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Figure 1: Dam breaking with a drilling platform. The proposed semi-analytical solid boundary handling approach is integrated into a
projection-based method to support coupling between particles and boundary triangles. Velocities of particles are color coded.

Abstract
The treatment of solid boundary conditions remains one of the most challenging parts in the SPH method. We present a semi-
analytical approach to handle complex solid boundaries of arbitrary shape. Instead of calculating a renormalizing factor for
the particle near the boundary, we propose to calculate the volume integral inside the solid boundary under the local spherical
frame of a particle. By converting the volume integral into a surface integral, a computer aided design (CAD) mesh file repre-
senting the boundary can be naturally integrated for particle simulations. To accelerate the search for a particle’s neighboring
triangles, a uniform grid is applied to store indices of intersecting triangles. The new semi-analytical solid boundary handling
approach is integrated into a position-based method [MM13] as well as a projection-based [HWW∗20] to demonstrate its
effectiveness in handling complex boundaries. Experiments show that our method is able to achieve comparable results with
those simulated using ghost particles. In addition, since our method requires no boundary particles for deforming surfaces, our
method is flexible enough to handle complex solid boundaries, including sharp corners and shells.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Smoothed particle hydrodynamics (SPH) is well suited for simu-
lating various phenomena including water splashes [SP09, ICS∗14,
BK15], multiphase flows [YCR∗15, YML∗17] as well as viscous

† xiaowei@iscas.ac.cn
‡ lisheng@pku.edu.cn

fluids [TDF∗15, PICT15, WKBB18]. For a thorough review of its
application in computer graphics, we refer to a recent tutorial pro-
vided by Koschier et al. [KBST19]. However, treating solid wall
boundaries still remains one of the most challenging parts in SPH.
Over the past three decades, a variety of different strategies (e.g.,
ghost particles [AIA∗12], density maps [KB17], semi-analytical
boundaries [FLR∗13], etc) have been developed for implementing
solid walls in SPH , each with its advantages and disadvantages.
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According to the standard SPH formulation, if a particle is lo-
cated near the solid boundary, only particles inside the fluid do-
main contribute to the summation of the particle interaction. This
one-sided particle approximation does not give correct solutions,
because the field variables inside the solid boundary usually can-
not be reduced to zero, e.g., when calculating the particle density.
To develop a practical solid boundary handling technique, both
accuracy and efficiency should be considered in priority. Among
all solid boundary handling techniques, ghost particles are most
commonly used. However, applying ghost particles is not an el-
egant way to deal with large planar regions. To fully remove the
particle deficiency problem, one or multiple layers of ghost par-
ticles are necessary to be sampled [AIA∗12, HLW∗12]. Unfortu-
nately, the large number of ghost particles has a great side effect
to the simulation performance. To reduce the computational cost,
semi-analytical methods aim to convert the volume integral over
the boundary into a surface integral. However, existing methods ei-
ther cannot handle complex boundary geometries [KBLP04,FM15]
or are only suited to take the boundary integral for the gradient
term [FLR∗13, MFK∗15].

In this paper, we propose to take the semi-analytical approach
of [KBLP04,FM15] and extend it to support complex solid bound-
aries of arbitrary shape. To compute the kernel correction, Fuji-
sawa and Miura [FM15] have simplified solid boundaries into pla-
nar ones, which works well for simple boundaries. However, the
results are unpredictable for boundaries of complex geometries,
e.g., those with sharp bumpy corners. We instead propose to take
the volume integral inside the solid boundary. We reformulate the
integral under the local spherical frame of each particle and then
convert it into a surface integral. To avoid introducing a disconti-
nuity between adjacent triangles, we propose to cluster all triangles
that belong to the same plane together and apply the same integra-
tion method for each cluster. To accelerate the query for a particle’s
neighboring triangles, we propose to use a uniform grid to store tri-
angle indices. We do the intersection test between a triangle and a
grid cell, then store the triangle index into the corresponding grid
cell if intersection occurs. During the particle simulation, the query
for neighboring triangles can then be executed in parallel on mod-
ern GPUs. Finally, we integrate our semi-analytical approach into
a position-based method [MM13] as well as a projection-based in-
compressible SPH solver [HWW∗20].

Experiments show that our method is able to achieve comparable
results with those simulated with ghost particles. No boundary par-
ticles are required for deforming surfaces, therefore, our method
is flexible enough to handle complex solid boundaries, including
sharp corners and shells.

