DGaze: CNN-Based Gaze Prediction in Dynamic Scenes

Zhiming Hu, Sheng Li*, Congyi Zhang, Kangrui Yi, Guoping Wang*, Dinesh Manocha

=

Fig. 1: Gaze prediction performance of our model (DGaze) in different scenes. The upper row shows some captured images from
an HMD’s screen and the lower row exhibits the corresponding enlarged view. The green cross denotes the ground truth of gaze
position, the blue cross is generated using SGaze [21] algorithm, and the red cross represents the result of our novel algorithm,
DGaze. The green circle illustrates the foveal region with radius 15°. In practice, our gaze prediction algorithm exhibits higher
accuracy than prior method.

Abstract—We conduct novel analyses of users’ gaze behaviors in dynamic virtual scenes and, based on our analyses, we present a
novel CNN-based model called DGaze for gaze prediction in HMID-based applications. We first collect 43 users’ eye tracking data in
5 dynamic scenes under free-viewing conditions. Next, we perform statistical analysis of our data and observe that dynamic object
positions, head rotation velocities, and salient regions are correlated with users’ gaze positions. Based on our analysis, we present
a CNN-based model (DGaze) that combines object position sequence, head velocity sequence, and saliency features to predict
users’ gaze positions. Our model can be applied to predict not only realtime gaze positions but also gaze positions in the near future
and can achieve better performance than prior method. In terms of realtime prediction, DGaze achieves a 22.0% improvement over
prior method in dynamic scenes and obtains an improvement of 9.5% in static scenes, based on using the angular distance as the
evaluation metric. We also propose a variant of our model called DGaze_ET that can be used to predict future gaze positions with
higher precision by combining accurate past gaze data gathered using an eye tracker. We further analyze our CNN architecture and
verify the effectiveness of each component in our model. We apply DGaze to gaze-contingent rendering and a game, and also present
the evaluation results from a user study.

Index Terms—Gaze prediction, convolutional neural network, eye tracking, dynamic scene, gaze-contingent rendering, virtual reality

<+

1 INTRODUCTION

With the development of virtual reality (VR) technology, users’ gaze
information in VR becomes increasingly important and can be used for
different applications, including VR content design [39], VR content

e Zhiming Hu, Sheng Li, Kangrui Yi, Guoping Wang are at Peking University,
China. E-mail: {jimmyhu | lisheng | yikangrui |wgp} @pku.edu.cn.

» Congyi Zhang is at both The University of Hong Kong, China and Peking
University, China. E-mail: cyzh@ hku.hk.

* Dinesh Manocha is at University of Maryland, USA. E-mail:
dm@cs.umd.edu.

* Sheng Li and Guoping Wang are the corresponding authors.

* Project URL: cranehzm.github.io/DGaze

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

compression [39], eye movement-based interaction [14, 29, 34, 43],
gaze behavior analysis [2,4,20,21,39], gaze-contingent rendering (or
foveated rendering) [18,33,41,42], etc. Currently, the most common
solution for eye tracking is based on hardware-based eye trackers.
Eye trackers are accurate and can be integrated with head mounted
devices (HMDs). However, as an accessory equipment of an HMD,
an eye tracker can be costly and lacks ease of use. Moreover, eye
trackers are mainly used to measure the current gaze direction, and
they cannot directly predict the future gaze position. Therefore, there is
considerable interest in developing alternate methods for eye tracking
and gaze prediction [21,39,45].

Human gaze behaviors in dynamic scenes are more intricate than
that in static scenes because users’ attention will be attracted not only
by static stimuli but also by moving stimuli [1,17]. In VR applications,
dynamic scenes are much more common than static scenes. However,
currently, many studies have focused on static scenes [21,36,39] while
dynamic scenes have not been well explored. Therefore, it is very
meaningful to analyze human gaze behaviors in dynamic scenes. One

of our goals is to analyze the gaze behavior for dynamic scene and use
that behavior to design better prediction algorithms.

Our model is formulated based on the following procedures:

Gaze Data Collection: We record users’ eye tracking data in dy-
namic scenes to analyze their gaze behaviors. Specifically, a total of 43
participants are asked to freely explore 5 dynamic virtual scenes includ-
ing both indoor and outdoor scenes (See Fig. 2) and the participants are
given no specific task. We collect users’ data from the eye tracker to
build a dataset. Our dataset includes 86 pieces of data from 43 users
and each piece of data contains about 18,000 gaze positions, 18,000
object positions, 36,000 head velocities, and 10,800 frames of scene
screenshots. The dataset has been released for public usage'.

Gaze Behavior Analysis: We further analyze users’ gaze behav-
iors based on our dataset. Specifically, we perform Spearman’s rank
correlation analysis [30] on the dataset and find that users’ gaze posi-
tions are correlated with their head rotation velocities and the positions
of dynamic objects. We also extract the saliency maps of the images
viewed by observers and find that gaze positions correspond with salient
regions. The above results reveal that head velocity, dynamic object
position, and saliency feature facilitate the task of gaze prediction. The
effectiveness of each component is further validated in our ablation
study (Sect. 6.4). In addition, we analyze the distribution of users’ gaze
data and find that most of the gaze positions lie in the central region of
the HMD’s screen.

Novel CNN-Based Model: Based on our analyses, we propose
a CNN-based model (DGaze) to predict gaze positions. Our model
consists of three modules: sequence encoder module, saliency encoder
module, and gaze prediction module. The sequence encoder module
employs a 1D CNN layer to encode the object position sequence and
the head velocity sequence. The saliency encoder module applies the
state-of-the-art SAM-ResNet saliency predictor [13] to extract saliency
features of the past images and utilizes a fully connected (FC) layer to
encode the features. The gaze prediction module combines the outputs
of the 2 modules and employs 3 FC layers to predict gaze positions.
When an eye tracker is available, the sequence of past gaze data can
also be used in the sequence encoder module to improve our model’s
performance. We refer to this revised model as DGaze_ET as it utilizes
the data gathered using an eye tracker. We utilize 60% of our dataset
(1045654 data points) to train the model and employ the remaining data
(698304 data points) to test. The effectiveness of our CNN architecture
is further validated (Sect. 6.4). The source code of our model and the
pre-trained models are publicly available!.

Evaluation of DGaze: We utilize the angular distance between the
ground truth and the predicted gaze position as the evaluation metric
(Sect. 6.1.2). DGaze achieves good realtime prediction performance
on both dynamic (an improvement of 22.0% over prior method) and
static datasets (9.5% improvement). DGaze can also be applied to
predict gaze positions at any specified future time (0~1000 ms). When
an eye tracker is provided, DGaze_ET can take advantage of accurate
past gaze data to achieve higher performance. We apply DGaze to
gaze-contingent rendering and conduct a two-alternative forced choice
(2AFC) test to verify its effectiveness. Compared with prior method,
DGaze is preferred by 68.9% of the users’ responses and the result is
statistically significant. We also apply DGaze to a game to evaluate
its effectiveness and the result shows that DGaze outperforms prior
method by 14.3% in terms of realtime prediction.

Overall, our contributions include:

* A novel CNN-based model (DGaze) for realtime and future gaze
prediction in immersive HMD-based applications with high accu-
racy.

* Analyses of human gaze behaviors in dynamic virtual scenes that
provide insights into formulating gaze prediction models.

» A dataset that contains 43 users’ eye tracking data that is gathered
using five dynamic scenes.

Icranehzm. github.io/DGaze

2 RELATED WORK

In this section, we give a brief overview of prior works on gaze pre-
diction, gaze behavior analysis, and the applications of eye tracking
technology.

