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EHTask: Recognizing User Tasks from Eye and
Head Movements in Immersive Virtual Reality
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Abstract—Understanding human visual attention in immersive virtual reality (VR) is crucial for many important applications, including
gaze prediction, gaze guidance, and gaze-contingent rendering. However, previous works on visual attention analysis typically only
explored one specific VR task and paid less attention to the differences between different tasks. Moreover, existing task recognition
methods typically focused on 2D viewing conditions and only explored the effectiveness of human eye movements. We first collect eye
and head movements of 30 participants performing four tasks, i.e. Free viewing, Visual search, Saliency, and Track, in 15 360-degree
VR videos. Using this dataset, we analyze the patterns of human eye and head movements and reveal significant differences across
different tasks in terms of fixation duration, saccade amplitude, head rotation velocity, and eye-head coordination. We then propose
EHTask – a novel learning-based method that employs eye and head movements to recognize user tasks in VR. We show that our
method significantly outperforms the state-of-the-art methods derived from 2D viewing conditions both on our dataset (accuracy of
84.4% vs. 62.8%) and on a real-world dataset (61.9% vs. 44.1%). As such, our work provides meaningful insights into human visual
attention under different VR tasks and guides future work on recognizing user tasks in VR.
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1 INTRODUCTION

U NDERSTANDING human visual attention in immersive vir-
tual reality (VR) is crucial for many important applications,

including gaze prediction [1–3], VR content design [4], gaze guid-
ance [5], and gaze-contingent rendering [2, 3]. However, previous
works on visual attention analysis typically only explored one spe-
cific VR task, e.g. Free viewing task [2–4,6] or Visual search task
[1]. Similarly, existing VR datasets typically only cover one VR
task, making it hard to analyze and compare performance across
tasks. Analyzing and comparing human behaviour across different
tasks helps to better understand the mechanisms of human visual
attention in VR [1, 7] and to develop related VR applications,
such as gaze guidance [5] or gaze-contingent rendering [2, 3].
In addition, it helps to build better predictive models of visual
attention [1–4] and to derive models recognizing user tasks from
visual attention [8–11].

Human visual attention is strongly influenced by the specific
task a user is performing [1, 7, 10]. Investigating the effect of
task on visual attention in immersive virtual reality is of great
significance for the emerging research area of task recognition
in VR [7]. In his seminal work [12], Yarbus analyzed human
gaze positions in seven different visual tasks and found that their
eye movement patterns were significantly different. Inspired by
Yarbus’ work, many researchers focused on the inverse Yarbus
process, i.e. recognizing user tasks from eye movement patterns
[8, 9, 13–19]. Task recognition methods have many important
applications in the areas of virtual reality, augmented reality (AR),
and mixed reality (MR), collectively referred to as XR, including
adaptive virtual environment design [7], low-friction predictive
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interfaces [16, 20], and attention-aware intelligent systems [21].
Specifically, virtual environments can provide a user with dynamic
and adaptive experiences according to the specific task the user is
performing [7]. XR systems have the potential to alleviate a user’s
burden of interaction by recognizing user tasks and interaction
goals and providing convenience for completing the corresponding
actions with less friction [16, 20]. By recognizing user tasks and
attentional states, XR systems can adapt to different states of at-
tention to improve the usability of the system [21]. However, prior
works on task recognition typically focused on 2D images and
videos [8, 9, 15, 22] and few works have studied immersive virtual
reality. Moreover, existing task recognition methods mainly focus
on human eye movements [8, 9, 13–16, 22] and paid less attention
to human head movements. However, human head movements
provide substantial insights into human cognitive behaviours [1–
3, 23, 24] and may also have strong correlations with user tasks.
Therefore, it is important to investigate the effectiveness of both
human eye and head movements in recognizing tasks in immersive
virtual reality.

We first perform a user study to collect 30 users’ eye and head
movements while performing four tasks, i.e. Free viewing, Visual
search, Saliency, and Track, in 15 360-degree VR videos. Using
this dataset, we analyze the characteristics of human eye and head
movements, including fixation duration, fixation number, saccade
amplitude, head rotation velocity, head rotation acceleration, and
eye-head coordination, and observe significant differences across
different tasks. Based on our analysis, we then propose EHTask – a
novel learning-based method to recognize user tasks from eye and
head movements in VR. We further conduct extensive experiments
to evaluate our model. Results from these experiments show that
our model outperforms the state-of-the-art methods derived from
2D viewing conditions by a large margin both on our dataset
(accuracy of 84.4% vs. 62.8%) and on a real-world dataset (61.9%
vs. 44.1%). Our dataset, source code, and pre-trained models are
publicly available at https://cranehzm.github.io/EHTask.
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The specific contributions of our work are three-fold:

• We provide a new dataset that contains human eye and
head movements under four task conditions collected
while participants viewed 15 360-degree VR videos.

• We analyze the patterns of human eye and head move-
ments and reveal significant differences across different
tasks in terms of fixation duration, saccade amplitude, head
rotation velocity, and eye-head coordination.

• We present EHTask, a novel learning-based method to
recognize user tasks in immersive virtual reality that sig-
nificantly outperforms the current state of the art.

2 RELATED WORK

Our work is related to previous works on 1) cognitive state estima-
tion, 2) automatic recognition of user tasks, and 3) coordination of
eye and head movements.

2.1 Cognitive State Estimation
In the area of cognitive research, cognitive state estimation has
become a popular and important research topic in recent years.
Lethaus et al. [25] and Sattar et al. [26] both focused on the prob-
lem of predicting user intents. Lethaus et al. predicted driver intent
based on gaze data while Sattar et al. inferred user search intents
from human gaze fixations. Pfleging et al. [27] and Fridman et al.
[28] both concentrated on cognitive load estimation. Pfleging et al.
presented an approach to estimating cognitive load by measuring
pupil diameters under various controlled lighting conditions while
Fridman et al. proposed two vision-based methods for cognitive
load estimation under real-world driving conditions. Recently,
Wang et al. utilized eye movements of a person recalling an image
while looking at nothing to estimate mental images [29]. David et
al. employed gaze features to predict artificial visual field losses
by utilizing hidden Markov models and recurrent neural networks
[30]. Ahn et al. decoded a reader’s eye movements to estimate their
levels of text comprehension and related states [31]. In addition,
many researchers have studied the problem of recognizing user
tasks and have presented many successful methods [8, 9, 13–
15, 22].

In the field of virtual reality, some researchers focused on
VR cybersickness prediction [32–34]. For example, Kim et al.
developed an electroencephalography driven model to predict VR
cybersickness [32] while Anwar et al. proposed a neural network-
based method to predict the degree of cybersickness influenced
by 360-degree VR videos [33]. Other researchers concentrated on
cognitive load estimation in VR [35, 36]. Tremmel et al. utilized
electroencephalogram features to estimate cognitive load in an
interactive virtual environment [35]. Dell’Agnola et al. simulated
cognitive loads in virtual reality and extracted features from
different physiological signals to detect the levels of cognitive load
[36]. In contrast with previous works, we focus on the problem of
recognizing user tasks in immersive virtual reality.