2. Related Work

Over the past three decades, many boundary handling techniques
have been developed in SPH. We review the most popular and com-
monly used ones in this section.

Particle-based methods. The idea of introducing boundary par-
ticles for incompressible fluid surface flows can be traced back
to the repellent-particle approach [Mon94, MK09]. This method
is easy to implement as the Lennard-Jones potential force in its

original form is typically modeled as the repulsion between a
fluid particle and a boundary particle. Due to its flexibility, Becker
and Teschner [BT07] applied repellent boundary particles in a
weakly compressible SPH solver for free surface flows. Becker
et al. [BTT09] extended the repellent-particle approach by apply-
ing direct forcing based on a predictor-corrector scheme for rigid-
fluid coupling, thus a large range of slip and Neumann bound-
ary conditions can be imposed for arbitrarily boundaries. Ihm-
sen et al. [IAGT10] presented a new boundary method by com-
bining the idea of direct forcing with the pressure-based frozen-
particles method [SSP07] to enforce non-penetration of rigid ob-
jects for large time steps. Nevertheless, the repellent-particle ap-
proach still leads to spurious behaviours. For example, it is im-
possible to maintain particles stationary next to a vertical wall
in the presence of gravity with hydrostatic conditions. Libersky
and Petschek [PL93] therefore introduced ghost particles to re-
flect a symmetrical surface boundary condition. Randies and Liber-
sky [RL96] extended the ghost particle method to more general
boundary conditions by assigning the same boundary value of a
field variable to all the ghost particles. Compared to the repellent-
particle approach, the ghost-particle approach shows smoother be-
havior of the particles in proximity of the solid boundary [CL03].
Marrone et al. [MAC∗11] proposed to use fixed ghost particles to
enhance treatment of solid boundaries. Unlike the standard ghost
particle technique which mirrors each particle near the solid bound-
ary into a ghost at each time step, fixed ghost particles are created
only once at the beginning of the simulation. Therefore it is pos-
sible to enforce both Dirichlet and Neumann conditions through a
moving least-square interpolation. Based on fixed ghost particles,
He et al. [HLW∗12] introduced staggered particles to flexibly con-
trol diverse solid boundary conditions. Akinci et al. [AIA∗12] pro-
posed to sample boundary particles only on the surface of rigid
objects, which has the advantage of allowing us to deal with lower-
dimensional rigid bodies including shells and rods. Their work was
later extended to support elastic solids [ACAT13]. To resolve per-
ceivable oscillations of particles in planar regions due to erroneous
computation of boundary normals, Band et al. [BGT17] applied a
moving least square method [ABC∗03] to improve the accuracy in
computing surface normals and the distance information. Gissler et
al. [GPB∗19] presented a strong fluid-rigid coupling for SPH fluids
and rigid bodies with particle-sampled surfaces.

Grid-based methods. Solid wall boundaries can alternatively
be sampled into Eulerian grids, among which the signed distance
field is most commonly used to prevent particles from penetrat-
ing into the wall [HKK07,APKG07]. However, without solving the
particle deficiency problem, numerical artifacts can arise near the
solid boundaries. Koschier and Bender [KB17] proposed to extend
the fluid’s density field into the boundary geometry and discretize
the function using cubic polynomials on a sparse grid without any
dependence on particle sampling. To further improve the perfor-
mance, Bender et al. [BKWK19] suggested not to precompute the
density field on the grid, but instead determine the intersection vol-
ume between a particle’s support domain and the boundary on a
coarse grid. Compared to particle-based boundary handling tech-
niques, the grid-based methods shows better performance of neigh-
borhood searches. However, the grid-based methods are not flexible
enough to handle solid boundaries of arbitrary shape. For example,
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it is impossible to discretize lower-dimensional shells or rods with
Eulerian grids.