2.1 Gaze Prediction

In the area of vision research, gaze prediction or visual saliency pre-
diction has been well-studied and many gaze prediction models have
been proposed in the last three decades. Generally, most of the existing
models are based on bottom-up approaches, top-down approaches, or
hybrid approaches. Bottom-up approaches employ low-level image
features such as intensity, color, and orientation to predict visual at-
tention [10, 24] while top-down approaches take high-level features
of the scene like specific tasks and context into consideration [8, 19].
Hybrid approaches combine low-level features and high-level features
to obtain better performance [7,32]. Recently, with advances in deep
learning, many deep learning-based models have been proposed and
have achieved good performances [13,26].

However, there is limited work on gaze prediction in the area of
virtual reality. Sitzmann et al. [39] and Rai et al. [36] both focused
on saliency in 360° static images. They collected users’ eye tracking
data and predicted saliency maps of the scenes. Xu et al. [45] built a
dataset that contains observers’ gaze data in dynamic 360° videos and
proposed a deep learning-based model for gaze displacement prediction.
Koulieris et al. [25] predicted gaze object categories in a video game.
Our approach is also related to the recent work on SGaze [21]. Hu et
al. gathered the data of a large number of participants freely exploring
static virtual scenes and proposed an eye-head coordination model
called SGaze for predicting users’ realtime gaze positions. In contrast
with Hu et al.’s work, we focus on dynamic scenes and predict not only
realtime gaze positions but also future gaze positions.

2.2 Gaze Behavior Analysis

There is some work on the analysis of human gaze behaviors. Itti [23]
reported that human gaze behaviors are controlled by both a bottom-up
mechanism and a top-down mechanism, which means visual attention
is influenced not only by the content humans see but also by the tasks
assigned to them. Pinto et al. [35] further revealed that the two mecha-
nisms are independent. Baloh et al. [3] discovered many differences
between horizontal and vertical eye movements and Rottach et al. [37]
showed evidence for independent feedback control of horizontal and
vertical saccades. Brockmann et al. [9] and Boccignone et al. [6] fo-
cused on gaze shifts and they modeled gaze shifts as a stochastic process.
Franconeri et al. [17] revealed that moving stimuli capture visual at-
tention and they further reported that looming stimuli capture attention
while receding stimuli do not attract attention. The phenomenon that
motion attracts attention was also observed in Abrams et al.’s work [1].
Yarbus [46] found that the eyes and the head move in coordination
during gaze shifts and Einhéuser et al. [15] discovered human eye-head
coordination in natural exploration. Nakashima et al. [31] proposed a
model to improve the accuracy of saliency prediction by utilizing head
direction.

The characteristics of human gaze behaviors in virtual reality have
also been explored. Sitzmann et al. [39] revealed that there exists a
latitudinal equator bias during users’ exploration of 360° images. Xu
et al. [45] explored human’s gaze behaviors in dynamic 360° videos
and found that users’ gaze positions coincide with salient regions and
moving objects. Hu et al. [21] revealed that, in static virtual scenes,
users’ gaze positions are correlated with their head rotation velocities
and there exists a latency between eye movements and head movements.
Based on the above-mentioned works, to explore huamn gaze behaviors
in dynamic virtual scenes, we record the image sequences viewed by
the observers, users’ gaze positions, users’ head rotation velocities, and
the positions of dynamic objects for analysis.

2.3 Application of Eye Tracking

In VR systems, eye tracking technology has gained importance and
it can be applied to many aspects. Tanriverdi et al. [43] utilized eye
tracking technology as an interaction tool in virtual environments and

presented the benefits of eye movement-based interaction. In their
recent work, Mardanbegi et al. also took advantage of eye tracking
information to propose a novel interaction technique. Besides the
works discussed in Sect. 2.2, eye tracking technology can also be used
to analyze other aspects of gaze behaviors. For example, Berton et
al. [4] collected users’ eye tracking data for studying gaze behavior
during collision avoidance with a virtual walker. Another important
application of eye tracking technology is gaze-contingent rendering
[18,33,41,42], which improves rendering efficiency by decreasing
the rendering quality in the peripheral region while maintaining high
fidelity in the foveal region. In our evaluation process, we apply our
model to gaze-contingent rendering to validate its effectiveness.

3 DATA COLLECTION

In this section, we present the details of our data collection process. 43
participants in total are asked to explore 5 dynamic virtual scenes under
free-viewing conditions and we record the image sequences viewed
by the observers, the positions of the dynamic objects, and the corre-
sponding gaze positions and head rotation velocities of those observers.
Our dataset can be utilized to analyze users’ gaze behaviors in dynamic
scenes (Sect. 4) and to train gaze prediction models (Sect. 5).

3.1

In the data collection process, participants are asked to freely explore 5
dynamic virtual scenes, as illustrated in Fig. 2. The test scenes include
desert, forest, island, etc. environments, which are commonly used
in VR applications. The original scenes are static. In each scene, we
randomly place some animals like horses, deer, ibexes, cats, dogs,
etc. and utilize them as dynamic objects. Each animal’s movement
is controlled by its own animation and its path is controlled by our
own Unity script, which allows the animal to wander in the scene in a
random fashion. During our experiments, we record the positions of the
dynamic objects. An object’s position refers to the position of the center
of the object’s bounding box and it contains three elements including
the object’s on-screen position and its distance from the observer.

Stimuli

Fig. 2: Five dynamic virtual scenes used for data collection, including
both indoor and outdoor scenes. Some animals are placed in the scenes
and are utilized as dynamic objects.

3.2 Participants

In total, 43 users (25 male, 18 female, ages 18 — 32) took part in our
experiments. Each user reported normal or corrected-to-normal vision
and the eye tracker was calibrated for each participant before he/she
started the experiment.

3.3 System Details

In our experiments, we employ an HTC Vive as our HMD to display
the scenes and utilize a Vive controller for user interaction. Our HMD
is equipped with a 7invensun VR eye tracker with a sampling frequency
of 100 Hz and an accuracy of 0.5°. We record the head velocities
at a sampling rate of 200 Hz using HTC Vive’s Lighthouse tracking
system. We utilize the Unity game engine to display all the scenes and
record the dynamic object positions at a frequency of 100 Hz using our
own Unity script. The image sequences viewed by the observers are
recorded using a Bandicam screen-recorder at 60 fps. The CPU and
GPU of our platform are an Intel(R) Core(TM) i7-8700 @ 3.20GHz
and an NVIDIA GeForce RTX 2080 Ti, respectively. The snapshot of
our experimental setup is demonstrated in the left of Fig. 3.

3.4 Procedure

For each dynamic scene, we set up 4 start positions beforehand and
provide participants with a Vive controller to help them switch between
the 4 preset positions. In addition, users can also utilize the Vive
controller to teleport themselves to any position in their field of view.
The above settings ensure that participants can fully explore the scenes.
Before starting our experiments, each participant is given at least 3
minutes to get familiar with our experimental system. They are also
provided with a pair of earplugs to prevent auditory disturbance. During
the experiments, participants are asked to freely observe the scenes
and they are given no specific task. Each participant explores 2 scenes
(randomly chosen from our 5 scenes) and each exploration lasts for
at least 3 minutes. We record the images viewed by the observers,
their gaze positions (measured in visual angles), and their head rotation
velocities. In addition, we also record the positions of the dynamic
objects, i.e. centers of the objects” bounding box. Our dynamic objects
are big mammals and this ensures there will not be too many of them
appearing together in the users’ field of view. Therefore, for simplicity,
we only record the object positions of the nearest 3 objects.

