signed with fewer parameters (similar structure, fewer layers and
channels) to prevent over-fitting. The decoder in normalized FFAT
Map branch mainly consists of some 2D transpose convolutions,
and the decoder in FFATMap norm branch is a fully connected layer.
The loss function used to train the network is Mean Squared Error
(MSE). The MSE loss of normalized FFAT Map and the MSE loss of
FAT Map norm are summed up to compute the final loss.

5.2.3 Post-processing. The scalar-valued FFATMap is reconstructed
by multiplying the FFAT Map norm with the normalized FFAT
Map. Note that the radiation network is trained with a fixed voxel
size. Nonetheless, our approach is applicable to any voxel size be-
cause the changes in acoustic transfer function caused by variation
of voxel sizes can be handled in the same manner as Zheng and
James [2010]. Specifically, if the geometry of an object is scaled
by 𝛾 , the multipole coefficient 𝑀𝑚

𝑛 for acoustic transfer will be
scaled as 𝑀𝑚

𝑛 → 𝛾−5/2𝑀𝑚
𝑛 . Similarly, our FFAT Map is scaled as

Ψ → 𝛾−5/2Ψ.

6 NETWORK IMPLEMENTATION

6.1 Dataset
The 3D models we use for training and evaluation come from the
ABC Dataset [Koch et al. 2019], which is a large CAD model dataset
for geometric deep learning. We use ∼100K 3D models and voxelize
these models at a resolution of 32× 32× 32, so that the training time
and GPU memory occupied are feasible.

For the vibration solver, we use the ceramic material as represen-
tative and fix the unit voxel size at 0.5cm. For each 3D model, we
precompute the stiffness matrix and mass matrix as well as voxel-
to-vertex projection matrix and vertex-to-voxel projection matrix.
These four matrices of the ∼100K model are saved as the dataset for
our vibration solver. We classify the dataset into a training set, a
test set, and a validation set with a ratio of 4:1:1.
For the radiation network solver, we fix the resolution of the

FFAT Map at 64 × 32. For each 3D model, we use the BEM solver
Bempp-cl [Betcke and Scroggs 2021] to compute FFAT Maps of five
randomly selected vibration modes. The surface vibration vectors
are normalized before the BEM solution. To handle more general
cases, we assign each 3D model a random material (one each for
ceramic, glass, wood, plastic, iron, polycarbonate, steel, and tin).
The input information and FFAT Maps of ∼100K models are saved
as the dataset for our radiation solver. We classify the dataset into a
training set, a test set, and a validation set with a ratio of 4:1:1.

6.2 Network Training
We implement our networks on Minkowski Engine [Choy et al.
2019] and Pytorch.We optimize the networks using ADAM [Kingma
and Ba 2015]. The learning rates of our networks are all 1𝑒-4, and
the learning rate is reduced to 0.5 times every 20 epochs. For the
vibration solver, 𝑘 = 20 random starting vectors of each 3D object
are concatenated into a mini-batch (i.e., the batch size is 20, and one
object constitutes each mini-batch). To reduce training time cost,
we generate a random subset (1/20 of the full dataset) for training at
each epoch. For the radiation solver, we set the batch size to 16. We
train 100 epochs for both networks and finally store the network
parameters with the smallest loss in the validation set.

7 RESULTS
We highlight our experimental results along with those of the stan-
dard numerical solver and other comparable methods to evaluate
the accuracy of our approach. The rendered sounds are shown in
the video.

7.1 Sound Vibration Solver

Table 1. Performance evaluation (average across the test dataset) of Lanczos,
LOBPCG, and our solver. The first 20 modes are solved for each object.

Method Conv. Error Freq. Error Time
Lanczos (CPU) 1.7𝑒-6 1.7e-6 15.32s
LOBPCG (GPU) 1.4𝑒-7 0 2.71s
Lanczos (CPU) N/A N/A 0.03s
LOBPCG (Reduced) 0.165 0.90 0.03s
Ours 0.008 0.10 0.03s

We compare different vibration solvers on a randomly-selected
subset (100 models) from the test dataset. Two classic numerical
methods include: (i) standard Lanczosmethods [Lanczos 1950; Lehoucq
et al. 1997], which is implemented in ARPACK on a CPU (Intel i7-
8700k) [Lehoucq et al. 1997]; (ii) standard LOBPCG [Duersch et al.
2018], which is a iterative solver and implemented using Pytorch on

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



121:8 • Xutong Jin, Sheng Li, Guoping Wang, and Dinesh Manocha

Table 2. Performance evaluation (average across the test dataset) of Lanczos,
LOBPCG, Rayleigh-Ritz (R-R), and our mixed vibration solver in terms of
different error bounds (𝜀).

Method 𝜀 < 0.01 𝜀 < 0.005 𝜀 < 0.001

Lanczos (ILU) 10.75s 12.13s 13.52s
Lanczos (Iterative) 9.75s 12.78s 14.52s
R-R (𝑘 = 1, 𝐽 = 20) 7.82s 8.14s 9.03s
R-R (𝑘 = 20, 𝐽 = 1) 7.56s 7.77s 8.66s
R-R (𝑘 = 20, 𝐽 = 20) 8.05s 8.31s 9.13s
LOBPCG (Reduced) 0.20s 0.30s 0.50s
Our Mixed Solver 0.03s 0.12s 0.29s

a GPU (Nvidia RTX 3080Ti). Three metrics are used to measure the
performance: residual-based convergence error (left term of Equa-
tion 6), Mean Square Error of frequency in Mel scale (divided by the
square of the Mel scale length corresponding to 20Hz-20000Hz), and
the running time cost. The mean value of objects’ first 20 modes on
these metrics is evaluated for our test set.
We first show two numerical algorithms’ performance on con-