Semi-analytical methods. Since the computational efforts re-
quired for both particle-based and grid-based boundary techniques
are not negligible, Kulasegaram et al. [KBLP04] introduced a wall
renormalization factor by using a semi-analytical formulation to ac-
count for the missing area of the kernel support. Unfortunately, this
attempt did not present a clear and simple way to compute renor-
malization terms for all geometries. To handle solid boundaries of
arbitrary shape, Ferrand et al [FLR∗13] proposed a new approach to
calculate the renormalization factor in 2D space by considering the
local shape of a wall as well as the position of a particle relative to
the wall. Mayrhofer et al. [MFK∗15] extended the proposed semi-
analytical boundary conditions to 3D. Chiron et al. [CdOL19] fur-
ther adapted the Laplacian operator to the fully discrete approach
of the walls. However, their method only considers how to take the
boundary integral for the gradient term. For an arbitrary function,
its integral over the boundary volume usually cannot be converted
into a surface integral with the divergence theorem. Alternatively,
Monaco et al. [MMG∗11] proposed to take the boundary integra-
tion under the local spherical frame of each particle. Fujisawa et
al. [FM15] follow the same principle and improved the density cal-
culation for PBF [MM13]. Tang et al. [TCJ20] have recently in-
tegrated the semi-analytical wall boundary conditions into a pro-
jection method to model incompressible and divergence-free flow
with a free surface.

3. Semi-analytical Boundary Handling

In the standard SPH methodology, a continuum is represented with
a set of particles denoted by the subscript i in a domainF . Consider
a smooth function f defined over the domain F , the standard SPH
interpolation of f at particle i is given by

fi = ∑
j

V j f jWi j, (1)

where j denotes all neighboring particles, V j is the volume of par-
ticle j, f j = f (x j) and Wi j =W (‖xi−x j‖,h) with h being the sup-
port radius. In general, the above particle approximation of f is of
second order accuracy [LL03]. However, if a particle is located near
the boundary, where the normalization condition is not satisfied, the
value of f will be underestimated due to the particle deficiency. A
feasible solution to solve this problem is to renormalize fi as fol-
lows [RL96]

fi =
1
γi

∑
j

V j f jWi j, (2)

where γi = ∑ j V jWi j is the integral of the SPH kernel W inside the
computational domain F . The advantage of applying Equation 2 is
its simplicity and improved accuracy over standard SPH [HLL∗12].
However, in simulating incompressible free surface flows, if the
solid is not explicitly modeled, it is not easy to distinguish numer-
ical errors caused by solid wall boundaries from those caused by
free surface boundaries. As demonstrated in Figure 2, although the
two particles are located at different places, they will be treated the
same if Equation 2 is applied to compute the corresponding phys-
ical quantities.

Figure 2: Sketch of a static water.

Before diving into the details of our semi-analytical solid bound-
ary handling approach, let us revisit Equation 1 from a continuum
approach. If a particle is located near the solid wall boundary, the
integral representation of the function f has the following identity

f (x) =
∫
D

f
(
x′
)

ω
(
x−x′,h

)
dx′

=
∫
F

f
(
x′
)

ω
(
x−x′,h

)
dx′+

∫
B

f
(
x′
)

ω
(
x−x′,h

)
dx′

= fF (x)+ fB(x),
(3)

where D denotes the support domain of a particle, fF (x) de-
notes the weighted integral inside the computational domain F and
fB(x) denotes the weighted integral inside the solid boundary B.
The value of fF (x) can be simply calculated according to Equa-
tion 1. The difficulty lies in how to calculate fB(x) efficiently and
accurately.

For the convenience of the following discussion, let us denote

g
(
x,x′

)
≡ f

(
x′
)

ω
(
x′−x

)
. (4)

According to the discussion in [FLR∗13], if there exists a function
G
(
x,x′

)
satisfying

g
(
x,x′

)
=∇x′ ·G

(
x,x′

)
(5)

with ∇x′ · representing the divergence operator with respect to x′,
the volume integral of g

(
x,x′

)
over the boundary B can be trans-

ferred to a surface integral of G
(
x,x′

)
over ∂B. For an arbitrary

function g
(
x,x′

)
, finding such a function G

(
x,x′

)
is never an easy

task. However, if f belongs to a radial basis function (RBF), i.e.,
f (x′) = f (

∥∥x′−x
∥∥), the derivation can be greatly simplified. By

invoking that the SPH kernel function ω is a radial basis function
as well, it is possible to rewrite the integral of f inside B as

fB(x) =
∫
B

g
(
x,x′

)
dV

=
∫

Ω

(∫ h

r(θ,ϕ)
g(r)r2dr

)
sinθdθdϕ

=
∫

Ω

G(r)|hr(θ,ϕ) dΩ

, (6)

where Ω is the solid angle that measures the amount of field of view
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that the boundary B covers from x, G(r) is a single variable func-
tion satisfying G′(r) = g(r)r2 with r =

∥∥x′−x
∥∥, G(r)|hr(θ,ϕ) =

G(h)−G(r (θ,ϕ)) and dΩ = sinθdθdϕ is a formula for the dif-
ferential in spherical coordinates. The advantage of applying Equa-
tion 6 is that the boundary integral is taken over a two-dimensional
space, therefore, a computer aided design (CAD) mesh file repre-
senting the boundary can be integrated for the boundary integral.

