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Fig. 1. The Glass scene rendered by our approach (CPPM) and APPM [Kaplanyan and Dachsbacher 2013]. This scene includes transparent objects, a glossy
floor, and complex caustics. Both methods render the scene using 10,000 iterations (655M photons), and the bandwidth is initialized by 𝑘𝑁𝑁 = 10 for k-NN
search. For APPM, MSE=1.369, while for CPPM, MSE=1.047. We illustrate zoomed-in results and their heat map visualization, which show the absolute
difference w.r.t. the reference image, and the blue to red color scale corresponds to a small to large error range. CPPM exhibits better rendering quality.

We present a novel chi-squared progressive photon mapping algorithm
(CPPM) that constructs an estimator by controlling the bandwidth to obtain
superior image quality. Our estimator has parametric statistical advantages
over prior nonparametric methods. First, we show that when a probability
density function of the photon distribution is subject to uniform distribu-
tion, the radiance estimation is unbiased under certain assumptions. Next,
the local photon distribution is evaluated via a chi-squared test to deter-
mine whether the photons follow the hypothesized distribution (uniform
distribution) or not. If the statistical test deems that the photons inside
the bandwidth are uniformly distributed, bandwidth reduction should be
suspended. Finally, we present a pipeline with a bandwidth retention and
conditional reduction scheme according to the test results. This pipeline not
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only accumulates sufficient photons for a reliable chi-squared test, but also
guarantees that the estimate converges to the correct solution under our
assumptions. We evaluate our method on various benchmarks and observe
significant improvement in the running time and rendering quality in terms
of mean squared error over prior progressive photon mapping methods.

CCS Concepts: • Computing methodologies → Rendering; Ray trac-
ing.
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test, probability density function, radiance estimate, mean squared error
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1 INTRODUCTION
Monte Carlo path tracing is widely used to solve the rendering equa-
tion without introducing bias in photo-realistic rendering [Dutre
et al. 2006]. However, this method is not the optimal choice for
accurate lighting simulation, especially for caustics emanating from
small light sources. Photon mapping (PM) can solve the render-
ing equation by simulating the propagation and distribution of
energy through a large number of photons [Jensen 1996]. Compared
to path tracing, PM has many advantages in terms of rendering
caustics and other phenomena caused by light transport in Specu-
lar-Diffuse-Specular (SDS) paths, including lower-frequency glossy
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Fig. 2. Illustration of conditions for biased/unbiased estimation. (a) photon
distribution within different bandwidths may lead to unbiased/biased re-
sults; (b) a rendering instance corresponding to (a). Uniformly distributed
samples tend to make an unbiased estimation.

and diffuse inter-reflections [Jensen 2001]. However, the variance
and bias problems that arise due to kernel estimation in PM are
regarded as major issues. One way to alleviate these problems is to
use as many photons as possible. However, the memory overhead
can be high, and these artifacts may still exist.
Progressive photon mapping (PPM) theoretically solves these

problems by gathering infinite photons with limited memory over-
head, progressively alleviating the bias [Hachisuka et al. 2008]. PPM
generally launches multi-passes of photons and estimates the radi-
ance using progressive bandwidth reduction. There has been con-
siderable work on improving the performance of PPM, including
Stochastic Progressive Photon Mapping (SPPM) [Hachisuka and
Jensen 2009], Adaptive Progressive Photon Mapping (APPM) [Ka-
planyan and Dachsbacher 2013], and other variants [Fu and Jensen
2012; Knaus and Zwicker 2011; Weiss and Grosch 2012].
As the state of the art, APPM obtains an optimal convergence

of bandwidth, which is based on the adaptive estimation of pa-
rameters of local distributions [Kaplanyan and Dachsbacher 2013].
From a statistical view, this is a nonparametric method, which does
not hypothesize about the photon distribution. However, it is also
well-known that nonparametric methods are usually less efficient
than parametric methods when useful prior knowledge is utilized
[Györfi et al. 2006]. We find that a uniform distribution of photons
within the bandwidth may generally lead to unbiased estimation,
as illustrated in Figure 2. Our goal is to design an algorithm that
utilizes this finding by introducing the hypothesis about photon
distribution and statistical analysis of the distribution.
Main Results: We present a chi-squared progressive photon

mapping algorithm (CPPM) that uses the chi-squared test [Bagdon-
avicius and Nikulin 2011] to find a bandwidth such that the photon
distribution is consistent with a uniform distribution hypothesis and
leads to a feasible estimation of radiance. If such a bandwidth for a
pixel is determined, its bandwidth can remain unchanged while the
radiance estimation still theoretically converges to the true value.
The main contributions of our work include:

• We prove that the probability density function of the pho-
ton distribution subject to a uniform distribution would the-
oretically result in an unbiased estimator under our loca-
tion-independent assumption.

• We propose a progressive approach that can find a fixed band-
width to achieve high-quality rendering when the photon

distribution inside is consistent with a statistical hypothe-
sis, i.e. uniform distribution. The local photon distribution is
evaluated via a chi-squared test to determine whether it is
consistent with the hypothesis or not.

• We present a pipeline based on our novel scheme to han-
dle bandwidth reduction and preservation according to the
chi-squared test result. The bandwidth reduction scheme
helps reduce bias while maintaining low variance.

• We provide a theoretical analysis of our algorithm’s fast con-
vergence and show that it degenerates to SPPM in the worst
case, while it can theoretically converge to the correct value
under our assumptions.