2.2 Recognition of User Tasks
The problem of recognizing user tasks has been explored by
many researchers. In his seminal work [12], Yarbus revealed that
human eye movement patterns were significantly influenced by
the specific tasks assigned to them, suggesting that a user’s task
may be recognized from his or her eye movements. Since then,
many researchers have focused on the link between task and eye

movements and have proposed many eye movement-based task
recognition methods [8, 9, 13–16, 22]. Coutrot et al. employed
hidden Markov models to recognize user tasks from fixations
recorded while viewing static natural scene images [8]. Fuhl et
al. proposed to use random ferns in combination with saccade
angle successions to recognize user tasks [22]. They evaluated this
approach on two image-based datasets and showed improvements
over other methods. Hild et al. focused on the situation of viewing
motion videos and utilized random forests to recognize user tasks
from eye movement patterns [15]. However, prior work on task
recognition typically focused on 2D viewing conditions, e.g. 2D
images and videos, and few works have studied 3D viewing con-
ditions (stereoscopic viewing conditions), e.g. immersive virtual
reality. Moreover, existing task recognition methods mainly focus
on human eye movements [8, 9, 13–16, 22] and pay less attention
to human head movements. However, human head movements
provide substantial insights into human cognitive behaviours [1–
3,23,24] and may also have strong correlations with user tasks. To
address the limitations of prior works, in this research, we investi-
gate the effectiveness of both human eye and head movements in
recognizing tasks in immersive virtual reality.

2.3 Coordination of Eye and Head Movements

Human eye and head movements have been extensively inves-
tigated in the fields of cognitive science and human-centered
computing. Some researchers focused on eye-head coordination
[2, 3, 24, 37, 38], which refers to the coordinated movements be-
tween the eyes and the head. Stahl found that the eyes and the head
move in coordination during gaze shifts and that head movement
amplitude is proportional to gaze shift amplitude [37]. Fang et al.
further discovered that eye-head coordination is involved in gaze
fixation and plays a role in visual cognitive processing [24]. Hu et
al. focused on eye-head coordination in virtual reality and revealed
strong correlations between human gaze positions and head rota-
tion velocities [2,3]. Sidenmark et al. identified general eye, head,
and torso coordination patterns during gaze shifts in virtual reality
[38]. Other researchers concentrated on the applications of eye
and head movements [1, 23, 39–41]. Gandrud et al. utilized gaze
direction and head orientation to predict direction of locomotion
in virtual reality [41]. Kytö et al. [39] and Sidenmark et al. [42]
leveraged eye and head movements to improve target selection
techniques. Kothari et al. employed the magnitudes of eye and
head movements to classify gaze events (i.e. fixations, pursuits,
and saccades) [23]. Recently, Hu et al. proposed a learning-based
method to forecast future eye fixations using past gaze positions
and head rotation velocities [1]. In contrast with prior works, in
this research we employed eye and head movements to recognize
user tasks.

3 DATA COLLECTION

3.1 Stimuli

To collect human eye and head movements of performing different
tasks in virtual reality, we employed 360-degree VR videos as our
stimuli to ensure that the same VR content was presented to a
user under different task conditions. Specifically, 15 videos were
selected from three publicly available 360-degree video datasets
[43–45] to provide a wide variety of content, which include
indoor scenes, cities, outdoor scenarios, sports, movies, and shows
(Figure 1). Eleven videos were captured by a stationary camera
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Fig. 1: The experimental setup (top-left) and the 15 360-degree
VR videos used in our experiments.

and four videos were recorded using a moving camera. These
videos are monoscopic and not interactive. They were projected
onto the inner surface of a sphere and viewers could observe the
videos from the inside of the sphere using a VR headset. Each
selected video has a resolution of 3840×2160 pixels and a frame
rate of 30 f ps. The original videos have different lengths, and
to ensure that the task duration is the same in different videos,
we extracted a 150-second segment from each video for data
collection.

3.2 Participants and Apparatus

We recruited 30 participants (18 male, 12 female, age µ =
24.5,σ = 5.0) to take part in our experiments. Each participant
reported normal or corrected-to-normal vision. The eye tracker
was calibrated to each user before starting the experiment. We
conducted the data collection experiments on a computer with an
Intel(R) Core(TM) i7-8700 @ 3.20GHz CPU and an NVIDIA
GeForce RTX 2060 SUPER GPU. The 360-degree VR videos
were displayed using an HTC Vive head mounted device (HMD),
equipped with a 7invensun VR eye tracker running at 100 Hz and
providing an accuracy of 0.5◦. We used the Unity3D game engine
to render the VR videos and employed our own Unity scripts to
record human eye movements (accessed from the eye tracker) and
head movements (accessed from the HMD) at a sampling rate of
100 Hz. The snapshot of our experimental setup is demonstrated
on the top left of Figure 1.

3.3 Procedure

In our experiments, each participant was asked to explore three
360-degree VR videos that were randomly chosen from the 15
videos. Each video was played four times for a user, in which the
user was required to complete the following four tasks (one task
at a time) in random order:

• Free viewing: Freely explore the 360-degree VR video;
• Visual search: Locate and count as many objects with

geometrical shapes, e.g. triangles, circles, and rectangles,
as you can find in the scene;

• Saliency: Estimate which half of the scene (top or bottom)
is more salient;

• Track: Keep in view the nearest moving object in your
field of view and track it with your eyes.

These tasks are not only typically used in existing task datasets
[15, 23, 46, 47] but also have crucial importance for VR appli-
cations [1–4, 7, 48]. Studying these tasks contributes to not only
understanding the mechanisms of human visual attention in VR
[1, 7] but also deriving models recognizing user tasks from visual
attention in immersive virtual reality [8–11]. Each task lasted for
150 seconds, i.e. the same length as a video, and the videos were
set to silent to avoid auditory disturbance.

During the experiments, we collected the class of the task,
human eye movements, and human head movements for fur-
ther analysis. Specifically, we recorded human gaze positions
on the screen of the HMD ((ex,ey),ex,ey ∈ [0,1]) and human
head orientation in the 360-degree virtual world ((hx,hy),hx ∈
[−180◦,180◦],hy ∈ [−90◦,90◦]). Using the head orientation in-
formation, we further converted on-screen gaze positions to the
gaze positions in the 360-degree virtual world ((gx,gy),gx ∈
[−180◦,180◦],gy ∈ [−90◦,90◦]). For clarity, we utilized eye-in-
head (EiH) data to denote on-screen gaze positions and employed
gaze-in-world (GiW) data to represent gaze positions in the virtual
world. The EiH data reflects human eye movements with respect
to the head while the GiW data shows the combined influence of
human eye and head movements [23].