vergence in the upper part of Table 1. Both Lanczos and LOBPCG
can converge, while LOBPCG is much faster, and this result also
confirms the conclusion of Arbenz et al. [2005]. The converged
numerical results are used as the ground truth, we then evaluate
the performance of our learning-based solver in the lower part of
Table 1. Our solver completes network inference within 0.03s to re-
solve the vibration with high accuracy in terms of both convergence
error and frequency error. Using the same time budget, LOBPCG
(Reduced) obtains far inaccurate results with a few iterations, while
Lanczos can not produce any output.
As a warm-start initialization, our learning-based solver is inte-

grated with LOBPCG (called mixed solver), we made further valida-
tion and highlighted the performance of our mixed solver in Table 2.
We compared our mixed solver with others in terms of time cost to
reach different level of accuracy, i.e., different error bounds.
Standard Lanczos generally takes most of the time to perform

the LU decomposition of the stiffness matrix, and it is not suitable
for iterative refinement. Therefore, we provide two generally-used
alternatives: (i) replacing the LU decomposition with incomplete
LU decomposition (ILU), denoted as Lanczos (ILU), wherein the
expected fill ratio upper bound of ILU decomposition is fine-tuned
for different error bounds; (ii) computing the matrix inverse by an
iterative solver instead of direct sparse solver, denoted as Lanczos
(Iterative), wherein the number of Lanczos iterations, and number
of iterative solver iterations, is fine-tuned for different error bounds.
In addition to LOBPCG and Lanczos, Rayleigh-Ritz algorithm

(abbr. R-R) is also used as a baseline: starting with 𝑘 random vec-
tors x1, ..., xk, the standard krylov space is spanned by vectors
(K−1M) 𝑗xi, where 𝑖 = 1, ..., 𝑘 and 𝑗 = 1, ..., 𝐽 . Then the Rayleigh-Ritz
algorithm is applied in this space to solve approximate eigenvectors.
As the first 20 modes should be figured out in our experiments, we
set three group settings for test: (𝑘 = 1, 𝐽 = 20), (𝑘 = 20, 𝐽 = 1), and
(𝑘 = 20, 𝐽 = 20). The Rayleigh-Ritz algorithm is GPU-accelerated
except for the LU decomposition of K. Like our mixed solver, the

Rayleigh-Ritz algorithm works as a warm-start and then is further
optimized by LOBPCG.

As can be seen from Table 2, our mixed solver consistently shows
superior performance over other approaches (covering various set-
tings) using different error bounds. Notwithstanding being inferior
to our approach, LOBPCG still significantly outperforms the Lanc-
zos and Rayleigh-Ritz algorithms. Our mixed solver’s speedup over
LOBPCG decreases as the tolerance tightens (to ∼0.001) due to more
iterations of LOBPCG being required. Based on the above results, we
choose LOBPCG (a stronger baseline) to compare the performance
in the following sections.

7.1.1 Visualization of Results. We draw a scatter plot to illustrate
that our mixed vibration solver results in more accurate frequencies
than standard LOBPCG in the same time budget, especially for low-
frequency modes (see Figure 5). Generally, a user is perceptually
sensitive to the low-frequency modes with small damping coeffi-
cients than that of high-frequency. As a result, our mixed vibration
solver can significantly improve the quality of sound synthesized
within a limited time budget.

We denote the accurate eigenvectors as V and the predicted eigen-
vectors as V̂ and plot their relationship matrix V𝑇 MV̂ for different
numbers of iterations. Figure 6 shows the relationship matrices
within the time budget and convergence curves of our mixed vi-
bration solver and standard LOBPCG. The results demonstrate that
our mixed solver can obtain higher accuracy and result in better
convergence than LOBPCG.

LOBPCGOur mixed solver 

Fig. 5. Visualization of mode frequencies computed by our mixed vibration
solver vs. LOBPCGusing same time budget (0.4s). The horizontal and vertical
axes represent actual and predicted frequency in Mel scale, respectively.

Table 3. Performance evaluation (average across the test dataset) of our
vibration solver and standard LOBPCG with 80 modes for each object. Our
approach results in significantly lower error than LOBPCG (Reduced) within
a similar time budget.

Method Conv. Error Freq. Error Time
LOBPCG (GPU) 1.9𝑒-8 0 6.52s
LOBPCG (Reduced) 0.210 0.33 0.11s
Ours 0.024 0.04 0.10s

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



NeuralSound: Learning-based Modal Sound Synthesis with Acoustic Transfer • 121:9

Fig. 6. Performance evaluation of our mixed vibration solver and LOBPCG, visualized using relationship matrices and convergence curves of different objects
with different materials. Our mixed solver results in a significant improvement in terms of convergence.

7.1.2 Varying Number of Modes or Different Resolution. In general,
a larger number ofmodes can enrich the sound quality. Our vibration
solver also works with different numbers of modes by adjusting
the number of initial vectors for each 3D object. We conduct an
experiment to measure the efficiency and accuracy of our vibration
solver with a larger number of modes. Table 3 shows the results of
our solver and standard LOBPCGwith 80modes for each object. This
vibration solver is retrained with 80 initial vectors and still obtains
higher accuracy than LOBPCG (Reduced) with fewer iterations using
the same time budget. As compared to the performance obtained
with 20modes, as shown in Table 1, one network inference to resolve
80 modes can improve the mean frequency accuracy (error 0.10 →
0.04). This may be largely because high-frequency modes are less
discriminatively perceptible at Mel scale.

Rather than using a resolution of 32×32×32, our vibration solver
can also be used for higher resolution models without retraining.
This is a benefit of the shift-invariance of the convolutional network
and the consistency between a finite element model and a network,
as highlighted in Sec. 4.1. Table 4 shows the results of our vibration
solver and LOBPCG using the resolution of 64 × 64 × 64 within
same time budget. Our vibration solver still demonstrates superior
performance over the LOBPCG, regardless of the resolution. How-
ever, higher resolution data should take more time to complete one
network inference, as shown in Table 4 and Table 1.