Comparison to [FLR∗13]. The question is whether we can
still apply the method in [FLR∗13] to take the integration for
an arbitrary radial basis function g(r). To answer this question,
let us take g(r) = 1− r (r ≤ 1) for example. By invoking that

G(x,x′) = h(r) (x−x′)
r3 meets ∇x′ ·G(x,x′) = g(r) if there exists a

function h(r) satisfying h′(r) = g(r)r2, the formulation of G(x,x′)
for g(r) = 1− r can be written as

G(x,x′) = (
1
3
− r

4
+

C
r3 )∗ (x−x′), (7)

where C is a constant. To integrate 7 over the surface boundary, we
actually fall into a dilemma. If we set C = 0, the value of G(x,x′)
is not zero on the boundary of the support domain. Otherwise, if
we set C = −1/12 (which guarantees G(x,x′) = 0 for r = 1), the
surface integral may involves singular values. Since no feasible so-
lutions are available in Ferrand et al. [FLR∗13]’s original work to
handle above two cases, it is not possible to directly apply their
method to take the integration for arbitrary radial basis functions.

4. Numerical Computation of the Boundary Integral

Since triangular meshes are most widely used in computer graph-
ics, we only discuss how to compute fB for boundary represen-
tation with triangular meshes. We believe other types of surface
meshes are compatible with our method as well. We will first
present general principles before then describing the details for spe-
cial cases. For simplicity, let us consider an infinitesimal triangle s
that is located completely inside the support domain of a particle i,
as shown in Figure 3. By applying an one-point Gaussian quadra-
ture rule [GW69], the boundary integral fBis (x) over the infinitesi-
mal triangle s results in the following approximation

fBis = G(r)|hr(‖xs−xi‖) Ωs, (8)

where xs represents a sampling point for the one-point Gauss
quadrature, Ωs represents the solid angle of triangle s with respect
to xi. From Equation 8, it can be noted that the accuracy of fBis de-
pends on how we select the sampling point xs as well as on how we
compute Ωs. For the special case when all three vertices are inside
the support domain, Oosterom and Strackee [OS83] provided a use-
ful formula for calculating the solid angle subtended by a triangular
surface. However, their method cannot be easily extended to deal
with more complex cases, e.g., when a triangle intersects with the
boundary of particle i’s support domain. To uniformly compute Ωs
for all possible intersections between a triangle and a particle’s sup-
port domain, let us present the standard formula which calculates
Ωs as follows

Ωs =
(ns ·ds)As

l2
s

, (9)

where ns is the normal vector of triangle s, As denotes the trian-
gle area, ls denotes the distance from xi to triangle s and ds is a

Figure 3: Sketch of the intersection between particle i’s support
domain and the solid boundary.

normalized vector pointing from the closest point on triangle s to
xi. Note that the term (ns ·ds)As is an approximation of the spher-
ical surface area, whose value is usually underestimated. Since the
value of l2

s is also underestimated, the final result is mostly over-
estimated compared to an analytical solution. To demonstrate this
problem, we apply Equation 9 to compute the solid angle of the
intersection of a plane with a particle’s support domain. As shown
in Figure 4, if the plane is discretized into a low-resolution triangu-
lar mesh, the numerical result is overestimated. Its accuracy can be
improved by increasing the mesh resolution. According to our test,
the numerical value matches the exact value when the mesh res-
olution is increased by an order of 64, which means around 1000
triangles will be located inside the support domain of the particle.
The large number of neighboring triangles makes it impractical for
implementing a particle simulation.