Our dataset (EHTask-dataset) contains exploration data of 30
participants, totalling 360 recordings (30 participants × 3 videos
× 4 tasks). Each recording is annotated with the task, EiH data
(100 Hz), GiW data (100 Hz), and head orientation data (100
Hz) in a 150-second 360-degree video. Each of the 15 videos
was observed by six users. Table 1 provides a comparison of our
dataset with other related datasets. We can see that our dataset
is the first VR dataset that contains both human eye and head
movements in different tasks.

4 EYE MOVEMENTS, HEAD MOVEMENTS, AND
TASK

Human eye movements and head movements in immersive VR
may be severely influenced by the specific tasks assigned to them.
To investigate which features or movements are discriminative for
which task, in this section we conducted a comprehensive analysis
of human eye and head movements in different VR tasks based on
our dataset. Specifically, we analyzed the characteristics of human
eye movements, the characteristics of human head movements,
and the characteristics of eye-head coordination.

4.1 Eye Movements and Task
The patterns of human eye movements can be classified into
fixations (pauses over regions of interest) and saccades (rapid eye
movements between fixations). To analyze the characteristics of
human eye movements in different tasks, we employed a thresh-
olding method based on dispersion and duration to detect fixations
and saccades from EiH data [52]. The maximum dispersion of
fixations was set to 1◦ and the minimum duration of fixations was
set to 150 ms [4].

We computed the statistical characteristics of the detected fixa-
tions and saccades. Specifically, we first calculated the mean fixa-
tion duration, fixation number per second, mean saccade duration,
saccade number per second, and mean saccade amplitude for each
recording. Then we computed the means and standard deviations
(SDs) of the above features for the recordings belonging to the four
tasks respectively. The results are indicated in Table 2. To investi-
gate whether the differences between the statistics of the four tasks
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TABLE 1: A comparison between our dataset and other related datasets. Our dataset is the first task dataset for immersive virtual reality
that contains the information on both human eye and head movements.

Datasets Stimuli Viewers Eye Head Task Duration Tasks
Greene et al. [49] 64 images 16

√
× 10 s Memory � Decade � People �Wealth

Borji et al. [50] 15 images 21
√

× 30 s Yarbus’ original 7 tasks [12]
Koehler et al. [46] 800 images 19

√
× 2 s Free viewing � Object search � Saliency

Sugano et al. [47] 480 image pairs 14
√

× 10 s Free viewing � Preference
Kübler et al. [51] 2 paintings 20

√
× 30-120 s Free viewing � Age estimating

Hild et al. [15] 1 video 30
√

× 4 min Explore � Observe � Search � Track
Bulling et al. [17] Real World 8

√
× 5 min Copy � Read �Write � Video � Browse � Null

GW dataset [23] Real world 19
√ √

3 min Navigation � Ball catching � Visual search �Tea making
Ours 15 VR videos 30

√ √
150 s Free viewing � Visual search � Saliency � Track

are significant, we first ran a one-way repeated measures analysis
of variance (ANOVA) test to evaluate the differences between
the four tasks. If the differences were statistically significant, we
further ran a post-hoc Tukey’s honest significant difference test
(Tukey’s HSD test) to perform pairwise comparisons among the
four tasks. We find that the differences between the four tasks
are statistically significant in terms of mean fixation duration
(F(3,180) = 291.1, p = 8.57E− 69 < 0.01), fixation number per
second (F(3,180) = 399.7, p = 2.61E−79 < 0.01), mean saccade
duration (F(3,180) = 612.8, p = 3.45E − 94 < 0.01), saccade
number per second (F(3,180)= 59.8, p= 7.10E−27< 0.01), and
mean saccade amplitude (F(3,180) = 428.8, p = 1.04E − 81 <
0.01) and the differences between every two tasks also have
statistical significance (Tukey’s HSD test, p < 0.01). The above
results correspond with previous findings that human eye move-
ment patterns are different across different tasks [7,12,50,53]. An
exception to this is that there is no significant difference between
Free viewing task and Track task (Tukey’s HSD test, p = 0.878)
in terms of saccade number per second. Generally, we expect
Track task to have fewer saccades than Free viewing task because
observers are required to fixate on the nearest moving object in the
Track task. However, the nearest moving object in our VR videos
usually moves very fast, which may increase observers’ saccades
and make the difference between Free viewing task and Track task
not significant.

To gain a sound understanding of eye fixations in the four
tasks, we analyzed the distributions of fixation positions. Figure 2
illustrates the distributions of fixation positions on the HMD’s
screen, which are smoothed using a Gaussian filter with sigma
equal to one degree of visual angle [54]. We find that, in each
task, most of the fixation positions lie in the central region
of the screen, which corresponds with previous findings [1–4].
This is because when observers move their heads little or not
at all, their gaze-shift sizes are usually limited to a small range
of about ±18◦ [24]. As a consequence, observers’ eye-in-head
fixation positions are usually limited to the central region of
the HMD’s screen regardless of the task being performed. We
further analyzed the dispersions of fixation position distributions.
Specifically, we utilized the determinant of the co-variance matrix
between horizontal and vertical fixation coordinates as a measure
for dispersion [7] and indicated the results in Table 2. We find
that there exists a significant difference between the four tasks
(F(3,180) = 194.0, p = 3.70E−56 < 0.01) and Saliency task has
significant difference with the other three tasks (Tukey’s HSD test,
p< 0.01). However, there is no significant difference between Free
viewing task and Visual search task (Tukey’s HSD test, p= 0.996),
no significant difference between Free viewing task and Track
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Fig. 2: The distributions of human fixation positions on the HMD’s
screen in (a) Free viewing task, (b) Visual search task, (c) Saliency
task, and (d) Track task.

task (Tukey’s HSD test, p = 0.352), and no significant difference
between Visual search task and Track task (Tukey’s HSD test,
p = 0.527). This is because Saliency task requires the observers
to frequently compare the top and bottom half of the scene, which
makes the fixation positions more dispersed than the other three
tasks.

To analyze the temporal characteristics of human eye move-
ments in the four tasks, we calculated the auto-correlations of the
horizontal and vertical eye coordinates of EiH data respectively
[55]. The auto-correlation of a time series is defined as the Pearson
correlation between the time series and a delayed copy of itself.
We first calculated the horizontal and vertical auto-correlations for
each recording and then computed the means for the recordings
belonging to the four tasks respectively. Figure 3 illustrates the
horizontal and vertical auto-correlations at different time intervals.
In the horizontal direction, we find that the auto-correlations of
the four tasks are very close and there is no significant difference
between the four tasks (F(3,180) = 0.848, p = 0.469) at the time
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TABLE 2: Statistical characteristics of human eye movements in the four tasks. For each item, the difference in the fonts of two tasks
indicates that there exists a significant difference between them (Tukey’s HSD test, p < 0.01). The same font indicates no statistical
significance.