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



121:10 • Xutong Jin, Sheng Li, Guoping Wang, and Dinesh Manocha

Table 4. Performance evaluation (average across the test dataset) of our
vibration solver and LOBPCG with a resolution of 64 × 64 × 64.

Method Conv. Error Freq. Error Time
LOBPCG (GPU) 8.8𝑒-7 0 12.71s
LOBPCG (Reduced) 0.134 1.26 0.12s
Ours 0.004 0.30 0.11s

7.2 Sound Radiation Solver
We compare the performance of the radiation solver used in our
approach with (i) BEM and (ii) a random selection method. This
comparison is also made on a subset (100 models) randomly selected
from the test dataset. Note that BEM’s performance is less sensitive
to the number of iterations. In most cases, the construction of the
boundary integrals and the evaluation of FFAT Map dominate the
costs [Wang and James 2019]. Furthermore, KleinPAT [Wang and
James 2019] is not an effective solution for our cases because the
spatial range of interest is generally large (3× ∼ 27× object size),
and the time-domain method requires high-resolution voxel grids,
which can increase the time-stepping costs significantly. As far as
we know, the only method with a comparable speed is the ran-
dom selection method, i.e., a scalar-valued FFAT Map is randomly
selected from the training dataset. We use the latest Bempp-cl li-
brary [Betcke and Scroggs 2021] as the underlying BEM solver, and
various operators run on a GPU to achieve the best performance.
Our radiation network runs on the same GPU.
Three metrics are used to measure the performance: MSE of

the normalized FFAT Map, MSE of the log FFAT Map norm, and
the running time cost. Table 5 shows that our radiation solver can
achieve high accuracy quickly with approximately ∼2200× speedup
over a numerical solver to solve FFAT Maps of 20 modes, i.e., 0.04s
compared to 88s of BEM. The user study in Sec. 8 also shows that the
sound quality obtained by our radiation solver is close to the ground
truth. Our extensive comparison (near spatial range radiation) can
be found in the Appendix A.5.

Table 5. Performance evaluation (average across the test dataset) of BEM,
random selection method, and our radiation solver. FFAT Maps of the first
20 modes are solved for each object.

Method Normalized
FFAT Map MSE Log Norm MSE Time

BEM 0 0 88s
Random Selection 0.63 4.76 0s
Ours 0.06 0.07 0.04s

7.2.1 Visualization of Results. We similarly visualize the normal-
ized FFAT Map as KleinPAT [Wang and James 2019] and the dis-
tribution of FFAT Map norm (in log scale) for several objects, to
compare our radiation network solver with BEM. Our results are
similar to the results of BEM (see Figure 7). Overall, our radiation
solver works better at low frequencies than at high frequencies.
Furthermore, we observe that the FFAT Map Norm distribution can
significantly affect the pitch of a sound, which humans are sensitive

to, so its accuracy is critical. Our radiation solver can accurately
predict the FFAT Map Norm distribution.

7.3 Extensive Cases
Our learning-based sound synthesis approach enables the efficient
synthesis of different desirable sound effects. We demonstrate some
results with comparisons and applications. All the animations are
generated using the physically-based simulator Pybullet [Coumans
and Bai 2016] except the Jumping Jelly, which is an artistically
designed animation. The first three 3D models are used in Wang
and James [2019], and the Tin Bell model is from James et al. [2006].
Other models are designed using Blender software.

Fast Editable Shapes: To achieve certain sound characteristics,
the user might rely on a trial-and-error approach to tune the mate-
rial parameters [Li et al. 2015], and a fast sound synthesis method
can shorten the tuning cycle. Our learning-based sound synthesis
approach can not only shorten the material tuning cycle but also
the model shape tuning cycle. Each adjust-synthesis cycle time is
less than 2 seconds in the "Little Star" benchmark (see Figure 8f).

Fast Precomputation: Precomputation will needs more time to
handle more objects. Our learning-based sound synthesis approach
can significantly accelerate the computation. It takes less than one
minute to precompute all the sound vibration and radiation data by
our approach for a scene with 36 letter objects (see Figure 8h). On
the other hand, numerical solvers (standard LOBPCG + BEM) takes
about one hour for sound synthesis methods.

Artistic Effect Design: In Li et al. [2015], user-specific non-physical
time-varying frequencies are used to generate interesting artistic
effects in soft-body animation. By approximating the soft body
model in each frame as a different object, our learning-based sound
synthesis approach can quickly generate interesting sound effects
synchronized with the animations (see Figure 8g).

8 PERCEPTUAL EVALUATION
We conducted a preliminary user study to evaluate the sound quality
generated by our learning-based sound synthesis approach. Our
goal was to verify that our approach generates plausible sounds
similar to the reference sounds. A total of 106 subjects (each with
normal hearing) were enrolled in this experiment, and each subject
used a pair of headphones for sound playback. Each user performed
two tests (vibration test and radiation test):

Vibration test: Five videos, as shown in a-e of Figure 8, cover a
variety of materials, including a ceramic plate (20 modes), a wood
bowl (40 modes), a plastic bunny (20 modes), a tin bell (80 modes),
and a glass vase (17 fractures, 20 modes each fracture). In each video
clip, three sound vibration solvers are applied to generate sound
consistent with the animation: (i) LOBPCG (ground truth as the
reference), (ii) our mixed vibration solver, and (iii) LOBPCG (reduced)
using the same time budget, with (ii) as the baseline. During this
test, the reference sound (i) was played first, then (ii) and (iii) were
played in a random order, and a counter balance was used to control
the order effect. The subjects were asked to measure the similarity
between (ii) and (i) as well as between (iii) and (i) using a 7-point

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



NeuralSound: Learning-based Modal Sound Synthesis with Acoustic Transfer • 121:11

Normalized FFATMapModel

Ours

BEM

FFATMap Norm

Metalic

Mode 0 Mode 2 Mode 4

Ours

BEM

Ours

BEM

Ours

BEM

Plastic

Metallic

Metallic

Wood

Frist 10 Modes

Fig. 7. Results of our radiation solver and BEM show very similar structures. Normalized FFAT Map of mode 0, 2, 4 and the FFAT Map norm of the first 10
modes in log scale are plotted for comparison.