Ideally, it is preferred to use a coarse mesh to reduce the com-
putational cost, we therefore propose to calculate the solid angle as
follows

Ωs =
(ns ·dn)As

A0
Ω0, (10)

where A0 is the area of the intersection between the plane and parti-
cle i’s support domain, Ω0 denotes the solid angle of A0, dn denotes
the normalized vector from the closest point xn on coplanar trian-
gles to xi. The formulae which compute A0 and Ω0 are written as

A0 = π

(
h2− l2

n

)
and Ω0 = 2π

(
1− ln

h

)
(11)

with ln representing the distance from xi to coplanar triangles. Note
that the major difference in Equation 10 is that we use dn instead of
ds. In other words, if two triangles are located on the same plane,
the same vector dn will be used to compute solid angles. This tri-
angle clustering algorithm also helps remove the discontinuity be-
tween adjacent triangles, as demonstrated in Figure 5. Figure 4
shows Equation 10 gets the exact solution for all three different
resolution of triangular meshes.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

134



Yue Chang, Shusen Liu, Xiaowei He, Sheng Li & Guoping Wang / Semi-analytical Solid Boundary Conditions for Free Surface Flows

(a) (b) (c)

0

1

2

3

a b c

So
lid

 A
n

gl
e

Analytical Eq.(8) Eq.(9)

(d)

Figure 4: Evaluation of our method in calculating the solid angle
for different resolution of surface boundaries.

(a) Without triangle clustering (b) With triangle clustering

Figure 5: (a)Without triangle clustering, discontinuous artifacts
may arise between two adjacent triangles; (b)With triangle clus-
tering, the discontinuity is removed.

The final unresolved issue is how to select the sampling point xs
for G(·). The most obvious way is to select the closest point on tri-
angle s. However, the above-mentioned discontinuity problem still
exists. We therefore use the same strategy as how we calculate dn
and set xs = xn. For completeness, the final formula for computing
the boundary integral of a triangle s is written as follows

fBis = G(r)|hr(‖xn−xi‖)
(ns ·dn)As

A0
Ω0 (12)

One side effect with this strategy is that the boundary integral can
be overestimated, as demonstrated in Figure 6(a). It explains the
mismatch between the numerical results and exact values in com-
puting the volume fraction, as shown in Figure 6(b). Nevertheless,
Equation 12 still captures the increasing trend of the volume frac-
tion. In particular, it has the advantage of being robust to handle
complex boundaries, such as the boundary with a small dihedral
angle.

𝐱𝑖 𝐱𝑖
ℎ ℎ

(a)

(b)

Figure 6: (a) Compared to the exact value(left), our semi-
analytical boundary integral results in a slightly overestimated
value(right); (b) Evaluation of our method in calculating volume
fractions for boundaries with different geometries.

4.1. Domain Decomposition

In our previous discussion, we only discussed a special case when
all three triangle vertices are inside a particle’s support domain S.
For this special case, the intersection area As can be easily com-
puted. To extend to other cases, we first do an intersection test
between particle i’s support domain and the plane containing tri-
angle s. If the distance from particle i to the plane is larger than
or equal to h, no intersection should happen between particle i’s
support domain and triangle s. Otherwise, the intersection prob-
lem can be simplified into a 2D intersection test between a circle
and a triangle. Our principle to calculate the intersection area is to
decompose the intersection region into a combination of triangles
and circular sectors. Figure 7 demonstrates all 9 different cases that
can result from the triangle / circle intersection. To distinguish each
case, we check how many vertices are inside the support domain as
well as how many edges intersect the support domain. By denot-
ing the number of vertexes inside the support domain as nv and the
number of edges intersecting S as ne, Algorithm 1 shows a pseudo
algorithm to distinguish between different cases according to the
values of nv and ne. For the special case of nv = 0 and ne = 0, we
do an additional test to distinguish case 1© from case 2© by check-
ing whether the center of the circle is located inside the triangle.
For more details on how to do the segment/sphere intersection as
well as how to calculate the areas for circular sectors and triangles,
we refer to Schneider’s book [SE02].
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① ②

③

④

⑤

⑥

⑦

⑧

⑨

Figure 7: An intuitive illustration for the domain decomposition
algorithm.

4.2. Nearest-Triangle Search

In querying neighboring triangles, a naive brute-force search for a
scene that consists of N particles and M triangles has a computa-
tional complexity of O(MN), which is too heavy for large-scale
simulations. We therefore use a strategy similar to the nearest-
particle search to accelerate the nearest-triangle search. For dy-
namic boundaries, the implementation on GPU can be divided into
the following stages.

1. Allocate a uniform grid that is large enough to cover all bound-
ary triangles as well as an array of the same size to store counters
indicating how many triangles intersect with each grid cell.