3.5 Dataset

Our dataset includes 86 pieces of data. A piece of data corresponds to a
user’s exploration data in one scene. Each piece of data contains about
18,000 gaze positions (100 Hz sampling rate), 18,000 object positions
(100 Hz), 36,000 head velocities (200 Hz), and 10,800 frames of scene
screenshots (60 fps). The time stamps of these data are also recorded to
help align them with each other. We name our dataset DGaze-dataset.
Our dataset has been released for public usage!.

4 GAZzZE BEHAVIORS IN DYNAMIC SCENES

In this section, we analyze users’ gaze behaviors in dynamic scenes
based on our dataset. Specifically, we analyze the characteristics of the
gaze data, the correlation between gaze positions and object positions,
the correlation between gaze positions and head velocities, and the
correlation between gaze positions and salient regions. Our analyses
not only reveal the characteristics of users’ gaze behaviors but also
provide meaningful insights for deriving gaze prediction models.

4.1 Gaze Analysis

We first analyze the distribution of users’ gaze data. As illustrated in
the right of Fig. 3, the central region of the HMD’s screen contains
most of the gaze data. To be more precise, 98.7% of the gaze data
lies in the central 35° region. The distribution of the gaze data reveals
that in dynamic scenes, users tend to look at the central region of the
screen. The characteristic of the gaze data’s distribution suggests that
we should pay more attention to the information in the central region.

Screen

Fig. 3: Left: Our experimental setup. Right:The distribution of users’
gaze positions on the HMD’s screen. 98.7% of the gaze data lies in the
central region of the screen. The central region is a square region that is
confined to [—35°,35°] x [-35°,35°] in the domain of gaze position.

We also analyze the correlation between horizontal and vertical gaze
positions. Specifically, we employ Spearman’s rank correlation coef-
ficient [30] to analyze correlation. Spearman’s correlation assesses

Icranehzm. github.io/DGaze

monotonic relationships and it is robust to outliers. Spearman’s corre-
lation ranges from -1 (perfect monotone decreasing relationship) to 1
(perfect monotone increasing relationship). We calculate the correlation
between horizontal and vertical gaze positions and obtain a value of
0.02 which indicates that horizontal and vertical gaze behaviors are
different and independent to some extent. Therefore, we choose to
analyze horizontal and vertical gaze behaviors independently in the
following steps.

We further analyze the saccades that exist in our data. Saccades refer
to fast eye movements and the occurrence of large saccades will make
it quite difficult to predict users’ gaze positions. We set the threshold
velocity for the gaze speed to 75° /s to extract the horizontal and vertical
saccades [16]. We calculate the amplitudes of the saccades and find that
the amplitudes of 90.6% of the horizontal saccades and 89.5% of the
vertical saccades are very small (< 5°). Furthermore, the total durations
of horizontal and vertical saccades account for only 1.64% and 1.11%
of the total gaze duration, respectively, which means saccades occur
with low frequency. The characteristics of small amplitude and low
frequency ensure that the saccades in our data have little impact on the
task of gaze prediction.

4.2 Gaze-Object Analysis

We further analyze the correlations between gaze positions and object
positions. Specifically, we calculate Spearman’s correlations between
gaze positions and object positions in situations with different numbers
of valid objects. A valid object is an object that exists in a user’s field
of view. As illustrated in Fig. 4, the correlations in both horizontal and
vertical directions are obvious and this suggests that dynamic object
information can be employed to predict gaze positions. Fig. 4 also
reveals that, in both horizontal and vertical directions, users’ gaze
behaviors are more likely to be influenced by objects that are closer.
The correlations between gaze positions and Object 3 are not strong and
farther objects may have even less influence on users’ gaze behaviors.
Moreover, as indicated in Table 1, the situation with 3 or more objects
only accounts for 32.4% of all the situations. Therefore, we only
consider the influences of the nearest 3 objects. In addition, Fig. 4
shows that dynamic objects seem to have a stronger influence on users’
vertical gaze behaviors than horizontal gaze behaviors.

0.6 0.6

[EJObject 1
[JObject 2|
[E0bject 3

=
o

=
=

o

Horizontal Correlation
°
Vertical Correlation
o =)
o

1 2 3 1 2 3
Number of Valid Objects Number of Valid Objects

Fig. 4: The horizontal (left) and vertical (right) correlations between
gaze positions and object positions in situations with different numbers
of valid objects. Objects 1-3 are the recorded dynamic objects, ranked
from nearest to farthest. Both the horizontal and vertical correlations
are very strong, meaning that object information can facilitate the task
of gaze prediction.

Object Number 0 1 2 >3
Data Proportion | 5.1% | 37.1% | 25.4% | 32.4%

Table 1: The proportions of situations with different numbers of valid
objects. Only 32.4% of all the situations contains 3 or more objects.

Generally, there exists a reaction time between the occurrence of
a stimulus and a person’s motor response to the stimulus [28, 44].
The reaction time may also exist in dynamic scenes, which means
users’ gaze positions may lag behind object positions. To validate

this, at different time intervals, we calculate the correlations between
gaze positions and the nearest object positions (in situations where the
nearest object exists) because the nearest object has the most significant
influence on gaze behaviors. From the graphs in Fig. 5, we can see that
the horizontal and vertical correlations perform better than realtime
situations (Time Interval = 0) when a suitable reaction time (Time
Interval < 0) is considered. We consider the magnitude of time interval
at the graph’s peak point as the reaction time in dynamic scenes and get
230 ms in the horizontal direction and 280 ms in the vertical direction.
The proposed reaction times correspond with prior works [28, 44],
which reveal that reaction times are usually on the order of 200 ms.

=)
Q
o
“

Peak: (-280, 0.57)

_’\

o
=N
o
=N

4
n
=4
i

Peak: (-230, 0.37)

/_\

=)
IS
=)
IS

e
W
e
W

e
¥

Horizontal Correlation
o
o

Vertical Correlation

0
-500-400-300-200-100 0 100 200 300 400 500
Time Interval (ms)

0
-500-400-300-200-100 0 100 200 300 400 500
Time Interval (ms)

Fig. 5: The correlations between gaze positions and the nearest object
positions at different time intervals in the horizontal (left) and vertical
(right) directions. Time interval is the time difference between object
data and gaze data. Each graph reaches its peak value at a negative time
interval and this demonstrates the existence of a reaction time between
the occurrence of dynamic objects and the response of gaze behaviors.

The above analysis reveals that not only realtime object positions
but also past object positions are correlated with gaze positions and
thus they can be both applied to the task of gaze prediction.

4.3 Gaze-Head Analysis

To explore the gaze-head correlation in dynamic scenes, we calculate
Spearman’s correlation between users’ gaze positions and their head
rotation velocities. We get 0.48 in the horizontal direction and 0.16
in the vertical direction. The result verifies that head velocities are
correlated with gaze positions. In addition, we find that the gaze-
head correlation performs better in the horizontal direction than in the
vertical direction and this may be because users’ vertical gaze behaviors
are strongly influenced by dynamic objects (Sect. 4.2). We further
calculate the correlations between gaze positions and head velocities at
different time intervals (Fig. 6) and find that gaze positions also have
correlations with head velocities in the past (Time Interval < 0). This
reveals that head velocities in the past can also be employed to predict
gaze positions.

=)
=Y
=)
>

Peak: (100, 0.49)

5}
3

Horizontal Correlation
< < e < <
Vertical Correlation
o o
Y [y

=)
=
I
=

Peak: (-50, 0.16)

=

0
-500-400-300-200-100 0 100 200 300 400 500
Time Interval (ms)

o
o

o
o

0
-500-400-300-200-100 0 100 200 300 400 500
Time Interval (ms)

Fig. 6: The correlations between gaze positions and head velocities
at different time intervals in the horizontal (left) and vertical (right)
directions. Time interval is the time difference between head data and
gaze data. In both the horizontal and vertical directions, gaze positions
have correlations with head velocities in the past (Time Interval < 0).