Free viewing Visual search Saliency Track

Mean Fixation Duration Mean 263.4 ms 339.5 ms 241.2 ms 431.7 ms
SD 25.6 ms 49.0 ms 24.3 ms 106.7 ms

Fixation Number Per Second Mean 1.41 1.97 1.22 1.77
SD 0.38 0.17 0.43 0.19

Mean Saccade Duration Mean 633.2 ms 269.3 ms 776.0 ms 241.1 ms
SD 218.0 ms 69.2 ms 260.1 ms 56.2 ms

Saccade Number Per Second Mean 1.03 1.20 0.95 1.01
SD 0.17 0.18 0.19 0.24

Mean Saccade Amplitude Mean 6.51◦ 4.73◦ 8.56◦ 5.40◦
SD 1.24◦ 1.05◦ 1.49◦ 1.58◦

Fixation Distribution Dispersion Mean 2.21E-6 2.25E-6 7.08E-6 2.50E-6
SD 1.01E-6 1.18E-6 3.50E-6 1.57E-6
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Fig. 3: The auto-correlations of the (a) horizontal eye coordinates
and (b) vertical eye coordinates at different time intervals.

interval of 200 ms. However, in terms of vertical auto-correlations,
we find that the difference between the four tasks is statistically
significant (F(3,180) = 89.7, p = 1.52E − 35 < 0.01) at 200 ms
and the differences between every two tasks are statistically sig-
nificant (Tukey’s HSD test, p < 0.01). This may be because tasks
have a higher influence on observers’ vertical gaze behaviours than
on horizontal gaze behaviours [1, 3, 55].

To sum up, we conducted a comprehensive analysis of human
eye movements in different tasks and observed significant differ-
ences in the aspects of mean fixation duration, fixation number per
second, mean saccade duration, saccade number per second, mean
saccade amplitude, fixation distribution dispersion, and vertical
auto-correlation. Our results suggest that the characteristics of
human eye movements can serve as clues to recognize tasks in
VR.

4.2 Head Movements and Task
To analyze the characteristics of human head movements in the
four tasks, we calculated the mean absolute horizontal velocity,
mean absolute vertical velocity, mean absolute horizontal acceler-
ation, and mean absolute vertical acceleration for different tasks.
We also calculated the dispersions of head velocity distributions by
utilizing the determinant of the co-variance matrix between hori-
zontal and vertical head velocities as a measure for dispersion [7].
Specifically, we first calculated the statistics for each recording and
then computed the means and SDs for the recordings belonging to
the four tasks respectively. The results are indicated in Table 3. To
analyze the differences between different tasks, we first ran a one-
way repeated measures ANOVA test to evaluate the differences be-

tween the four tasks and if the results were significant, we further
ran a post-hoc Tukey’s HSD test to perform pairwise comparisons
among the four tasks. We find that the differences between the four
tasks are statistically significant in the aspects of mean absolute
horizontal velocity (F(3,180) = 1328.5, p = 1.68E−122 < 0.01),
mean absolute vertical velocity (F(3,180) = 1494.8, p = 6.38E−
127 < 0.01), mean absolute horizontal acceleration (F(3,180) =
296.9, p = 1.96E − 69 < 0.01), mean absolute vertical acceler-
ation (F(3,180) = 195.6, p = 2.14E − 56 < 0.01), and velocity
distribution dispersion (F(3,180) = 613.7, p= 3.03E−94< 0.01)
and the differences between every two tasks also have statistical
significance (Tukey’s HSD test, p < 0.01). The above results
reveal that the patterns of human head movements are different
across different tasks, indicating that the characteristics of human
head movements can be employed to recognize user tasks. An
exception to this is that there is no significant difference between
Free viewing task and Visual search task in the aspect of mean
absolute vertical velocity (Tukey’s HSD test, p = 0.278). Gener-
ally, we expect Free viewing task to have larger vertical velocity
than Visual search task because observers have more freedom
to move their heads in Free viewing task. However, we find
that, agreeing with prior work [6], observers preferred to explore
the 360◦ VR videos in the horizontal direction (mean absolute
horizontal velocity: 22.7◦/s) than in the vertical direction (mean
absolute vertical velocity: 2.9◦/s) in Free viewing task, possibly
because the horizontal view (360◦) of the 360◦ VR videos is much
larger than the vertical view (180◦). As a consequence, the mean
absolute vertical velocity in Free viewing task is smaller than
expected and the difference between Free viewing task and Visual
search task is not significant. Another exception is that there is
no significant difference between Visual search task and Track
task (Tukey’s HSD test, p = 0.030 > 0.01) in the aspect of mean
absolute vertical acceleration. Generally, we expect Track task to
have lower vertical acceleration than Visual search task because
observers are required to fixate on the nearest moving object in the
Track task. However, the nearest moving object in our VR videos
usually moves very fast, which may increase observers’ vertical
acceleration and make the difference between Visual search task
and Track task not significant.

To summarize, we conducted a comprehensive analysis of
human head movements in different tasks and observed significant
differences in the aspects of mean absolute horizontal velocity,
mean absolute vertical velocity, mean absolute horizontal accelera-
tion, mean absolute vertical acceleration, and velocity distribution

Authorized licensed use limited to: Peking University. Downloaded on December 30,2021 at 10:52:00 UTC from IEEE Xplore.  Restrictions apply. 



1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3138902, IEEE
Transactions on Visualization and Computer Graphics

6

TABLE 3: Statistical characteristics of human head movements in the four tasks. For each item, the same font of two tasks means that
the difference between the two tasks is not statistically significant (Tukey’s HSD test, p > 0.01) while different fonts indicate statistical
significance.

Free viewing Visual search Saliency Track

Mean Absolute Horizontal Velocity Mean 22.7◦/s 9.1◦/s 26.8◦/s 6.4◦/s
SD 4.3◦/s 2.3◦/s 4.4◦/s 2.4◦/s

Mean Absolute Vertical Velocity Mean 2.9◦/s 2.7◦/s 7.5◦/s 1.9◦/s
SD 0.6◦/s 0.5◦/s 1.4◦/s 0.4◦/s

Mean Absolute Horizontal Acceleration Mean 182.6◦/s2 140.4◦/s2 203.5◦/s2 129.8◦/s2

SD 29.4◦/s2 14.1◦/s2 23.9◦/s2 19.4◦/s2

Mean Absolute Vertical Acceleration Mean 125.0◦/s2 114.2◦/s2 145.4◦/s2 109.4◦/s2

SD 15.0◦/s2 11.1◦/s2 12.0◦/s2 11.6◦/s2

Velocity Distribution Dispersion Mean 2.64E+4 6.95E+3 2.39E+5 3.12E+3
SD 2.13E+4 7.98E+3 1.27E+5 4.35E+3

dispersion. Our results reveal that human head movements are
severely affected by the specific tasks assigned to them, suggesting
that the characteristics of human head movements can be applied
to recognize user tasks.