Likert scale ranging from 1 (no similarity at all) to 7 (no difference
at all). Note that the subject did not have any prior knowledge about
which one from (ii) and (iii) was produced by our approach.

Radiation test: Sound benchmarks from the vibration test were
also used to evaluate the radiation solver. In each video clip, three
sound radiation solvers were applied to generate sound consistent
with the animation: (i) BEM (ground truth as the reference), (ii) our
radiation solver, and (iii) the random selection method described
in Sec. 7.2 as the baseline. During this test, the reference sound (i)
was played first, then (ii) and (iii) were played at random, and a
counter balance was used to control the order effect. The subjects
were asked to measure the similarity between (ii) and (i) as well as

(iii) and (i) using the same Likert scale used in the vibration test.
Note that the subject did not have any prior knowledge about which
one from (ii) and (iii) was produced by our approach.
The descriptive statistical analysis for different methods and

scenes is shown in Table 6. We show the mean value with stan-
dard deviation of similarity obtained from the vibration test and
the radiation test. Our approach shows very high fidelity to the
ground truth (averaging 6.29 for sound vibration and 6.31 for sound
radiation, respectively) and significantly outperforms the baseline
in both the vibration and radiation tests.
As to the performance differences across all five scenes, our vi-

bration solver obtain a significantly lower score on scene e (glass
fracture) than other scenes (𝑝 < .001 when compared with scenes a

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



121:12 • Xutong Jin, Sheng Li, Guoping Wang, and Dinesh Manocha

(a) Ceramic Plate (b) Wood Bowl (c) Plastic Bunny (d) Tin Bell

(e) Glass Vase Fracture (f) Little Star (g) Jumping Jelly (h) Letters

Fig. 8. (a, b, c, d, e) We compare our approach with other baselines on 3 drop scenes, a ceramic plate (20 modes), a wood bowl (40 modes), and a plastic bunny
(20 modes), as well as a ringing bell scene (80 modes) and a glass fracture scene (17 fractures, each 20 modes). (f) We play the melody "Little Star" by tapping
bowls of different shapes and sizes. The vibration and radiation data after editing the model are solved by our approach. (g) Our approach can generate
artistic sound effects with time-varying frequencies and acoustic transfer in a soft body animation. (h) Our approach enables fast sound synthesis for scenes
with multiple moving objects, where we use 20 modes for each object.

Table 6. Mean value with standard deviation obtained from the vibration
test and the radiation test, respectively. Each scene and test had all 106
subjects. Our approach shows very high fidelity to the ground truth and
significantly outperforms the baseline in both the vibration and radiation
tests.

Scene Vibration Radiation
Ours Baseline Ours Baseline

a 6.55 ± 0.69 1.95 ± 1.11 6.65 ± 0.66 2.53 ± 1.49
b 6.49 ± 0.73 2.53 ± 1.42 6.15 ± 1.01 5.02 ± 1.71
c 6.30 ± 0.87 4.45 ± 1.75 6.58 ± 0.74 3.75 ± 1.68
d 6.46 ± 0.79 3.53 ± 1.85 5.77 ± 1.15 3.45 ± 1.80
e 5.67 ± 1.45 4.03 ± 1.73 6.39 ± 0.84 5.03 ± 1.61

ALL 6.29 ± 1.00 3.30 ± 1.85 6.31 ± 0.95 3.96 ± 1.92

- d), and our radiation solver obtain a lower score on scene d (tin
bell) than others scenes (𝑝 = .055 when compared with scene b, and
𝑝 < .001 when compared with scenes a, c, e).
To further evaluate the difference between our approach and

the baselines, we employed two-way repeated measures ANOVAs
(Analysis of Variance) with the within-subjects factormethod (ours,
baselines) and scene (a - e of Figure 8) for vibration and radiation
individually.

Vibration: There is a significant main effect of method (𝐹 (1, 105)
= 442.432, 𝑝 < .001), a significant main effect of scene (𝐹 (4, 420)
= 42.154, 𝑝 < .001), and a significant interaction betweenmethod
and scene (𝐹 (4, 420) = 101.731, 𝑝 < .001) on participants’ scores. As
shown in the left side of Table 7, Bonferroni-adjusted comparisons
indicate that our vibration solver outperforms the baseline, i.e.,
LOBPCG (reduced), significantly in all five scenes.

Radiation: There is a significant main effect of method (𝐹 (1, 105)
= 365.844, 𝑝 < .001), a significant main effect of scene (𝐹 (4, 420)

Table 7. Simple effect of methods (ours vs. baseline) on scores in each test
scene (Bonferroni correction applied). Our approach achieves significantly
higher scores than baselines in both the vibration and radiation tests.

Scene Vibration Radiation
Mean Diff. 𝑝-value Mean Diff. 𝑝-value

a 4.594 <.001 4.123 <.001
b 3.962 <.001 1.132 <.001
c 1.849 <.001 2.821 <.001
d 2.934 <.001 2.321 <.001
e 1.642 <.001 1.358 <.001

= 71.225, 𝑝 < .001), and a significant interaction betweenmethod
and scene (𝐹 (4, 420) = 68.180, 𝑝 < .001) on participants’ scores. As
shown in the right side of Table 7, Bonferroni-adjusted comparisons
indicate that our radiation solver outperforms the baseline, i.e. the
random selection method, significantly in all five scenes.
Overall, the results show that the sounds synthesized by our

approach are much closer to the ground truth than the sounds
synthesized by the baselines.