4.4 Gaze-Saliency Analysis

In many prior works [10,12,24], salient regions of an image are assumed
to attract more of the viewers’ attention. To analyze the correlation
between gaze positions and salient regions, we utilize the state-of-the-
art SAM-ResNet saliency predictor to calculate the saliency maps of the
realtime images viewed by the observers. Since there exists a reaction
time between the occurrence of dynamic objects and the response of
gaze behaviors (Sect. 4.2), we also calculate the saliency maps 250 ms
before the gaze positions. We then evenly distribute all the pixels of
a saliency map to 10 salient regions according to their saliency values
where region 1 is the region with the most salient pixels. We further
calculate the distribution of gaze positions on salient regions and the
left of Fig. 7 illustrates that both in realtime and past saliency maps,
most of the gaze positions lie in the pixels with the top 10% saliency.
This result reveals that both realtime and past saliency features are
correlated with gaze positions and thus they can both facilitate gaze
prediction.

[Past Saliency - [Past Saliency
[IRealtime Saliency [IRealtime Saliency

= 0.8 = 0.8

< <

= =

2 0.6 2 0.6

= =3

S S

& &

= 0.4 = 0.4

S 8]

= =

[0.2 [0.2

0 m | - 0 m -
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Salient Region Salient Region

Fig. 7: The distributions of gaze positions on salient regions of the
whole image (left) and the central image (right). Most of the gaze
positions lie in the most salient region (region 1) in both realtime and
past saliency maps. In addition, region 1 of the central image contains
more gaze positions than region 1 of the whole image.

We also calculate the saliency maps of the central 35° region (the
saliency values outside the central region are set to 0) and analyze the
distribution of gaze positions (Fig. 7, right). We find that gaze positions
correspond better with salient regions of the central image than the
whole image. This indicates that saliency features of the central region
are more useful than the features of the whole image when used to
predict gaze positions.

5 DGAzE MODEL

Our analyses in Sect. 4 reveal that dynamic object positions, head
rotation velocities, and salient regions are correlated with users’ gaze
positions. Based on these analyses, we present the architecture of our
model (Fig. 8). Our model is composed of three modules: sequence
encoder module, saliency encoder module, and gaze prediction module.
The sequence encoder module is utilized to encode the dynamic object
position sequence and the head velocity sequence. The saliency encoder
module is employed to extract and encode saliency features. The gaze
prediction module combines the outputs of the 2 modules above to
predict gaze positions. In this section, we first introduce the three
modules and then show the details of our model’s training process.

5.1

Sect. 4.2 and Sect. 4.3 reveal that dynamic object positions and head ro-
tation velocities can facilitate the task of gaze prediction. Therefore, in
the sequence encoder module, we encode the sequence of dynamic ob-
ject positions (O1,0,,03,...,0;, O; € R n is the number of recorded
objects and n = 3 in our dataset) and head velocities (H,H,,Hs, ..., H;,
H; € R?) to predict gaze positions. In light of the good performance
of 1D CNN for encoding sequence data [11,27], we employ a 1D
CNN layer with filters of size 2 and 128 output channels to encode the
dynamic object position sequence and the head velocity sequence in
the past 500 ms (sampled every 10 ms). The object position sequence
contains the positions of the nearest 3 objects and invalid object data is

Sequence Encoder Module

padded with 0. We add a batch normalization layer [22] after the CNN
layer to accelerate the training process and then utilize ReLU to activate
the neurons. After the neurons are activated, we employ a max-pooling
layer [38] with filters of size 2 to reduce the dimensions of the data and
a dropout layer [40] with dropout rate 0.5 to avoid overfitting.

In general applications, DGaze is applied to predict users’ gaze
positions when eye trackers are not provided. However, even if an
eye tracker is available, it can only provide us with realtime gaze
positions and cannot offer us gaze positions in the future. In view
of the eye tracker’s limitation, when eye tracking data are available,
we propose DGaze ET to encode the sequence of gaze positions
(G1,G2,Gs,...,G;, Gi € R?) in the past 500 ms (sampled every 10
ms) in the sequence encoder module to predict future gaze positions.
The effectiveness of DGaze_ET is verified in Sect. 6.3.

5.2 Saliency Encoder Module

Sect. 4.4 reveals that gaze positions coincide with salient regions. There-
fore, we extract the saliency features of the images and then encode the
features for further gaze prediction. Since the calculation of saliency
maps is usually time-consuming, to reduce time cost, we only compute
the saliency maps of the central 35° region because they are more
useful than the saliency maps of the whole image (Sect. 4.4). To further
improve the computational efficiency, we sample the images every 250
ms (At = 250ms) as key frames and only calculate the saliency maps
of the key frames. The above choices ensure that saliency maps can be
obtained in real time. We utilize SAM-ResNet to extract the saliency
maps in the past 500 ms, i.e. 2 saliency maps, downsample them to the
resolution of 24 x 24, and flatten them to saliency features of size 1152
(2 x 24 x 24). We then apply a FC layer with 64 neurons to encode the
saliency features. ReLU is used as the activation function for this layer.
We add a batch normalization layer before activation and a dropout
layer with dropout rate 0.5 after activation to prevent overfitting.

5.3 Gaze Prediction Module

The gaze prediction module incorporates the outputs of the sequence en-
coder module and the saliency encoder module to predict gaze positions.
This module consists of 3 FC layers with 128, 128, and 2 neurons, re-
spectively. The first two layers utilize ReLU as their activation function.
A batch normalization layer is applied before they get activated and a
dropout layer with dropout rate 0.5 is added after activation. The last
layer is the output layer, which is used to predict gaze position (xg,yg).
By setting the gaze positions at different time intervals as our targets,
our model can be trained to not only predict realtime gaze positions but
also to predict future gaze positions (Sect. 6.2.1 & Sect. 6.2.2).

5.4 Model Training Process

We employ the data from 3 scenes (randomly chosen from our 5 scenes)
as our training data (60% of the total data, 1045654 data points) and
utilize the data from the remaining 2 scenes (40% of the total data,
698304 data points, including an indoor scene and an outdoor scene) as
our test data. We implement our model using the PyTorch framework
and utilize L1 loss as our loss function due to its robustness to outliers.
Many outliers may exist in our data because gaze shifts occur in a
random way [5,6,9]. To train our model, we set mini-batch size to
64 and employ Adam as our optimizer with an initial learning rate
of 1.0e~2. We reduce the learning rate to its % after every 5 epochs
and train our model for 30 epochs in total. In the evaluation process,
different variants of our model are trained using the same approach.
The SO}erC code of our method and the pre-trained models are available
online".

6 RESULTS

We evaluate our model’s performance in this section. We first set
some baselines and evaluation metrics for the task of gaze prediction in
dynamic scenes. Then we demonstrate that DGaze’s realtime prediction
performance outperforms the baselines in both dynamic and static
scenes. DGaze also performs best in predicting future gaze positions.