2. For each triangle, find all grid cells that have intersection with
the triangle and increase the corresponding intersection counter
by one. To avoid write conflicts when two triangles have inter-
sections with the same grid cell, use the atomic add function in
CUDA to do the addition.

3. Take a parallel prefix sum on the counter array and return the
total number of intersections as I.

4. Allocate an additional array of size I. For each triangle, do step

Algorithm 1 Domain Decomposition Algorithm
1: if nv = 0 then
2: switch ne do
3: case 0
4: Calculate As according to 1© or 2©;
5: case 1
6: Calculate As according to 5©
7: case 2
8: Calculate As according to 4©
9: case 3

10: Calculate As according to 3©
11: else if nv = 1 then
12: switch ne do
13: case 2
14: Calculate As according to 6©
15: case 3
16: Calculate As according to 7©
17: else if nv = 2 then
18: Calculate As according to 8©
19: else
20: Calculate As according to 9©

s

0 1 0

1 1 1

1 1 1

0 1 1 2 3 4 5 6 7

s s s s s s s

s

Prefix 

sum

Neighboring triangle indices of particle i

i

Figure 8: An illustration of the nearest-triangle search.

2 again and store the triangle index at a position demonstrated
in Figure 8.

5. For each particle, find the grid cell it belongs to, iterate over all
triangle indices stored at the nearest 27 (9 in 2d) grid cells and
remove duplicate triangle indices.

For static boundaries, note that the first four steps are taken only
once and can be precomputed at the beginning of simulation.

5. Incompressible Free Surface Flows

In this section, we evaluate the accuracy and efficiency of our semi-
analytical solid boundary handling technique with two common in-
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(a) signed distance field (b) ghost particle (c) our method

Figure 9: A comparison of different boundary handling tech-
niques. The total fluid particle is 89k for all three simulations while
(a) uses a signed distance field as the boundary and take an aver-
age of 19.7ms for each timestep, (b) uses 122k ghost particles as
the boundary and takes an average of 26.7ms per timestep, (c) use
12 triangles as the boundary and takes an average of 23.8ms per
timestep.

compressible fluid solvers, include both a position-based solver and
an projection-based solver. We only list key equations here and re-
fer readers to their original work for detailed discussions.

5.1. Position-based Fluids

The core idea of the position-based incompressible fluid solver is
to enforce the following constraint [MM13] for each particle i

Ci =

(
ρi

ρ0

)
−1 = 0 (13)

where ρ0 is the rest density and ρi is originally given by the stan-
dard SPH density estimator

ρi = ∑
j

m jωi j, (14)

which only considers fluid particles inside the computational do-
main. Due to an underestimation of density near the solid bound-
ary, Figure 9(a) shows obvious artifacts at the bottom of a tank for
the dambreak test.

To remove those artifacts, we reformulate ρi as

ρi = ρ
F
i +ρ

B
i (15)

where ρ
F
i is calculated with Equation 14. By assuming the density

inside the solid equals to ρ0, the boundary integral ρ
B
i is written as

ρ
B
is = ρ0 W |hr(‖xn−xi‖)

(ns ·dn)As

A0
Ω0, (16)

where W is a function satisfying dW/dr = ω. For the following
derivation, we additionally assume ρ

B
is is constant. Therefore, the

position update ∆xi for each particle i is just the same as its original
form [MM13]

∆xi =
1
ρ0

∑
j

(
λi +λ j

)
∇iωi j, (17)

𝜌𝑎𝑣𝑔 = 967𝑘𝑔/𝑚3 𝜌𝑎𝑣𝑔 = 3079𝑘𝑔/𝑚3 𝜌𝑎𝑣𝑔 = 7008𝑘𝑔/𝑚3

𝜌𝑎𝑣𝑔 = 988𝑘𝑔/𝑚3 𝜌𝑎𝑣𝑔 = 952𝑘𝑔/𝑚3 𝜌𝑎𝑣𝑔 = 954𝑘𝑔/𝑚3

𝑎 ℎ = 1.5𝑑 (𝑏)ℎ = 2𝑑 𝑐 ℎ = 2.5𝑑

Figure 10: A comparison between our method (bottom) and Fu-
jisawa and Miura [FM15](top). By assuming the rest density to
be 1000kg/m3, we calculate the average density for the one layer
of particles that are closest to the boundary. Note Fujisawa and
Miura’s method suffers a large error when the kernel size is large
while our method gets consistent results for all kernel sizes. The
density field is color coded.

where the scaling factor λi is written as

λi =−
Ci

∑k ‖∇Ci‖2 + ε
(18)

with ε representing a user specified relaxation parameter.