9 CONCLUSION, LIMITATIONS, AND FUTURE
RESEARCH

We present a novel learning-based sound synthesis approach. We
design our vibration solver based on the connection between a 3D
sparse U-Net and the numerical solver based on matrix computa-
tions. Our vibration solver can compute approximate eigenvectors
and eigenvalues quickly. The accuracy of the results is further op-
timized by an optional LOBPCG solver (mixed vibration solver).
We design our radiation solver as an end-to-end network based on
the connection between convolution neural networks and BEM. We
evaluate the accuracy and speed on many benchmarks and highlight

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.



NeuralSound: Learning-based Modal Sound Synthesis with Acoustic Transfer • 121:13

the benefits of our method in terms of performance. Our approach
has some limitations. The hyperparameters used in our network
have not been fine-tuned. The vibration solver is not much faster
than the standard LOBPCG, especially under highly tight-tolerance
conditions. Despite good performance on some objects, our radia-
tion solver does not predict with good accuracy in high-frequency.
There are many avenues for future work. In addition to over-

coming these limitations, developing a neural network that can be
equivalent to the traditional iterative solution with fast convergence
is an interesting area of research. We need to evaluate our approach
on other benchmarks and complex scenarios, e.g., multi-contact of
multiple objects [Zhang et al. 2015] or frictional scenarios. A bet-
ter predictor in radiation for high frequencies can further improve
the quality of sound acoustic transfer. Finally, we would expect
to integrate and evaluate our method with learning-based sound
propagation algorithms [Ratnarajah et al. 2021; Tang et al. 2022]
and use these methods for interactive applications, including games
and VR.

ACKNOWLEDGMENTS
We thank Mr. Xiang Gu for his helpful suggestions on the user study.
This work is supported by the National Key R&D Program of China
(No. 2021YFF0500901) and NSFC of China (No. 62172013).

REFERENCES
Peter Arbenz, Ulrich L Hetmaniuk, Richard B Lehoucq, and Raymond S Tuminaro.

2005. A comparison of eigensolvers for large-scale 3D modal analysis using AMG-
preconditioned iterative methods. Internat. J. Numer. Methods Engrg. 64, 2 (2005),
204–236.

Timo Betcke and MatthewW Scroggs. 2021. Bempp-cl: A fast Python based just-in-time
compiling boundary element library. Journal of Open Source Software 6, 59 (2021),
2879.

Nicolas Bonneel, George Drettakis, Nicolas Tsingos, Isabelle Viaud-Delmon, and Doug
James. 2008. Fast modal sounds with scalable frequency-domain synthesis. In ACM
SIGGRAPH 2008 papers. 1–9.

William L Briggs, Van Emden Henson, and Steve F McCormick. 2000. A multigrid
tutorial. SIAM.

Jeffrey N Chadwick, Steven S An, and Doug L James. 2009. Harmonic shells: a practical
nonlinear sound model for near-rigid thin shells. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2009) 28, 5 (2009), 1–10.

Jeffrey N. Chadwick, Changxi Zheng, and Doug L. James. 2012. Precomputed Ac-
celeration Noise for Improved Rigid-Body Sound. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2012) 31, 4 (Aug. 2012).

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 2019. 4D Spatio-Temporal
ConvNets: Minkowski Convolutional Neural Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 3075–3084.

Perry R. Cook. 1995. Integration of Physical Modeling for Synthesis and Animation. In
Proceedings of the 1995 International Computer Music Conference, ICMC 1995, Banff,
AB, Canada, September 3-7, 1995. Michigan Publishing.

Erwin Coumans and Yunfei Bai. 2016. Pybullet, a python module for physics simulation
for games, robotics and machine learning. (2016).

Lothar Cremer and Manfred Heckl. 2013. Structure-borne sound: structural vibrations
and sound radiation at audio frequencies. Springer Science & Business Media.

Jed A. Duersch, Meiyue Shao, Chao Yang, and Ming Gu. 2018. A Robust and Efficient
Implementation of LOBPCG. SIAM Journal on Scientific Computing 40, 5 (2018),
C655–C676.

Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. 2018. 3d semantic
segmentation with submanifold sparse convolutional networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 9224–9232.

Benjamin Graham and Laurens van der Maaten. 2017. Submanifold Sparse Convolu-
tional Networks. arXiv preprint arXiv:1706.01307 (2017).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 770–778.

Doug L. James. 2016. Physically Based Sound for Computer Animation and Virtual
Environments. In ACM SIGGRAPH 2016 Courses (Anaheim, California) (SIGGRAPH
’16). Association for Computing Machinery, New York, NY, USA, Article 22, 8 pages.

Doug L James, Jernej Barbič, and Dinesh K Pai. 2006. Precomputed acoustic transfer:
output-sensitive, accurate sound generation for geometrically complex vibration
sources. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006) 25, 3 (2006),
987–995.

Xutong Jin, Sheng Li, Tianshu Qu, Dinesh Manocha, and Guoping Wang. 2020. Deep-
Modal: Real-Time Impact Sound Synthesis for Arbitrary Shapes. In Proceedings of
the 28th ACM International Conference on Multimedia (Seattle, WA, USA) (MM ’20).
Association for Computing Machinery, New York, NY, USA, 1171–1179.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In ICLR (Poster).

Stephen Kirkup. 2019. The boundary element method in acoustics: A survey. Applied
Sciences 9, 8 (2019), 1642.

Andrew Knyazev. 1997. New estimates for Ritz vectors. Mathematics of computation 66,
219 (1997), 985–995.

Andrew V Knyazev. 1998. Preconditioned eigensolvers—an oxymoron. Electron. Trans.
Numer. Anal 7 (1998), 104–123.

Andrew V Knyazev. 2001. Toward the optimal preconditioned eigensolver: Locally
optimal block preconditioned conjugate gradient method. SIAM journal on scientific
computing 23, 2 (2001), 517–541.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A
Big CAD Model Dataset For Geometric Deep Learning. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Cornelius Lanczos. 1950. An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators. United States Governm. Press Office Los
Angeles, CA.