Icranehzm. github.io/DGaze

-

Central Image |
attime t — At

Saliency Encoder Module

1]

Central Image §

Saliency Features

FC

Gaze Prediction Module
FC FC

FC Gaze Position

Object Position Sequence, 0; € R3n[04,0,,03, ..., 0,

Head Velocity Sequence, H; € R? [H{,H,,Hs, ..., H;

\Gaze Position Sequence, G; € R?

at time t
o /C\
4 Sequence Encoder Module N\

—-G)

1D CNN

J

Fig. 8: Architecture of our proposed DGaze model. The sequence encoder module employs a 1D CNN layer to encode the object position
sequence and the head velocity sequence. The saliency encoder module applies SAM-ResNet saliency predictor to extract saliency features of the
past images and utilizes a FC layer to encode the features. The gaze prediction module combines the outputs of the 2 modules above and employs
3 FC layers to predict gaze positions. If the sequence of past gaze positions is available, it can also be encoded in the sequence encoder module to

improve our model’s performance.

When an eye tracker is available, DGaze_ET shows better performance
in future gaze prediction than the baseline. We further analyze our
CNN architecture and validate the effectiveness of each component in
our model. We also apply DGaze to gaze-contingent rendering and
conduct a user study to verify its effectiveness. Finally, we evaluate
DGaze’s performance in a game and the result shows that DGaze still
performs best.

6.1 Baselines and Evaluation Metrics
6.1.1 Baselines

As described in Sect. 4.1, most of the gaze data lies in the central
region of the screen. Therefore, we treat the screen center (0°, 0°)
as one of our baselines (Center Baseline). To take advantage of the
dataset, we also utilize the statistical mean of the gaze positions in the
training data as another baseline (Mean Baseline), which is (2.62°,
5.64°). Since the gaze position is correlated with the position of the
nearest object, we further set the position of the nearest object as our
baseline (Object Baseline). The most recent method of predicting gaze
position in virtual reality is SGaze [21], which is derived from static
scenes. We retrain SGaze on our dataset and compare our model with
it (SGaze).

6.1.2 Evaluation Metrics

To evaluate the performance of gaze position prediction, we calculate
the angular distance between the ground truth and the predicted gaze
position and utilize it as the prediction error. The smaller the angular
distance, the better the performance. In addition, in some applications
like gaze-contingent rendering, we aim to predict the gaze region rather
than a single gaze position. In this case, we also utilize the recall rate,
which is the proportion of the overlapped region at the ground truth
region, as our evaluation metric. The higher the recall rate, the better
the performance.

6.2 Model Evaluation

6.2.1 Realtime Prediction Performance

We first evaluate our model’s realtime prediction performance. In
this case, we train our model by setting the realtime gaze positions
as our model’s targets. To compare SGaze with our model, we also

retrain SGaze on our dataset. We then apply our model and all the
baselines, i.e. Center baseline, Mean baseline, Object baseline, and
SGaze, to the test data and calculate their mean prediction errors (mean
angular distances).We also calculate the standard error of the mean
(SEM) to test whether the differences in prediction mean errors are
statistically significant. The 95% confidence interval for a prediction
mean M is [M — 1.96 x SEM,M + 1.96 x SEM]|. If there is no overlap
between the 95% confidence intervals of 2 means, this implies that the
differences between the 2 means are statistically significant (¢&¢ = 0.05).
Table 2 illustrates the results. Since the SEMs are very small and the
confidence intervals for the means are very narrow, the differences
between the means are statistically significant. In addition, our model
achieves a 22.0% improvement over SGaze in dynamic scenes. Here
the improvement is calculated by (errgaze — €rrggaze)/errsgaze- Fig. 1
highlights some of our prediction results. To further evaluate our
model’s generalization ability, we utilized “leave one scene out” cross-
validation (CV) to calculate the realtime prediction performances of
DGaze and SGaze in dynamic scenes. Specifically, we employed the
same training parameters, as reported in Sect. 5.4, to train 5 separate
DGaze models and then calculated the mean prediction performance
of these models. The CV performance of DGaze is 7.57°, while the
performance of SGaze is 9.33°. In terms of CV, DGaze demonstrates
an improvement of 18.9% over SGaze in dynamic scenes and the result
is close to our original result (DGaze outperforms SGaze by 22.0%).
The performance of CV could be further improved by fine-tuning the
training parameters, as part of future work.

Although our model is designed for dynamic scenes, we also test
our model on a static dataset (Hu et al.’s dataset [21]). Since there are
no moving objects in static scenes, we only utilize the head velocity
sequence and saliency features as input to train our model and we do not
use the Object baseline in this case. We test the newly trained model on
the static dataset and the result shows that our model outperforms SGaze
by 9.5% (Table 2). We further calculate the cumulative distribution
function (CDF) of the prediction errors for performance evaluation.
The higher the CDF curve, the better the performance. As illustrated
in Fig. 9, our model achieves the best performance in terms of CDF
on both the dynamic dataset and the static dataset. The above results
verify that our model can be applied not only to dynamic scenes but
also to static scenes.

DGaze | SGaze | Mean | Center | Object
Ours Mean | 7.11° 9.11° | 10.04° | 12.46° | 13.25°
) SEM | 0.01° 0.01° 0.01° 0.01° 0.02°
Hu Mean | 7.71° 8.52° | 10.93° | 11.16°
etal’s | SEM | 0.01° 0.01° 0.01° 0.01°

Table 2: Our model and the baselines’ realtime prediction performances
on the dynamic dataset (our dataset) and the static dataset (Hu et al.’s
dataset [21]). Our model achieves an improvement of 22.0% over
SGaze on the dynamic dataset and an improvement of 9.5% on the
static dataset.

0.9 ——DGaze 0.9 —DGaze| ==
—SGaze —SGaze
s 0.8 Mean s 0.8 Mean
.‘E 0.7 Ceu}tcr E 0.7 Center|
306 Object] / 306
5 z
205 205
B 04 ~ o4
=03 / go.z
0.2 // 0.2
0.1 / 0.1
0! 0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Prediction Error (deg) Prediction Error (deg)

Fig. 9: Cumulative distribution function of the prediction errors on the
dynamic dataset (left) and the static dataset (right). Our model (DGaze)
outperforms the baselines in both dynamic and static scenes.

6.2.2 Future Prediction Performance

Our model can also be applied to predict gaze positions in the future.
By separately setting gaze positions in the future 100 ms, 200 ms,
..., 1000 ms as our targets, we retrain 10 new models and test their
future prediction performances. SGaze is also retrained for comparison.
We test our model’s future prediction performance on the dynamic
dataset. The results are illustrated in Fig. 10. Center baseline and Mean
baseline retain the same performance as realtime prediction when used
to predict future gaze positions because they are constant. With the
increase of prediction time, the performances of SGaze and DGaze both
get worse, but our model always outperforms SGaze. At the prediction
time of 1000 ms, SGaze performs almost the same as Mean baseline
and this means SGaze is no longer effective. Although our model also
deteriorates at 1000 ms, it still outperforms SGaze by 12.2%. The above
results verify that our model can be applied to predict gaze positions
within 1000 ms. Since our model only achieves a 12.5% improvement
over Mean baseline at 1000 ms, we do not recommend applying our
model to predict gaze positions after 1000 ms because its performance
will be close to Mean baseline.

15 . : : : . . : . .
14+]
13F J
12F 3

<% oo

——Object
——Center
Mean
—SGaze
——DGaze
—Gaze
T T 1 DGaze ET]|

.
0 100 200 300 400 500 600 700 800 900
Prediction Time (ms)

Mean Error (deg

(=R SRV N U

1000

Fig. 10: Our model and the baselines’ future prediction performances
in dynamic scenes. DGaze always outperforms SGaze [21] in different
prediction times. When eye tracking data are available, DGaze ET
performs better than Gaze baseline.