Evaluation. Figure 9(c) shows the effectiveness of the proposed
semi-analytical boundary technique in removing the artifacts near
the boundary. Compared to the one using a signed distance field,
our method only introduces 26% additional computational cost
while the simulation with ghost particles introduce 52%. In addi-
tion, Figure 10 shows a comparison between our method and the
one proposed by Fujisawa and Miura [FM15] in calculating the
density for particles near the boundary. Note the unsatisfactory re-
sults Fujisawa and Miura’s method gets when a large kernel size is
set for the density calculation. In contrast, our method is not sensi-
tive to the kernel size.

5.2. Projection-based Fluids

In a projection-based method, the objective is to solve the following
governing equations

∇·
(

∆t
ρ
∇p

)
=∇·v∗, inside Ω,

p = 0, on ∂Ω,

(19)

where p is the pressure and v∗ is the intermediate velocity. Follow-
ing the derivation in [HWW∗20], the pressure Poisson equation can
be discretized into

Li =Di. (20)

The Laplacian of pressure Li is written as

Li =
Âi

ρ0
pi−

1
ρ0

∑
j∈F

(
1
α̂i

+
1

α̂ j

)
ωi j

r2
i j

p j, (21)
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Figure 11: 3D dambreak with a squared obstacle. (a) Sketch of the
3D dambreak, please refer to [IV06] for the detailed configuration;
(b) Time evolution of the water height H4; (c)Time evolution of the
pressure P1.

where α̂i represents the total weight whose value is computed as

α̂i = max
(

α0,α
F∪B
i

)
, α

F∪B
i = ∑

j∈F∪B
ωi j, (22)

Âi represents the diagonal element of the coefficient matrix

Âi = max(A0−ABi ,A
F
i ), (23)

with ABi and AFi denoting two terms as follows

AFi = ∑
j∈F

(
1
α̂i

+
1

α̂ j

)
ωi j

r2
i j
, ABi = ∑

j∈B

(
1
α̂i

+
1

α̂ j

)
ωi j

r2
i j
.

(24)
Both α0 and A0 are precomputed values from an interior prototype
particle with full fluid neighbors at the beginning of simulation.
For more details on how we get Equation 22 and 23, please re-
fer to [HWW∗20] for the four different cases resulted from possi-
ble intersections between a particle’s support domain and the fluid
boundary.

The divergence of velocity is written as

Di =
1
∆t ∑

j∈F

(
1
α̂i

+
1

α̂ j

)(v∗j −v∗i
2

)
·ni j

ωi j

ri j
+DBi . (25)

whereDBi represents the source term introduced by ghost solid par-
ticles

DBi =
1
∆t ∑

j∈B

2∆v∗i j

α̂i
·ni j

ωi j

ri j
, (26)

with ∆v∗i j representing the relative velocity between particle i and

the ghost particle, please refer to [HWW∗20] for more details on
how to apply the solid wall boundary condition.

By assuming α̂ j = α̂i, ni j = ns and ∆v∗i j = ∆v∗s in the deriva-
tion, the integrands for ABi and DBi can be written as 2

α̂i

ω

r2 and
2

α̂i∆t (∆v∗s ·ns)
ω

r , respectively. According to Equation 8, the values

of α
B
i , ABi and DBi can be reformulated as follows

α
B
i = ∑

s
W |h‖xs−xi‖Ωs

ABi =
2
α̂i

∑
s

W rr∣∣h
‖xs−xi‖Ωs

DBi =
2

α̂i∆t ∑
s

∆v∗s ·nsW r∣∣h
‖xs−xi‖Ωs

, (27)

in which W r and W rr are two functions satisfying the following
identities

dW r

dr
=

ω

r
,

dW rr

dr
=

ω

r2 . (28)

Evaluation. To validate our boundary handling technique in
the projection-based method, we performed a 3D dam-break test-
case as illustrated in Figure 11(a). The simulation results are com-
pared to both the experimental results provided by Kleefsman et
al. [KFV∗05], as well as the projection method using fixed ghost
particles. The water height measured at probe H4 as well as the
pressure at P1 are plotted in Figure 11(b) and (c), respectively. It
can be noted that the simulation result with our semi-analytical
boundary conditions shows good agreement with the one using
fixed ghost particles. Nevertheless, during the impact of the fluid
against the obstacle, both methods predict the occurrence of the
pressure peaks at around t = 0.45s, which is 0.05s later than the
experimental data shows.