4.3 Eye-Head Coordination and Task
Eye-head coordination refers to the coordinated movements be-
tween the eyes and the head. Some researchers found that head
movement amplitude is proportional to gaze shift amplitude in
real-world situations [24,37] while other researchers revealed that
human on-screen gaze positions are correlated with their head
rotation velocities in virtual reality [1–3]. To analyze the eye-head
coordinations in the four VR tasks, we calculated the correlations
between human on-screen gaze positions and their head rotation
velocities in the horizontal and vertical directions respectively us-
ing Spearman’s rank correlation coefficient [1,3], which measures
the monotonic relationship between two variables. Specifically,
we first calculated the horizontal and vertical correlations for
each recording and then computed the means for the recordings
belonging to the four tasks respectively. Figure 4 illustrates the
eye-head correlations in the horizontal and vertical directions.
We performed a one-way repeated measures ANOVA test on the
correlations of the four tasks at the time interval of 0 ms and if
the differences between the four tasks were significant, we further
ran a post-hoc Tukey’s HSD test to perform pairwise comparisons
among the four tasks. We find that the differences between the four
tasks are statistically significant in terms of horizontal eye-head
correlation (F(3,180) = 548.7, p = 2.80E − 90 < 0.01) and ver-
tical eye-head correlation (F(3,180) = 308.0, p = 1.27E − 70 <
0.01) and the differences between every two tasks also have
statistical significance (Tukey’s HSD test, p < 0.01). The above
results reveal that the patterns of eye-head coordination are dif-
ferent across different tasks. This is because different tasks can
induce different visual cognitive processings [1,7] and thus induce
different eye-head coordinations because eye-head coordination is
influenced by visual cognitive processing [24]. An exception is
that there is no significant difference between Free viewing task
and Saliency task (Tukey’s HSD test, p = 0.086 > 0.01) in the
aspect of horizontal eye-head correlation at the time interval of
0 ms. This reflects that the visual cognitive processings of Free
viewing task and Saliency task have similarities in the horizontal
direction.

To summarize, we analyzed the characteristics of eye-head
coordination in different tasks and observed significant differences
in the aspects of horizontal eye-head correlation and vertical eye-
head correlation. Our results indicate that different tasks have
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Fig. 4: The Spearman’s correlations between on-screen gaze
positions and head rotation velocities in the (a) horizontal direction
and (b) vertical direction at different time intervals.

different influences on eye-head coordination, suggesting that the
inner connection between eye movements and head movements
can provide meaningful information for task recognition.

5 EHTASK MODEL

Based on the analysis in Section 4, we propose a learning-based
model called EHTask that combines the eye and head movements
to recognize user tasks (Figure 5). EHTask consists of four
modules: an EiH module that extracts features from eye-in-head
data, a GiW module that extracts features from gaze-in-world data,
a head module that extracts features from head rotation velocities,
and a task recognition module that recognizes user tasks from the
extracted features.

The EiH module aims at extracting features from the eye-in-
head time-series data (Ei ∈ R2). Previous work on gaze prediction
reveals that 1D convolutional neural network (CNN) has good
performance for extracting features from gaze and head time-
series data [1, 3] while bidirectional gated recurrent unit (BiGRU)
has also been proven to be powerful for processing sequence data
[56]. An intuitive idea is to combine the above two architectures
to produce better results. Therefore, the EiH module first employs
1D CNN layers to extract features for each time step of the eye-
in-head data and then applies BiGRU to extract temporal features
from the output of the 1D CNN layers. Specifically, three 1D
CNN layers, each with 16 channels and a kernel size of three,
are employed for feature extraction. Each CNN layer is followed
by a batch normalization layer, a ReLU activation function, and
a max-pooling layer with a kernel size of two. After the CNN
layers, a BiGRU layer with hidden size (the number of features in
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the hidden state) of 64 is applied to extract temporal features. The
BiGRU layer outputs the hidden states of the first and last time
steps respectively for task recognition.

The GiW module extracts features from the gaze-in-world
time-series data (Gi ∈ R2) while the head module is utilized to
extract features from the time series of the head rotation velocities
(Hi ∈ R2). The same network structure as EiH module is employed
for the GiW module and head module respectively for feature
extraction.

The task recognition module combines the outputs of the EiH
module, GiW module, and head module to recognize user tasks.
Specifically, this module employs two fully connected (FC) layers,
each with 64 neurons, to integrate the extracted features. Each FC
layer is followed by a batch normalization layer, a ReLU activation
function, and a dropout layer with dropout rate 0.5 to improve the
network’s generalization ability. A Softmax layer is applied after
the second FC layer to generate the probability of each task.

To train our model, we first down-sampled the original record-
ings in the dataset to a frequency of 25 Hz for simplicity [8]. Then
we segmented the recordings into small windows and employed
these windows to train our model. The window size was set to
10 seconds (∆t1 = ∆t2 = ∆t3 = 10 s) because the duration of 10
seconds has been proven to be effective enough for recognizing
user tasks [8,9,22,47]. The interval between two adjacent windows
was set to one second. We employed cross entropy loss as the loss
function and utilized Adam optimizer with weight decay 1.0e−4

to minimize the loss. We set the initial learning rate to 1.0e−2 and
employed an exponential decay strategy that decayed the learning
rate by γ every epoch. We set γ to 0.75 and employed a batch size
of 256 to train our model for totally 30 epochs. Our model was
implemented using the PyTorch framework.

6 EXPERIMENTS AND RESULTS

In this section, we conducted extensive experiments to evaluate
our model’s task recognition performance. Specifically, we first
compared our model with the state-of-the-art methods derived
from 2D viewing conditions on our dataset using a cross-user
evaluation and a cross-scene evaluation respectively. We further
evaluated our model’s performance on a newly released real-world
task dataset [23] to test our model’s generalization capability
for different situations. We also performed an ablation study to
validate the effectiveness of each component in our model.

6.1 Evaluation Metric and Comparison
As commonly used in prior works [8, 9, 13, 22], we employed
classification accuracy as the metric to evaluate the performances
of task recognition methods. We compared the performance of our
model with the following state-of-the-art methods derived from 2D
viewing conditions:

• Linear Discriminant Analysis (LDA): Linear discriminant
analysis has been proven to be effective for task recogni-
tion in prior works [8,15]. We utilized the implementation
provided in Coutrot et al.’s Matlab toolbox [8] and trained
the model from scratch using its default settings. This
Matlab toolbox extracts features from raw eye movements
using hidden Markov models (HMM) and then utilizes
the HMM features to train task recognition methods. We
respectively utilized the raw eye movements and the HMM
features of the raw eye movements to train LDA and got

LDA r (LDA using raw eye movements) and LDA h (LDA
using HMM features) for comparison.