In the paragraph above, we retrain our model to predict future gaze
positions at only 10 discrete time intervals. But how can we predict
gaze positions at any given time within the range of 1000 ms? There
exist many choices. First, we can directly apply an already trained
model, whose prediction time is earlier (Earlier Model) or later (Later
Model) than the given time, to perform the prediction. For example,
if we want to predict gaze positions at future 250 ms, we can directly
utilize the model that is trained for 200 ms or 300 ms. Second, we can
retrain our model to predict gaze positions at the given time (Retrained
Model). Finally, we can employ an ensemble method to combine the
existing models together (Ensemble Model):

N
HW:&MM& D

where H (x) is the Ensemble Model; x is the input; N is the number of
existing models; /;(x) is one of the models and w; is its corresponding
weight with ny: (wi = 1 and w; > 0. For simplicity, we perform linear
interpolation between the Earlier Model and the Later Model to derive
the Ensemble Model:

n—t
I —le

t—t,
I —le

H(x) = he(x) + hi(x), 2)

where ¢ is the prediction time of H(x); h.(x) is the Earlier Model
and 7, is its prediction time; /;(x) is the Later Model and 7 is the
corresponding prediction time. We test the performances of the above
models at future 50 ms, 150 ms, 250 ms, 350 ms, and 450 ms, and
indicate the results in Table 3. To test whether the differences in
prediction mean errors are statistically significant, we perform two-
tailed independent two-sample t-tests to compare the Ensemble Model
with other models, i.e. Ensemble Model vs. Earlier Model, Ensemble
Model vs. Later Model, and Ensemble Model vs. Retrained Model. The
p-values are highlighted in Table 3. The test data contains 698304 data
points and the degree of freedom for each t-test is 1396606 (698304 x
2 —2). We find that at the 5% significance level, the Ensemble Model
significantly outperforms other models in most situations. This result
validates that by training some separate models, which predict gaze
positions at different future times, and employing an ensemble method,
our model can be applied to predict gaze positions at any specified time
within the range of 1000 ms.

S50ms | 150ms | 250ms | 350ms | 450ms

EA Mean | 7.15° | 7.23° 7.39° 7.58° 7.81°
p-value | 2e-5 3e-2 le-2 le-1 6e-1

LA Mean | 7.13° | 7.25° 7.41° 7.63° 7.88°
p-value | 3e-3 2e-4 2e-4 le-6 2e-8

RE Mean | 7.13° | 7.23° 7.35° 7.58° 7.85°
p-value | 3e-3 3e-2 6e-1 le-1 2e-5

EN | Mean | 7.10° | 7.20° 7.36° 7.56° 7.80°

Table 3: Future prediction performances of the Earlier Model (EA),
Later Model (LA), Retrained Model (RE), and Ensemble Model (EN).
In most situations, the Ensemble Model performs significantly better
than other models.

6.2.3 Runtime Performance

The most time-consuming part in our model is the calculation of
saliency maps. Fortunately, however, only the saliency maps of the
central region of the sampled images are computed, and this ensures
that saliency maps can be obtained in real time (Sect. 5.2). Our model is
implemented on an NVIDIA TITAN Xp GPU platform with an Inter(R)
Xeon(R) E5-2620 v4 2.10 GHz CPU. We calculate DGaze’s average
prediction time for a single gaze position. The average prediction time
is 0.07 ms on GPU and 0.16 ms on CPU. The result verifies that our
model is fast enough for realtime usage.

6.3 Performance of DGaze ET

To evaluate the performance of DGaze _ET, we add the sequence of
gaze positions in the past 500 ms into the sequence encoder module
to train the model. Since gaze data is available, we utilize the current
gaze position as our baseline (Gaze Baseline). As illustrated in Fig. 10,
DGaze _ET outperforms Gaze baseline in different prediction times and
this verifies the effectiveness of our model. In addition, we find that
Gaze baseline deteriorates significantly with the increase of prediction
time. After 400 ms, it even performs worse than DGaze, which does
not utilize past gaze data. This indicates that users’ gaze positions in
dynamic scenes change frequently and it is therefore difficult to perform
long-term gaze prediction. At 1000 ms, DGaze_ET only achieves
a small improvement over DGaze and thus we do not recommend
utilizing DGaze_ET to predict gaze positions after 1000 ms.

6.4 Analysis of our CNN Architecture

We perform an ablation study to analyze our CNN architecture. Specif-
ically, we remove the saliency features, head velocity sequence, and
dynamic object position sequence separately and retrain the ablated
models. We test the ablated models’ realtime prediction performances
and indicate them in Table 4. The result indicates that each component
in our model helps improve our model’s accuracy. In addition, from
Fig. 10, we can see that DGaze ET always outperforms DGaze and
this verifies that the gaze position sequence contributes to DGaze_ET’s
performance. The above results validate the effectiveness of our CNN
architecture.

DGaze | w/o Saliency | w/o Head | w/o Object
Mean Error | 7.11° 7.32° 7.52° 7.69°
SEM 0.01° 0.01° 0.01° 0.01°

Table 4: Realtime prediction performances of the ablated models.
DGaze outperforms the ablated models, meaning that each compo-
nent contributes to DGaze’s performance.

In our training process (Sect. 5.4), L1 loss is utilized due to its robust-
ness to outliers. In this section, we also apply L2 loss to retrain DGaze
and test its realtime prediction performance. The mean prediction error
of L2 loss is 7.32° and the SEM is 0.01°, which performs worse than
L1 loss (Mean Error = 7.11°, SEM = 0.01°). This result indicates that
L1 loss is more suitable for our model.

6.5 User Study
6.5.1 Gaze-Contingent Rendering

We also evaluate our model’s effectiveness in gaze-contingent rendering
[18,33]. Gaze-contingent rendering requires a gaze region (foveal
region) rather than a single gaze position. In this case, we calculate the
recall rates of our model and the baselines. The higher the recall rate,
the better the performance. In our calculation, the ground truth region is
centered at the ground truth gaze position and its radius is set to 15°, as
is used in gaze-contingent rendering [33], while the predicted region of
the methods (DGaze and the baselines) is centered at the predicted gaze
position and its radius is set to 20° to obtain better performance [21].
As illustrated in Table 5, our model outperforms the baselines and
it reaches a recall rate of 90.1%, which is high enough for practical
applications.

DGaze | SGaze | Mean | Center | Object

Mean Recall Rate | 90.1% | 85.0% | 82.0% | 73.8% | 74.6%

Table 5: Recall rates of our model and the baselines in dynamic scenes.
Our model performs best, reaching a recall rate of 90.1%.

We further conducted a user study to compare the performances
of DGaze and SGaze. Specifically, DGaze and SGaze were used to
determine the gaze region (foveal region) with radius 20°. We utilized
the 5 dynamic scenes that are presented in Sect. 3.1 as our stimuli

Blending Border

Fig. 11: Implementation of our gaze-contingent rendering. The inner
circle denotes the foveal region, which is rendered with high fidelity;
the blending border refers to the transitional region; and the outer region
is the peripheral region rendered with low quality.

and rendered the scenes using gaze-contingent rendering algorithm
[18,33]. Fig. 11 exhibits the implementation of our gaze-contingent
rendering. We set the radius of the foveal region to 20° and the width
of the blending border to 60 pixels. 15 users (11 male, 4 female, ages
18-28) with normal or corrected-to-normal vision participated in our
experiments and the eye tracker was calibrated for each user. There is
no overlap between the users and the participants in the data collection
process (Sect. 3). The same system as described in Sect. 3.3 was
employed.