6. More Results

In this section, we demonstrate more examples simulated with
both the position-based and projection-based methods. All im-
plementations are based on the open source project PhysIKA
(https://github.com/PhysikaTeam/PhysIKA) and parallelized with
CUDA. Continuous collision detection (CCD) [WTTM15] be-
tween fluid particles and triangle mesh elements is used to prevent
fluid particles from penetrating into the solid. Performance mea-
surements are given for an Nvidia GeForce GTX 1060 and a 4-core
3.46 GHz Intel i7.

Industrial automotive application. Figure 12 shows a simpli-
fied simulation of the aquaplaning phenomenon between a tyre and
a thin layer of water. The tyre, which composed of 29414 vertices
and 57204 triangles as shown in Figure 12(a), is moved with a hori-
zontal velocity of 4.7m/s as well as a rotational velocity of 9.4m/s.
The water, which has a thickness of 25mm, is composed of 1.58
million particles. A one-way solid-fluid coupling is taken to simu-
late the complex interactions between the water and the tyre. Fig-
ure 12(b) and (c) show the simulation results at t = 0.8s with and
without the tyre. Note that the fluid is highly fragmented and takes
the shape of the grooves for particles near the contact region.

Dam-break with obstacles. Figure 1 shows the impact of ocean
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(a) Tyre mesh(57204 triangles) (b) With the tyre rendered (c) Without the tyre rendered

Figure 12: A one-way coupling example between a tyre and a thin layer of water. Velocities are color coded and the projection-based method
takes 9.75s per timestep on average.

Figure 13: 3D Dambreak with a complex obstacle. The pressure field is color coded and the projection-based solver takes 8.99s per timestep
on average.

Figure 14: A two-way coupling example consisting of 2.09 mil-
lions of particles and 91k triangles. The position-based solver takes
2.73s per timestep on average.

waves on the drilling platform. The water is composed of 1.86 mil-
lion particles and the drilling platform is composed of 95k trian-
gles. Figure 13 show another impact of water on a complex barri-
cade, where the water is composed of 1.86 million particles and the
barricade is composed of 3.6k triangles. Both the drilling platform
and the barricade contain irregular triangles. Note that the correct

behaviors are still captured between fluid particles and solid trian-
gles.

Two-way coupling. Finally, we demonstrate the flexibility of our
method in handling two-way solid-fluid couplings. The position-
based solver is applied to the fluid simulation. Since no particle
resampling is required for the solid boundary, a cloth modeled with
the projective peridynamics [HWW17] can be easily integrated to
realize a two-way coupling between the cloth and the water, as
shown in Figure 14. In this example, a maximum of 2.09 million
particles and 91k triangles are used to simulate the complex inter-
action between fluid and static/dynamic solid boundaries. For the
interaction between particles and the cloth, if a particle is approach-
ing from the opposite of the cloth, the triangle normal should be
flipped to avoid negative boundary integrals.

7. Conclusions

We presented a semi-analytical approach to handle complex solid
boundaries of arbitrary shape for particle simulations. By convert-
ing the volume integral into a semi-analytical surface integral, our
method allows a computer aided design (CAD) mesh file represent-
ing the boundary to be integrated for particle simulations. Experi-
ments show that our method is able to achieve comparable results
with those simulated using ghost particles. In addition, our method
shows better performance, especially for large-scale boundaries,
and is flexible enough to handle complex solid boundaries.

Our method also has some limitations. First, with the one-point

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

139



Yue Chang, Shusen Liu, Xiaowei He, Sheng Li & Guoping Wang / Semi-analytical Solid Boundary Conditions for Free Surface Flows

Gauss quadrature, our semi-analytical boundary integration results
in slightly overestimated values. Higher-order Gaussian quadrature
should be applied to improve the accuracy. Second, in simulating
interactions between the fluid and planar structures (e.g., a cloth),
we need to flip the normal of the boundary if a particle is ap-
proaching the solid from the other side of the surface. Finally, our
method cannot handle interactions between fluids and linear struc-
tures (e.g., hairs) yet. A possible remedy is to treat linear structures
as connected cylinders and calculate the boundary integral over the
cylinders. We will consider extending our method to handle linear
structures in our future work.
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