• Support Vector Machine (SVM): As shown in prior works
[11,16–18,51,53], support vector machines can be applied
to recognize user tasks. We employed the implementation
provided in Coutrot et al.’s Matlab toolbox [8] and used
the default settings to train it from scratch. Raw eye
movements and the HMM features of the raw eye move-
ments were trained respectively to produce two models,
i.e. SVM r and SVM h.

• Boosting Classifier (BC): Boosting classifiers have been
successfully used for task recognition in previous works
[8,50]. We used the implementation of AdaBoost provided
in Coutrot et al.’s Matlab toolbox [8] and trained it from
scratch using the default settings. BC r and BC h were
trained for comparison using the raw eye movements and
the HMM features of the raw eye movements respectively.

• Random Forests (RFo): Random forests were frequently
used to recognize user tasks [9, 13, 15, 47]. We used the
implementation provided in Coutrot et al.’s Matlab toolbox
[8] and trained RFo r and RFo h from raw eye movements
and the HMM features of the raw eye movements respec-
tively using the default settings.

• Random Ferns (RFe): Random ferns were recently applied
to the problem of task recognition [22]. We employed the
implementation provided by Fuhl et al. [22], which recog-
nizes user tasks from raw eye movements. We trained RFe
from scratch using the default parameters for comparison.

6.2 Recognition Performance

6.2.1 Cross-User Evaluation
We first performed a cross-user evaluation to evaluate our model’s
generalization capability for different users. Specifically, we first
segmented the original recordings into windows of 10 seconds
(Section 5) and then evenly divided all the windows into five folds
according to different users. We trained the methods on four folds,
and tested on the remaining one fold. Each method was trained
and tested for five times in total in which each fold was tested
once. The recognition results in each test were collected for further
analysis. We calculated the mean classification accuracy of the
five tests for each method and indicated the results in Table 4
(Cross-User, Window). We can see that our model outperforms the
state-of-the-art methods by a large margin (accuracy of 84.4% vs.
62.8%). We further performed a paired Wilcoxon signed-rank test
to compare the recognition results of our model with the second-
best method and validated that the difference between our model
and the second-best method is statistically significant (p < 0.01).
The above results validate that our model has a high accuracy for
recognizing user tasks and has a strong generalization capability
for different users.

Figure 6 (a) shows the confusion matrix of our model’s cross-
user recognition results. Each diagonal element of the confusion
matrix represents the recognition accuracy for each class while the
off-diagonal elements indicate the probabilities of mislabeling one
class as another. The higher the diagonal values of the confusion
matrix, the better the recognition performance. We can see that
our model maintains a high recognition accuracy for each class,
which validates the effectiveness of our model. Furthermore,
we find that the largest confusion takes place between Visual
search task and Track task (11.8% and 12.9%). By examining
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Fig. 5: Architecture of the proposed model EHTask.

our analysis in Section 4, we find that Visual search task and
Track task have many similarities in terms of influences on human
eye movements and head movements. For example, there is no
significant difference between Visual search task and Track task
in the aspects of fixation distribution dispersion (Table 2) and
mean absolute vertical acceleration of head movements (Table 3).
The similar influences on human eye and head movements may
degrade our model’s performance because our model relies on
the features extracted from human eye and head movements to
discriminate different tasks. In addition, we also find that our
model has the highest accuracy for recognizing Saliency task.
This may be because Saliency task has some distinct influences
on human eye and head movements compared with the other three
tasks. For example, in terms of fixation distribution dispersion (Ta-
ble 2), Saliency task has the largest dispersion and the differences
between Saliency task and the other three tasks are statistically
significant while there exists no statistical significance between
the other three tasks.

In the above evaluation, we segmented a whole recording
into windows of 10 seconds and only evaluated our model’s
performance on the windows. To further evaluate our model’s
performance on the whole recordings, we employed a majority
voting (MV) strategy that utilized the majority voting result of
all the windows belonging to one recording to recognize the task
of this recording. The majority voting recognition performances
of different methods are indicated in Table 4 (Cross-User, MV).
We can see that our model outperforms the state-of-the-art meth-
ods and the difference between our model and the second-best
method is statistically significant (paired Wilcoxon signed-rank
test, p < 0.01). Furthermore, we find that our model achieves
a large improvement using majority voting over that of using
windows (97.8% vs. 84.4%), which validates the effectiveness of
our majority voting strategy.

6.2.2 Cross-Scene Evaluation

Our dataset consists of recordings from 15 scenes. To evaluate
our model’s generalization capability for different scenes, we
segmented the original recordings into 10-second windows, evenly
divided all the windows into five folds according to different
scenes, and performed a five-fold cross-scene evaluation to test
our model and other methods. The recognition performances of
different methods are indicated in Table 4 (Cross-Scene, Window).
We can see that our model achieves a large improvement over the
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Fig. 6: Confusion matrices of our model’s (a) cross-user recog-
nition results and (b) cross-scene recognition results, normalised
across ground truth rows. FV: Free viewing; VS: Visual search;
SA: Saliency; TR: Track.

state-of-the-art methods (82.1% vs. 62.6%). We further performed
a paired Wilcoxon signed-rank test to compare our model with
the second-best method and the result validates that the difference
between our model and the second-best method is statistically
significant (p < 0.01). The above results validate that our model
has a high accuracy for recognizing user tasks and a strong
generalization capability for different scenes.

The confusion matrix of our model’s cross-scene recognition
results is illustrated in Figure 6 (b). We can see that, similar to the
situation of cross-user evaluation (Figure 6 (a)), our model has a
high accuracy for recognizing each class and the largest confusion
takes place between Visual search task and Track task (14.1% and
15.9%). In addition, the confusion matrix also indicates that our
model has the highest accuracy for recognizing Saliency task.

We further evaluated the majority voting recognition perfor-
mances of our model and other methods. Specifically, we em-
ployed the majority voting result of all the windows belonging to
one recording to recognize user tasks in this recording. The results
are indicated in Table 4 (Cross-Scene, MV). We can see that our
model outperforms other methods, achieving a high accuracy of
96.4%. The result of a paired Wilcoxon signed-rank test reveals
that there exists a significant difference between our model and
the second-best method (p < 0.01). In addition, we find that our
model achieves a large improvement using majority voting over
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TABLE 4: Task recognition performances of different methods on our dataset. In each row, the best method is emphasized using bold
font and the second-best method is stressed using a underline. Our model outperforms other methods in both cross-user and cross-scene
settings.