We asked each participant to freely explore 3 scenes (randomly
chosen from the 5 scenes) and ran a two-alternative forced choice
(2AFC) test to collect users’ responses. Specifically, each scene was
rendered using DGaze and SGaze one after another in random order
and each model (DGaze or SGaze) was applied for about 1 minute. In
each test, participants were required to indicate which model had higher
quality. If DGaze is chosen, DGaze will get 1 score and SGaze will
get 0 score, and vice versa. There were 45 tests (15 users x 3 scenes)
in total and we collected users’ responses in these tests for analysis.
We find that DGaze is preferred in 68.9% of the total responses. We
further performed a two-tailed dependent (paired-sample) t-test on the
responses and obtained #(44) = 2.71, p = 0.0096. We also performed
a two-tailed dependent Wilcoxon signed-rank test and obtained p =
0.0113. At the 5% significance level, both the results of t-test and
Wilcoxon signed-rank test are statistically significant. The above results
validate our model’s effectiveness in gaze-contingent rendering.

6.5.2 Performance in a Game

To further evaluate DGaze’s availability, we apply it to a task-oriented
game and conduct a user study. We created a game scene and randomly
placed some dynamic objects (deer, ibexes, etc.), which wander in the
scene in a random way as described in Sect. 3.1, and static objects
(chests, boxes, etc.) in it (Fig. 12). The dynamic and static objects are
utilized as the targets in the game. A total of 12 players (9 male, 3
female, ages 18-28) took part in our game and these players were not
involved in the data gathering process described in Sect. 3. Each player
reported normal or corrected-to-normal vision and the eye tracker was
calibrated for each player. The same system as Sect. 3.3 was utilized.
Players could utilize a Vive controller to teleport themselves to any
position in their field of view and they were given a sword, which was
controlled by the Vive controller, to hit the dynamic and static objects
in the game. Once an object was hit, it disappeared and the player got
1 score (1 hit). This game lasted for 2 minutes and the objects were
sufficient, ensuring that players could not finish hitting all the objects
in such a short time. During the game, we collected users’ data for
later analysis in the same way as described in Sect. 3.4. We evaluate
the realtime prediction performances of our model and the baselines
in the game scene. Specifically, we train DGaze and SGaze on our
dynamic dataset and evaluate them on the newly collected data. As

Fig. 12: Our game scene. Some dynamic objects (deer, ibexes, etc.)
and static objects (chests, boxes, etc.) are randomly placed in the scene
and players are given a sword to hit these objects. The more objects
they hit, the higher their scores.

illustrated in Table 6, our model outperforms the baselines, achieving an
improvement of 14.3% over SGaze. In terms of CDF curve, our model
also performs better than the baselines (Fig. 13). The above results
indicate that our model can also be applied to game scenes. In addition,
we find that our model performs worse in a task-oriented game than
in free-viewing situations (Table 2) and this may be because players’
behaviors in a game are highly correlated with the present state of the
game [25]. In our scene, the game state variables like the game time, the
game score may have influences on players’ gaze behaviors. Exploring
task-oriented situations such as games is an interesting avenue for future
work.

DGaze | SGaze | Mean | Center | Object
Mean Error | 8.30° 9.69° | 10.08° | 12.27° | 14.45°
SEM 0.02° 0.02° 0.02° 0.02° 0.04°

Table 6: Our model and the baselines’ realtime prediction performances
in a game. Our model performs best and it achieves an improvement of
14.3% over SGaze.

1 . .
0.9k ——DGaze
——SGaze
£ 081 Mean
= 0.7 Center
; 0.6 Object
=¥
E 0.5
= 041
S 0.3
0.2
0.1

0 2 4 6 8 10 12 14 16 18 20
Prediction Error (deg)

Fig. 13: Cumulative distribution function of the prediction errors in the
game scene. Our model performs best in terms of CDF curve.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we conduct thorough analyses of users’ gaze behaviors
in dynamic scenes and present a CNN-based model (DGaze) for gaze
prediction. We first build a dataset that contains users’ eye tracking data
in dynamic scenes. Then we analyze our dataset in detail and find that
dynamic object positions, head rotation velocities, and saliency features
can facilitate the task of gaze prediction. Based on our analyses, we

propose a CNN-based model that takes the sequence of object positions,
the sequence of head velocities, and saliency features as input to predict
gaze positions. Our model not only works well in dynamic scenes but
also outperforms the baselines in static scenes. DGaze can be applied to
predict not only realtime gaze positions but also future gaze positions.
We also propose DGaze ET to predict future gaze positions, when
accurate eye tracking data is available. We have evaluated our model in
gaze-contingent rendering and the preliminary results are promising.
Our model also outperforms the baselines when applied to a game.

Our model has some limitations. First, our dataset is restricted to
free-viewing conditions and no specific task was assigned to the users.
Therefore, our analyses and our model do not necessarily handle task-
oriented situations. In addition, during the data collection process, we
only utilize moving animals as our dynamic objects, and thus our results
might have a bias within the recorded dataset. Human gaze behaviors in
virtual scenes with other kind of dynamic objects (vehicles, pedestrians,
etc.) still remain to be explored. Furthermore, our scenes are silent,
and the influence of sound is not considered in our model. Combining
the influence of sound into our model has the potential to improve our
model’s performance.

Besides overcoming the above limitations, there are many avenues
for future work. First, there is still some room to improve our model’s
performance. For example, to improve time efficiency, we only utilize
the saliency maps of sampled images. Taking more saliency maps
into consideration may further boost the performance. In addition,
fine-tuning the training parameters may further improve our model’s
cross-validation performance. Second, the architecture of our model
has good extensibility. In the sequence encoder module, we only encode
the object position sequence of the nearest 3 objects. However, if there
are more objects appearing in users’ field of view, these objects can
also be encoded in the sequence encoder module. If other information
related to users’ gaze behaviors (e.g., users’ gestures) are provided,
we can develop a separate module to encode the information and then
transmit the encoded features to gaze prediction module for predicting
gaze positions. Furthermore, we are also looking to convert our model
to other systems like augmented reality, mixed reality, and mobile
virtual systems.

ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for their valuable com-
ments. We would also thank 7invensun for their eye-tracking resource.
This project was supported by the National Key R&D Program of China
(No0.2017YFB1002700) and National Natural Science Foundation of
China (N0.61632003, No.61661146002, No.61631001).

REFERENCES

[1] R. A. Abrams and S. E. Christ. Motion onset captures attention. Psycho-

logical Science, 14(5):427-432, 2003.

R. Alghofaili, M. Solah, H. Huang, Y. Sawahata, M. Pomplun, and L.-F.

Yu. Optimizing visual element placement via visual attention analysis.

In The 26th IEEE Conference on Virtual Reality and 3D User Interfaces,

2019.

R. Baloh, L. Richman, R. Yee, and V. Honrubia. The dynamics of ver-

tical eye movements in normal human subjects. Aviation, space, and

environmental medicine, 54(1):32-38, 1983.

F. Berton, A.-H. Olivier, J. Bruneau, L. Hoyet, and J. Pettré. Studying gaze

behaviour during collision avoidance with a virtual walker: Influence of

the virtual reality setup. In The 26th IEEE Conference on Virtual Reality

and 3D User Interfaces, 2019.

[5] G. Boccignone and M. Ferraro. Modelling gaze shift as a constrained

random walk. Physica A: Statistical Mechanics and its Applications,

331(1-2):207-218, 2004.

G. Boccignone and M. Ferraro. Ecological sampling of gaze shifts. IEEE

transactions on cybernetics, 44(2):266-279, 2013.

A. Borji. Boosting bottom-up and top-down visual features for saliency

estimation. In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pp. 438-445. IEEE, 2012.

[8] A. Borji, D. N. Sihite, and L. Itti. Probabilistic learning of task-specific
visual attention. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pp. 470-477. IEEE, 2012.