Timothy R. Langlois, Steven S. An, Kelvin K. Jin, and Doug L. James. 2014. Eigenmode
Compression for Modal Sound Models. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2014) 33, 4 (Aug. 2014).

R. B. Lehoucq, D. C. Sorensen, and C. Yang. 1997. ARPACK Users Guide: Solution of
Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods.

Dingzeyu Li, Yun Fei, and Changxi Zheng. 2015. Interactive acoustic transfer approxi-
mation for modal sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2015) 35, 1 (2015), 1–16.

Shiguang Liu and Dinesh Manocha. 2020. Sound Synthesis, Propagation, and Rendering:
A Survey. arXiv preprint arXiv:2011.05538 (2020).

Yijun Liu. 2009. Fast multipole boundary element method: theory and applications in
engineering. Cambridge university press.

Ravish Mehra, Nikunj Raghuvanshi, Lakulish Antani, Anish Chandak, Sean Curtis, and
Dinesh Manocha. 2013. Wave-based sound propagation in large open scenes using
an equivalent source formulation. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2013) 32, 2 (2013), 1–13.

Hsien-Yu Meng, Zhenyu Tang, and Dinesh Manocha. 2021. Point-based Acoustic Scat-
tering for Interactive Sound Propagation via Surface Encoding. CoRR abs/2105.08177
(2021).

James F. O’Brien, Chen Shen, and Christine M. Gatchalian. 2002. Synthesiz-
ing Sounds from Rigid-Body Simulations. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (San Antonio, Texas) (SCA
’02). Association for Computing Machinery, New York, NY, USA, 175–181.

Dinesh K Pai, Kees van den Doel, Doug L James, Jochen Lang, John E Lloyd, Joshua L
Richmond, and Som H Yau. 2001. Scanning physical interaction behavior of 3D
objects. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. 87–96.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems. 5099–5108.

Nikunj Raghuvanshi and Ming C Lin. 2006. Interactive sound synthesis for large scale
environments. In Proceedings of the 2006 symposium on Interactive 3D graphics and
games. 101–108.

Anton Ratnarajah, Shi-Xiong Zhang, Meng Yu, Zhenyu Tang, Dinesh Manocha, and
Dong Yu. 2021. FAST-RIR: Fast neural diffuse room impulse response generator.
https://doi.org/10.48550/ARXIV.2110.04057

Zhimin Ren, Hengchin Yeh, and Ming C Lin. 2013. Example-guided physically based
modal sound synthesis. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2013) 32, 1 (2013), 1–16.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention. Springer, 234–241.

Atul Rungta, Carl Schissler, RavishMehra, Chris Malloy, Ming Lin, and DineshManocha.
2016. SynCoPation: Interactive synthesis-coupled sound propagation. IEEE transac-
tions on visualization and computer graphics 22, 4 (2016), 1346–1355.

Ahmed A Shabana. 1991. Theory of vibration. Vol. 2. Springer.
Auston Sterling, Nicholas Rewkowski, Roberta L Klatzky, and Ming C Lin. 2019. Audio-

material reconstruction for virtualized reality using a probabilistic damping model.
IEEE transactions on visualization and computer graphics 25, 5 (2019), 1855–1864.

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.

https://doi.org/10.48550/ARXIV.2110.04057


121:14 • Xutong Jin, Sheng Li, Guoping Wang, and Dinesh Manocha

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-
view convolutional neural networks for 3d shape recognition. In Proceedings of the
IEEE international conference on computer vision. 945–953.

Zhenyu Tang, Rohith Aralikatti, Anton Ratnarajah, and Dinesh Manocha. 2022. GWA:
A Large High-Quality Acoustic Dataset for Audio Processing. https://doi.org/10.
48550/ARXIV.2204.01787

Kees van de Doel and Dinesh K Pai. 1996. Synthesis of shape dependent sounds with
physical modeling. Georgia Institute of Technology.

Kees van den Doel, Paul G. Kry, and Dinesh K. Pai. 2001. FoleyAutomatic: Physically-
Based Sound Effects for Interactive Simulation and Animation (SIGGRAPH ’01).
Association for Computing Machinery, New York, NY, USA.

Jui-Hsien Wang and Doug L. James. 2019. KleinPAT: Optimal Mode Conflation for
Time-domain Precomputation of Acoustic Transfer. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2019) 38, 4, Article 122 (July 2019), 12 pages.

ZhirongWu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 2015. 3D shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
1912–1920.

Tianxiang Zhang, Sheng Li, Dinesh Manocha, Guoping Wang, and Hanqiu Sun. 2015.
Quadratic Contact Energy Model for Multi-impact Simulation. In Computer Graphics
Forum, Vol. 34. Wiley Online Library, 133–144.

Changxi Zheng and Doug L James. 2010. Rigid-body fracture sound with precomputed
soundbanks. In ACM SIGGRAPH 2010 papers. 1–13.

Changxi Zheng and Doug L James. 2011. Toward high-quality modal contact sound. In
ACM SIGGRAPH 2011 papers. 1–12.

A APPENDIX

A.1 Analogy Between Network and Matrix Computation
A.1.1 Assembled Matrix and 3D Sparse Convolution. Assuming a
finite element model with 𝑁 hexahedrons and 𝑀 vertices, an as-
sembled matrix (e.g. mass matrix or stiffness matrix) A ∈ R3𝑀×3𝑀

is built by assembling the element matrix Ae ∈ R24×24 for all hex-
ahedrons. A vector x ∈ R3𝑀 represents the displacements of all
vertices (in 𝑥,𝑦, 𝑧 directions). A equivalent form x′ ∈ R24𝑁 repre-
sents the displacements of all hexahedrons, where the displacement
of each hexahedron consists of the displacements of all its vertices.
The matrix-vector multiplication Ax has an equivalent form (Ax)′,
which satisfies:

(Ax)′u =
∑︁

i∈N(u)
Wu,ix′u+i , (10)

where x′u, (Ax)′u represents the displacement of the hexahedron
at u before and after multiplication, u ∈ Z3 is the 3D coordinate
of a hexahedron, N (u) = {(𝑥,𝑦, 𝑧) | − 1 ≤ 𝑥,𝑦, 𝑧 ≤ 1 , 𝑥,𝑦, 𝑧 ∈ Z}
is the set of coordinate offsets from the current hexahedron to the
neighboring hexahedrons (including itself), andWu,i ∈ R24×24 is the
transform matrix for the hexahedron at 𝑢 and the coordinate offset i.
When Wu,i is independent of u, Equation 10 can also be regarded as
the definition of 3D sparse convolution [Choy et al. 2019]. Assuming
the element matrix Ae is fixed, Wu,i is independent of u as:

Wi ( 𝑗, 𝑘) =
{
0 𝑉𝑒𝑟𝑡𝑒𝑥 ( 𝑗) ∉ 𝑉𝑜𝑥𝑒𝑙 (u + i)
Ae ( 𝑗 ′, 𝑘) 𝑉𝑒𝑟𝑡𝑒𝑥 ( 𝑗) ∈ 𝑉𝑜𝑥𝑒𝑙 (u + i)

(11)

where 𝑗 is the index of a vertex v𝑗 in the hexahedron at u, 𝑗 ′ is the
index of the vertex v′

𝑗
in the neighbor hexahedron u + i. v𝑗 and v′

𝑗

coincide in coordinates and 𝑘 is the index of any vertex in a hexahe-
dron. Therefore, the matrix-vector multiplication corresponds to a
3 × 3 × 3 sparse convolution.
We also conduct an experiment to validate that a 3×3×3 sparse

convolution is equivalent to an assembled matrix. We train a net-
work g (with one 3×3×3 3D sparse convolution, see bottom right of

Figure 2) with parameters 𝜃 on a dataset with 𝑁 objects by reducing
the mean relative error:

𝜃 = argmin
𝜃

1
𝑁

𝑁∑︁
𝑖=1

| |𝑔(x𝑖 ;𝜽 ) − A𝑖x𝑖 | |2
| |A𝑖 | |2 | |x𝑖 | |2

, (12)

where A𝑖 , x𝑖 are the assembled matrix and the random vector of
the 𝑖th object, respectively. For each type of assembled matrix (e.g.,
stiffness matrix for ceramic objects), we retrain the network and list
the mean relative error on the test set after 10 epochs in Table 8. The
result shows that this sparse convolution can be trained to represent
an assembled matrix with high accuracy and validates our analysis
in Sec. 4.1.

Table 8. Mean relative error between an assembled matrix and a 3×3×3
sparse convolution in test set. We choose the assembled matrix as mass and
stiffness matrices with different materials.

ceramic steel plastic glass
stiffness 7e-4 5e-4 6e-4 6e-4
mass 6e-4 7e-4 6e-4 7e-4

A.1.2 Inverse Assembled Matrix and Sparse U-Net. We conduct an
experiment to validate that a 3D sparse U-Net can approximate the
inverse of an assembled matrix. For a U-Net 𝑔 with parameters 𝜃 , we
train it on a dataset with 𝑁 objects by reducing the mean relative
error:

𝜃 = argmin
𝜃

1
𝑁

𝑁∑︁
𝑖=1

| |A𝑖𝑔(x𝑖 ;𝜽 ) − x𝑖 | |2
| |x𝑖 | |2

. (13)

Where A𝑖 , x𝑖 are the assembled matrix and the random vector of
the 𝑖th object. We train two types of U-Net respectively, including
a standard 3D sparse U-Net (with Relu activation) and a 3D sparse
linear U-Net (without nonlinear activation). We plot their mean
relative error in the test set for first 40 epochs, as shown in Figure 9.
The standard nonlinear U-Net cannot converge, while the linear
U-Net converges to a low error and validates our theoretical analysis
in Sec. 4.1.

0 5 10 15 20 25 30 35 40
Epoch

10
4

10
3

10
2

10
1

10
0

10
1

R
el

at
iv

e 
E

rr
or

Linear
Nonlinear

Fig. 9. Mean relative error of 3D sparse linear U-Net and nonlinear U-Net
in test set.

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.

https://doi.org/10.48550/ARXIV.2204.01787
https://doi.org/10.48550/ARXIV.2204.01787


NeuralSound: Learning-based Modal Sound Synthesis with Acoustic Transfer • 121:15

0 5 10 15 20 25 30 35 40
Epoch

0.855

0.860

0.865

0.870

0.875

0.880

R
el

at
iv

e 
E

rr
or

Test Error

Fig. 10. Mean relative error in test set of 3D sparse linear U-Net trained
without the Rayleigh-Ritz method.

A.2 Solving Eigenvectors in Krylov Subspace
In the generalized eigenvalue decomposition KU = MUΛ, the 𝑖th
eigenvector u𝑖 and eigenvalue 𝜆𝑖 (𝜆𝑖 > 0) satisfy Ku𝑖 = 𝜆𝑖Mu𝑖 . The
initial vector, b, can be written as a linear combination of all the
eigenvectors (assuming there are 𝑛 eigenvectors):

b =

𝑛∑︁
𝑖=1

𝑐𝑖u𝑖 , (14)

where 𝑐𝑖 is the linear coefficient. Multiplying the matrix K−1M to b,
then:

K−1Mb =

𝑛∑︁
𝑖=1

𝑐𝑖K−1Mu𝑖 =
𝑛∑︁
𝑖=1

𝑐𝑖

𝜆𝑖
u𝑖 . (15)

In modal analysis, the first 𝑘 smallest eigenvalues and corresponding
eigenvectors with respect to the human audible perception range
(usually 20HZ ∼ 20000HZ) are used. From Equation 15, the weight of
the eigenvector u𝑖 is re-scaled from 𝑐𝑖 to 𝑐𝑖