Ours LDA r LDA h SVM r SVM h BC r BC h RFo r RFo h RFe

Cross-User Window 84.4% 37.2% 54.0% 29.5% 54.3% 41.5% 49.3% 62.8% 58.0% 48.7%
MV 97.8% 42.8% 76.1% 34.2% 75.3% 47.5% 65.3% 83.1% 88.9% 68.3%

Cross-Scene Window 82.1% 37.2% 53.8% 26.3% 54.1% 41.2% 49.0% 62.6% 57.9% 48.3%
MV 96.4% 41.9% 74.2% 26.7% 75.3% 47.5% 64.4% 83.6% 87.2% 72.2%

that of using windows (96.4% vs. 82.1%). This validates that the
majority voting strategy is effective in cross-scene settings.

6.3 Performance in Real World

Our model recognizes task using only the eye and head movements
of a user. This ensures that our model can be easily applied
to other situations besides immersive virtual reality as long as
human eye and head movements in the corresponding situations
are available. To test our model’s generalization capability for
different situations, we evaluated our model on a newly released
real-world dataset, i.e. GW dataset [23]. GW dataset contains
the eye and head movements of 19 participants performing four
everyday tasks, i.e. indoor navigation, ball catching, visual search,
and tea making, in an indoor environment. The duration of each
task was approximately three minutes. Task recognition in real-
world situations may be more challenging than that in immersive
VR. This is because human physical movements are usually
limited to a small region in immersive VR, making different users
share similar eye and head movements in the same task. However,
in real-world situations, human physical movements may have
more freedom and greater randomness, which leads to different
eye and head movements even in the same task.

We first segmented the original recordings in GW dataset into
windows of 10 seconds and then evenly divided all the windows
into five folds according to different users. We further performed
a five-fold cross-user evaluation to test our model and other
methods. The recognition performances of different methods are
indicated in Table 5 (Window). We can see that our model achieves
a large improvement over the state-of-the-art methods (61.9% vs.
44.1%) and the difference between our model and the second-best
method is statistically significant (paired Wilcoxon signed-rank
test, p < 0.01).

We further evaluated the majority voting recognition perfor-
mances of our model and other methods on GW dataset. Specif-
ically, the majority voting result of all the windows belonging
to one recording was employed to recognize user tasks in this
recording. The results are indicated in Table 5 (MV). We find that
our model achieves a high accuracy of 87.7%, outperforming the
state-of-the-art methods. We further performed a paired Wilcoxon
signed-rank test and the result indicates that the difference between
our model and the second-best method is statistically significant
(p < 0.01). Furthermore, we find that our model achieves higher
accuracy using majority voting than that of using windows (87.7%
vs. 61.9%), which validates that the majority voting strategy
helps improve recognition accuracy in real-world settings. By
comparing all the methods’ performances on our dataset (Table 4)
with that on the real-world dataset (Table 5), we find that all the
methods achieve a higher accuracy in immersive VR than in real-
world situations. This validates that task recognition in real-world
situations is more challenging than that in immersive VR.

6.4 Ablation Study
We performed an ablation study to evaluate the effectiveness of
each component in our model. Specifically, we retrained our model
on our dataset using only EiH data, using only Head data, using
only GiW data, using EiH and Head data, using EiH and GiW
data, using Head and GiW data, using only the CNN modules, and
using only the BiGRU modules, respectively. We segmented the
recordings in our dataset into 10-second windows and evaluated
the ablated models using a five-fold cross-user evaluation and a
five-fold cross-scene evaluation. Table 6 indicates the recognition
performances of our model and the ablated models. We find that
our model achieves higher accuracy than all the ablated models in
terms of both cross-user evaluation and cross-scene evaluation. We
further employed paired Wilcoxon signed-rank tests to perform
pairwise comparisons between our model and each ablated model
and validated that the differences between our model and the
ablated models are statistically significant (p < 0.01). The above
results indicate that each component in our model helps improve
our model’s task recognition accuracy.

To further validate the effectiveness of our model’s architec-
ture, we also evaluated other architectures on our dataset: (1).
We replaced our CNN+BiGRU architecture with a bidirectional
long short-term memory (BiLSTM) layer with hidden size of
64 to extract features for task recognition (2). We replaced our
CNN+BiGRU architecture with a CNN+BiLSTM architecture for
feature extraction. The same CNN architecture as our model was
employed and a BiLSTM layer with hidden size of 64 was applied
after the CNN. (3). We employed the eye-head statistics indicated
in Table 2 and Table 3 as hand-crafted features to train the state-of-
the-art methods, i.e. LDA, SVM, RFo, and BC. The cross-user and
cross-scene recognition performances of these architectures are
indicated in Table 7. We can see that our model outperforms these
architectures and the results are statistically significant (paired
Wilcoxon signed-rank test, p < 0.01).

6.5 Runtime Performance
Our model was implemented on an NVIDIA TITAN Xp GPU
platform with an Inter(R) Xeon(R) E5-2620 v4 2.10 GHz CPU.
The average run time for recognizing task from a 10-second
window was 0.10 ms on the GPU and 1.19 ms on the CPU. These
results show that our model is light-weight enough and ready for
real-time usage.

7 DISCUSSION

Our work has made an important step towards understanding
human visual attention under different VR tasks and recognizing
user tasks in immersive virtual reality. Our dataset, the analyses,
and the new method advance VR research in several ways.

On our dataset: Existing VR datasets typically only cover a
single user task [1–4, 6]. In contrast, our dataset contains human
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TABLE 5: Task recognition performances of different methods on GW dataset. In each row, bold font is used to emphasize the best
method and a underline is applied to indicate the second-best method. Our model performs better than other methods in terms of both
the results of windows and the results of majority voting.

Ours LDA r LDA h SVM r SVM h BC r BC h RFo r RFo h RFe
Window 61.9% 26.4% 39.0% 26.2% 37.9% 36.3% 34.1% 44.1% 42.3% 36.1%

MV 87.7% 26.2% 60.0% 32.3% 46.2% 33.8% 40.0% 53.8% 60.0% 64.6%

TABLE 6: The recognition performances of our model and the ablated models. Our model outperforms all the ablated models, validating
the effectiveness of each component in our model.

Ours EiH Head GiW EiH+Head EiH+GiW Head+GiW CNN BiGRU
Cross-User 84.4% 74.5% 79.9% 75.5% 82.1% 80.0% 83.1% 83.5% 81.3%
Cross-Scene 82.1% 73.9% 79.5% 70.3% 81.2% 77.0% 80.1% 81.5% 78.8%

TABLE 7: The cross-user and cross-scene recognition perfor-
mances of our model and other architectures.

Ours BiLSTM CNN+BiLSTM LDA SVM RFo BC
User 84.4% 80.8% 83.8% 74.3% 31.4% 75.8% 67.4%

Scene 82.1% 78.1% 81.3% 74.0% 32.4% 75.7% 67.1%

eye and head movements during four common task conditions in
immersive virtual reality (Section 3). As such, our dataset paves
the way towards a better understanding of visual attention in VR
and can be very useful for fostering more research in this field.
Furthermore, although in this work we only used our dataset to
train a task recognition model, it can also be used to evaluate
other data-driven models for immersive virtual reality, such as
saliency prediction models [4] or gaze prediction models [1–3, 6].
Our dataset enables researchers to extend existing models that
were only trained for one specific task to other task conditions,
which will significantly increase the impact of these models as
well as their generalization capability to different VR tasks.