[2

—

3

—

[4

—_

[6

[t}

[7

—

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

D. Brockmann and T. Geisel. The ecology of gaze shifts. Neurocomputing,
32:643-650, 2000.

M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M. Hu. Global
contrast based salient region detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(3):569-582, 2015.

H. Cho and S. Yoon. Divide and conquer-based 1d cnn human activity
recognition using test data sharpening. Sensors, 18(4):1055, 2018.

R. Cong, J. Lei, C. Zhang, Q. Huang, X. Cao, and C. Hou. Saliency
detection for stereoscopic images based on depth confidence analysis and
multiple cues fusion. IEEE Signal Processing Letters, 23(6):819-823,
2016.

M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara. Predicting Human Eye
Fixations via an LSTM-based Saliency Attentive Model. IEEE Transac-
tions on Image Processing, 2018.

A. T. Duchowski. Gaze-based interaction: A 30 year retrospective. Com-
puters & Graphics, 73:59-69, 2018.

W. Einhéuser, F. Schumann, S. Bardins, K. Bartl, G. Boning, E. Schneider,
and P. Konig. Human eye-head co-ordination in natural exploration.
Network: Computation in Neural Systems, 18(3):267-297, 2007.

Y. Fang, R. Nakashima, K. Matsumiya, I. Kuriki, and S. Shioiri. Eye-head
coordination for visual cognitive processing. PloS one, 10(3):e0121035,
2015.

S. L. Franconeri and D. J. Simons. Moving and looming stimuli capture
attention. Perception & psychophysics, 65(7):999-1010, 2003.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d
graphics. ACM Trans. Graph., 31(6):164:1-164:10, Nov. 2012.

J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In Advances
in neural information processing systems, pp. 545-552, 2007.

Z.Hu, S. Li, and M. Gai. Temporal continuity of visual attention for future
gaze prediction in immersive virtual reality. Virtual Reality & Intelligent
Hardware, 2020.

Z. Hu, C. Zhang, S. Li, G. Wang, and D. Manocha. Sgaze: A data-
driven eye-head coordination model for realtime gaze prediction. /[EEE
transactions on visualization and computer graphics, 25(5):2002-2010,
2019.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

L. Itti. Models of bottom-up and top-down visual attention. PhD thesis,
California Institute of Technology, 2000.

L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention
for rapid scene analysis. IEEE Transactions on pattern analysis and
machine intelligence, 20(11):1254-1259, 1998.

G. A. Koulieris, G. Drettakis, D. Cunningham, and K. Mania. Gaze
prediction using machine learning for dynamic stereo manipulation in
games. In 2016 IEEE Virtual Reality (VR), pp. 113-120. IEEE, 2016.

M. Kiimmerer, T. S. Wallis, L. A. Gatys, and M. Bethge. Understanding
low-and high-level contributions to fixation prediction. In 2017 IEEE
International Conference on Computer Vision, pp. 4799-4808, 2017.

D. Li, J. Zhang, Q. Zhang, and X. Wei. Classification of ecg signals based
on 1d convolution neural network. In 2017 IEEE 19th International Con-
ference on e-Health Networking, Applications and Services (Healthcom),
pp. 1-6. IEEE, 2017.

G. D. Logan, W. B. Cowan, and K. A. Davis. On the ability to inhibit
simple and choice reaction time responses: a model and a method. Jour-
nal of Experimental Psychology: Human Perception and Performance,
10(2):276, 1984.

D. Mardanbegi, K. Pfeuffer, A. Perzl, B. Mayer, S. Jalaliniya, and
H. Gellersen. Eyeseethrough: Unifying tool selection and application
in virtual environments. In The 26th IEEE Conference on Virtual Reality
and 3D User Interfaces, 2019.

J. L. Myers, A. D. Well, and R. F. Lorch Jr. Research design and statistical
analysis. Routledge, 2013.

R. Nakashima, Y. Fang, Y. Hatori, A. Hiratani, K. Matsumiya, I. Kuriki,
and S. Shioiri. Saliency-based gaze prediction based on head direction.
Vision research, 117:59-66, 2015.

V. Navalpakkam and L. Itti. An integrated model of top-down and bottom-
up attention for optimizing detection speed. In 2006 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 2, pp. 2049-2056. ieee, 2006.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Lue-
bke, and A. Lefohn. Towards foveated rendering for gaze-tracked virtual
reality. ACM Trans. Graph., 35(6):179:1-179:12, Nov. 2016.

[34]

[35

—_

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

(45]

[46]

T. Pfeiffer, M. E. Latoschik, and I. Wachsmuth. Evaluation of binocular
eye trackers and algorithms for 3d gaze interaction in virtual reality en-
vironments. JVRB-Journal of Virtual Reality and Broadcasting, 5(16),
2008.

Y. Pinto, A. R. van der Leij, I. G. Sligte, V. A. Lamme, and H. S. Scholte.
Bottom-up and top-down attention are independent. Journal of vision,
13(3):16-16, 2013.

Y. Rai, J. Gutiérrez, and P. Le Callet. A dataset of head and eye movements
for 360 degree images. In Proceedings of the 8th ACM on Multimedia
Systems Conference, pp. 205-210. ACM, 2017.

K. G. Rottach, R. D. Von Maydell, V. E. Das, A. Z. Zivotofsky, A. O.
Discenna, J. L. Gordon, D. M. Landis, and R. J. Leigh. Evidence for
independent feedback control of horizontal and vertical saccades from
niemann-pick type c disease. Vision research, 37(24):3627-3638, 1997.
J. Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85-117, 2015.

V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Masia,
and G. Wetzstein. Saliency in vr: How do people explore virtual envi-
ronments? IEEE Transactions on Visualization and Computer Graphics
(IEEE VR 2018), 24(4):1633-1642, April 2018.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929-1958, 2014.

N. T. Swafford, D. Cosker, and K. Mitchell. Latency aware foveated ren-
dering in unreal engine 4. In Proceedings of the 12th European Conference
on Visual Media Production, p. 17. ACM, 2015.

N. T. Swafford, J. A. Iglesias-Guitian, C. Koniaris, B. Moon, D. Cosker,
and K. Mitchell. User, metric, and computational evaluation of foveated
rendering methods. In Proceedings of the ACM Symposium on Applied
Perception, pp. 7-14. ACM, 2016.

V. Tanriverdi and R. J. K. Jacob. Interacting with eye movements in virtual
environments. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI *00, pp. 265-272. ACM, New York,
NY, USA, 2000.

R. S. Woodworth and H. Schlosberg. Experimental psychology. Oxford
and IBH Publishing, 1954.

Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao. Gaze prediction
in dynamic 360 immersive videos. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5333-5342, 2018.

A. Yarbus. Eye movements and vision. 1967. New York, 1967.

	Introduction
	Related Work
	Gaze Prediction
	Gaze Behavior Analysis
	Application of Eye Tracking

	Data Collection
	Stimuli
	Participants
	System Details
	Procedure
	Dataset

	Gaze Behaviors in Dynamic Scenes
	Gaze Analysis
	Gaze-Object Analysis
	Gaze-Head Analysis
	Gaze-Saliency Analysis

	DGaze Model
	Sequence Encoder Module
	Saliency Encoder Module
	Gaze Prediction Module
	Model Training Process

	Results
	Baselines and Evaluation Metrics
	Baselines
	Evaluation Metrics

	Model Evaluation
	Realtime Prediction Performance
	Future Prediction Performance
	Runtime Performance

	Performance of DGaze_ET
	Analysis of our CNN Architecture
	User Study
	Gaze-Contingent Rendering
	Performance in a Game

	Conclusion, Limitations, and Future Work