𝜆𝑖
. Therefore, eigenvectors

with larger eigenvalues will have smaller weights, and eigenvec-
tors with smaller eigenvalues will dominate the result of this linear
combination. Suppose there are 𝑘 items from multiplying the ma-
trix K−1M to different initial vectors: K−1Mb0,K−1Mb1, ...,K−1Mb𝑘 ,
then the Rayleigh–Ritz method [Knyazev 1997, 1998, 2001] can be
used to compute the first 𝑘 smallest approximate eigenvalues and
corresponding eigenvectors in the subspace 𝑆 = 𝑠𝑝𝑎𝑛{K−1Mb𝑖 }, 𝑖 =
1, 2, ..., 𝑘 . In addition to K−1M, other matrices (e.g.,

(
K − 𝜆M

)−1
M

for any 𝜆) can also generate a subspace to compute the approximate
eigenvectors in a similar manner.

A.3 Effectiveness of Using Rayleigh–Ritz Method
We add an experiment to validate the function of Rayleigh–Ritz
method by taking it out as an ablation study. Specifically, we pre-
compute the first 20 eigenvectors of𝑁 object in our dataset. Thenwe
train a 3D linear sparse U-Net 𝑔 with parameters 𝜃 on this dataset by
reducing the mean relative error between the accurate eigenvectors
(ground-truth) and the predicted eigenvectors:

𝜃 = argmin
𝜃

1
𝑁

𝑁∑︁
𝑖=1

1
20

20∑︁
𝑗=1

| |𝑔(x𝑖, 𝑗 ;𝜽 ) − y𝑖, 𝑗 | |2
| |y𝑖, 𝑗 | |2

, (16)

where y𝑖, 𝑗 , x𝑖, 𝑗 are the 𝑗th ground-truth eigenvector and the 𝑗th
random vector of the 𝑖th object. We plot the mean relative error in
test set for first 100 epochs in Figure 10. Without the Rayleigh–Ritz

Table 9. Performance evaluation of BEM, random selection method, and
our radiation solver for small spatial range radiation.

Method Normalized
FFAT Map MSE Log Norm MSE Time

BEM 0 0 88s
Random Selection 0.68 4.68 0s
Ours 0.08 0.08 0.04s

method, the 3D U-Net can only converge to a result (error ≈ 0.85)
slightly better than a zero vector (error = 1).

A.4 Scalar-valued FFAT Map
FFAT Maps can perform fast transfer rendering [James 2016] and
can be efficiently compressed [Wang and James 2019].

𝑥! 𝜓(𝜃, 𝜙)

Fig. 11. Illustration of the scalar-valued FFAT Map. The values in the map
are estimated by the least square method for the sample points.

Our scalar-valued FFAT Map is defined as follows. Acoustic trans-
fer function 𝑝𝑖 (x) describes the sound pressure at position x gen-
erated by the vibration of the 𝑖th mode with unit amplitude. We
use a function𝜓𝑖 to approximate the directionality information of
|𝑝𝑖 (𝒙) |, and we use 1/𝑟 to approximate the attenuation of the trans-
fer amplitude as the radial distance grows, as shown in Equation 7.
𝜃, 𝜙 are the coordinates in the spherical coordinate system. When
we shoot a ray from 𝑥0 at an angle (𝜃, 𝜙), this ray will intersect
with 𝑁𝑠 spheres with different radii. The value of 𝜓𝑖 (𝜃, 𝜙) can be
determined by the least square method based on the values of these
intersection points (see Figure 11). We set 𝑁𝑠 = 3, and the radii of
these three spheres are computed as 𝑅𝑖 = (3𝑎)𝑖 , 𝑖 = 1, 2, 3, where
𝑎 is the longest side of the bounding box. The scalar-valued FFAT
Map Ψ can be computed via a uniform sampling of (𝜃, 𝜙) space and
used as the ground-truth for our radiation network solver.

A.5 Near Spatial Range Radiation
As mentioned in Sec. A.4, our scalar-valued FFAT Maps are com-
puted with three spheres of radii 𝑅𝑖 = (3𝑎)𝑖 , 𝑖 = 1, 2, 3, where 𝑎 is
the longest side of the bounding box. Our radiation solver can also
be trained for FFAT Maps with different radii. To validate the gener-
alization of our network, we generate the FFAT Map dataset with
sphere radii 𝑅𝑖 = (1.25𝑎)𝑖 , 𝑖 = 1, 2, 3 and retrain our radiation solver.
Table 9 shows the results of our solver, BEM, and a random selection
method (baseline). Our approach also works well for relatively near
range radiation and outperforms the baseline significantly in terms
of accuracy. We also show comparable results with the ground truth
in the accompanying video.

ACM Trans. Graph., Vol. 41, No. 4, Article 121. Publication date: July 2022.


	Abstract
	1 Introduction
	2 Related works
	3 Background 
	3.1 Vibration Solver
	3.2 Acoustic Transfer Solve
	3.3 Sound Synthesis
	3.4 Network Architectures for Modal Sound Synthesis

	4 Vibration Solver: Learning Eigenvector Approximation
	4.1 Network and Matrix Computations
	4.2 Vibration Network Architecture

	5 Radiation Solver: learning FFAT Map
	5.1 Network and Radiation Solver
	5.2 Radiation Network Architecture

	6 Network implementation
	6.1 Dataset
	6.2 Network Training

	7 Results
	7.1 Sound Vibration Solver
	7.2 Sound Radiation Solver
	7.3 Extensive Cases

	8 Perceptual Evaluation
	9 conclusion, Limitations, and Future RESEARCH
	Acknowledgments
	References
	A appendix
	A.1 Analogy Between Network and Matrix Computation
	A.2 Solving Eigenvectors in Krylov Subspace
	A.3 Effectiveness of Using Rayleigh–Ritz Method
	A.4 Scalar-valued FFAT Map
	A.5 Near Spatial Range Radiation