On our analyses: We analyzed the patterns of human eye
and head movements in immersive virtual reality and revealed
significant differences across different tasks (Section 4). Our
analyses are significant in that they provide information that are
crucial for the development of future VR applications, for example
those employing gaze guidance [5] and gaze-contingent rendering
[2, 3]. Our analyses also guide future research on the important
topic of visual attention analysis in immersive virtual reality.

On our recognition model: Our proposed model achieves a
high recognition accuracy in immersive virtual reality and demon-
strates strong generalization capabilities for both different users
and visual scenes (Table 4). As such, it significantly advances
research on the emerging research area of task recognition in VR.
The method can also become a crucial component of important
VR applications, such as adaptive virtual environment design
[7] or low-friction predictive interfaces [16, 20]. In addition, our
model also exhibits good recognition performance and strong
generalization capability for different users in real-world situations
(Table 5). This means our model also has a significant impact on
task recognition in real-world situations. Furthermore, our model
recognizes user tasks using only the eye and head movements. As
such, our model can also be easily extended to other systems like
AR and MR systems and can be very useful for fostering new
research in these systems.

Limitations: Despite all of these advances, we identified
several limitations that we plan to address in future work. First,
we only explored the four tasks that are most commonly used
in VR applications. However, there exist other VR tasks worth

investigating in future work, such as reading or memory tasks.
Furthermore, we employed non-interactive 360-degree VR videos
instead of interactive 3D virtual environments as our stimuli to
ensure that the same VR content was presented to a user under
different task conditions. Human visual attention is influenced by
both the scene content and the specific tasks assigned to them
[1,7]. Since we were interested in the differences between different
tasks, employing the same content to collect data avoided the
interference from different scene content. However, employing
non-interactive VR videos inevitably restricts our analysis to non-
interactive VR tasks, neglecting interactive tasks, such as naviga-
tion task. The characteristics of human eye and head movements
in interactive VR tasks still remain to be explored. Finally, we
mainly focused on the differences between different tasks rather
than the differences between different stimuli. For our 15 videos,
each video was observed by only six users. Our dataset may be
insufficient for analyzing the differences between different stimuli.

Future Work: Besides overcoming the above limitations,
many potential avenues of future work exist. First, it will be
interesting to explore the effectiveness of other factors, such as
human body movements and hand movements, in recognizing user
tasks. In addition, we can apply our model to other systems besides
immersive virtual reality, such as real-world system, augmented
reality system, and mixed reality system. Our model only relies
on human eye and head movements, ensuring that it can be
easily applied to other systems. Furthermore, we are also looking
forward to exploring our model’s applications in human computer
interaction, human-centered computing, and intelligent user inter-
faces. Finally, recognizing other mental states in immersive VR
besides user tasks, such as user cognitive loads [35, 36] and the
levels of VR cybersickness [32–34], from human eye and head
movements is an interesting avenue of future work.

8 CONCLUSION

In this work, we focused on understanding human visual attention
under different VR tasks and recognizing user tasks in immersive
VR. We first presented a dataset of users performing four tasks
in immersive VR and showed that the patterns of human eye and
head movements are significantly different across different tasks
in terms of fixation duration, saccade amplitude, head rotation
velocity, and eye-head coordination. Based on these insights, we
proposed a novel method to recognize user tasks that outperformed
the state-of-the-art methods both on our dataset and on a real-
world dataset by a large margin. As such, our work represents an
important advance in understanding human visual attention under
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different VR tasks and guides future research on task recognition
in immersive virtual reality.
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of selected simple supervised learning algorithms to predict driver intent
based on gaze data,” Neurocomputing, vol. 121, pp. 108–130, 2013.

[26] H. Sattar, M. Fritz, and A. Bulling, “Deep gaze pooling: Inferring and
visually decoding search intents from human gaze fixations,” Neurocom-
puting, vol. 387, p. 369–382, 2020.

[27] B. Pfleging, D. K. Fekety, A. Schmidt, and A. L. Kun, “A model
relating pupil diameter to mental workload and lighting conditions,” in
Proceedings of the 2016 CHI conference on human factors in computing
systems, 2016, pp. 5776–5788.

[28] L. Fridman, B. Reimer, B. Mehler, and W. T. Freeman, “Cognitive load
estimation in the wild,” in Proceedings of the 2018 chi conference on
human factors in computing systems, 2018, pp. 1–9.

[29] X. Wang, A. Ley, S. Koch, D. Lindlbauer, J. Hays, K. Holmqvist, and
M. Alexa, “The mental image revealed by gaze tracking,” in Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems,
2019, pp. 1–12.

[30] E. J. David, P. Lebranchu, M. P. Da Silva, and P. Le Callet, “Predicting
artificial visual field losses: a gaze-based inference study,” Journal of
Vision, vol. 19, no. 14, pp. 22–22, 2019.

[31] S. Ahn, C. Kelton, A. Balasubramanian, and G. Zelinsky, “Towards pre-
dicting reading comprehension from gaze behavior,” in ACM Symposium
on Eye Tracking Research and Applications, 2020, pp. 1–5.

[32] J. Kim, W. Kim, H. Oh, S. Lee, and S. Lee, “A deep cybersickness
predictor based on brain signal analysis for virtual reality contents,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 10 580–10 589.

[33] M. Shahid Anwar, J. Wang, S. Ahmad, A. Ullah, W. Khan, and Z. Fei,
“Evaluating the factors affecting qoe of 360-degree videos and cyber-
sickness levels predictions in virtual reality,” Electronics, vol. 9, no. 9, p.
1530, 2020.

[34] S. Balasubramanian and R. Soundararajan, “Prediction of discomfort due
to egomotion in immersive videos for virtual reality,” in 2019 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE, 2019, pp. 169–177.

[35] C. Tremmel, C. Herff, T. Sato, K. Rechowicz, Y. Yamani, and D. J.
Krusienski, “Estimating cognitive workload in an interactive virtual re-
ality environment using eeg,” Frontiers in Human Neuroscience, vol. 13,
2019.

[36] F. Dell’Agnola, N. Momeni, A. Arza, and D. Atienza, “Cognitive work-
load monitoring in virtual reality based rescue missions with drones,” in
International Conference on Human-Computer Interaction. Springer,
2020, pp. 397–409.

[37] J. S. Stahl, “Amplitude of human head movements associated with
horizontal saccades,” Experimental brain research, vol. 126, no. 1, pp.
41–54, 1999.

[38] L. Sidenmark and H. Gellersen, “Eye, head and torso coordination during
gaze shifts in virtual reality,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 27, no. 1, pp. 1–40, 2019.
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