2 RELATED WORK
In this section, we give a brief overview of prior works in photon
mapping and related areas.

2.1 Photon Mapping and Progressive Schemes
Photon mapping (PM) has been widely used to render different sce-
narios and phenomena, including participating media [Jarosz et al.
2011], time-varying volume data [Jönsson and Ynnerman 2017],
and indirect illumination in diffuse or glossy scenes [Herzog et al.
2007]. It calculates a hit point for each pixel and sets a bandwidth to
collect photons located inside it. The region within this bandwidth
is a searching area. Progressive photon mapping (PPM) [Hachisuka
et al. 2013, 2008] is a popular progressive scheme that uses a pa-
rameter 𝛼 to progressively reduce the bandwidth. Stochastic PPM
(SPPM) [Hachisuka and Jensen 2009] makes it possible to compute
an accurate average radiance value in a region (pixel’s measurement)
using multiple distributed ray tracing passes.
In general, reducing the bias (visual blur) or variance (visual

noise) to yield a high-quality image can be challenging in photon
mapping. There is a considerable amount of work on improving
rendering performance on photon density estimates [Hachisuka
et al. 2013]. Hachisuka et al. [2010] presented a quantitative error
estimation framework for photon density. Fu and Jensen [2012]
described an adaptive noise reduction technique. Schregle [2003]
presented a bias compensating operator that adapts the bandwidth
to the photon distribution. Knaus and Zwicker [2011] presented
a probabilistic derivation that includes convergence analysis for
variance and bias. Kaplanyan and Dachsbacher [2013] deduced an
optimal parameter of 𝛼 = 2/3 for pixel measurement estimation
to minimize asymptotic mean squared error (AMSE) and proposed
adaptive PPM that optimally balances bias and variance to minimize
overall error based on approximations. These methods can analyze
the bias and variance and improve the accuracy of the radiance
estimate. We also try to improve convergence and performance of
PPM by reducing bias and variance.

2.2 Other Improvements on Photon Mapping
PPM has also been extended to handle dynamic scenes [Weiss
and Grosch 2012], integrated with bidirectional path tracing into a
framework using vertex connection and merging (VCM) [Georgiev
et al. 2012] or unified path sampling (UPS) [Hachisuka et al. 2012],
integrated with Markov Chain Monte Carlo methods [Šik et al.
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2016], used with out-of-core distributed processing [Günther and
Grosch 2014], and used as a temporal estimator for transient ren-
dering [Jarabo et al. 2014].
Some considerations of photon gathering include a hierarchical

algorithm used to compute the radiance from a photonmap [Spencer
and Jones 2009a], GPU-based spatial data caching and interpola-
tion [Wang et al. 2009], and unbiased photon gathering [Qin et al.
2015]. Photon tracing techniques can result in uniform relative er-
ror in the radiance estimate [Chen et al. 2011; Gruson et al. 2016;
Hachisuka and Jensen 2011]. Optimized emission strategies can
automatically guide photons towards regions and provide substan-
tial variance reduction [Grittmann et al. 2018]. Photon relaxation
methods are used to remove noise from photon maps and to mini-
mize the residual bias [Spencer and Jones 2009b, 2013a,b]. Different
filter kernels [Hernández et al. 2014], varying bandwidths [Schregle
2003], adaptive kernel shapes [Schjøth 2009], and boundary bias
removal [Havran et al. 2005] have also been proposed for radiance
estimates. Jakob et al. [2011] used a Gaussian mixture model to effi-
ciently create noise-free renderings. Zhu et al. [2020] applied deep
neural network to predict a kernel function to aggregate photon
contributions for radiance estimation. In contrast to these meth-
ods, we aim to improve the rendering performance by finding a
bandwidth with low bias and variance.

3 MOTIVATION AND RATIONALE
Conventional progressive photon mapping formulations assume
that the estimation can only converge to the true pixel value when
the bandwidth converges to zero and the cumulative number of
photons is unlimited [Hachisuka et al. 2008]. APPM [Kaplanyan and
Dachsbacher 2013] presented the optimal bandwidth convergence
rate 𝑂 (𝑁−1/6) in terms of asymptotic MSE (AMSE), as well as the
computation of the optimal bandwidth by estimating variance and
bias during each iteration with approximations. However, the esti-
mated variance and bias may not provide sufficient accuracy when
the sample size is not big enough, which limits its performance.

If the radiance estimation is unbiased within a fixed bandwidth, i.e.
the expected value of the estimate equals the true value, the radiance
estimated using an infinite number of photons can still converge to the
true value according to the Big Number Theory, even if this bandwidth
does not converge to zero. Based on this principle, a key aspect of
our approach is to determine whether a bias-free region with a
bandwidth can be found (illustrated in Figure 2). Our solution to
find such bandwidth is to progressively reduce the bandwidth, and
suspend the reduction based on the chi-squared test, which can be
used to evaluate the property of photon distribution. In the field
of statistics, this test can evaluate the goodness of fit between an
observed distribution and a hypothetical probability distribution
[Cochran 1952].
We organize the exposition of our approach as follows:

• We first set up the theoretical basis of the radiance estima-
tion of our algorithm (Section 4). We argue that if the photon
distribution within the bandwidth is consistent with uniform
distribution, the pixel measurement estimation is unbiased
under our assumptions. The uniform distribution serves as

our hypothesized distribution. Under this condition, this band-
width should not reduce.

• Next, the key issue is to find an effective solution for iden-
tifying whether the photon distribution is consistent with
the hypothesized distribution or not. To this end, we use a
chi-squared test to perform hypothesis testing on the photon
distribution within the bandwidth (Section 5).

• The bandwidth should reduce when the chi-squared test
deems the photons are not consistent with hypothesized uni-
form distribution. However, prior reduction schemes can not
work well with this test. Therefore, we propose a novel re-
duction scheme that guarantees that the estimate converges
to the correct value under our assumptions. (Section 6).

• Based on these principles, we present a novel pipeline of
our progressive photon mapping algorithm that takes into
account the pixel measurement estimation, the chi-squared
test, and the bandwidth reduction scheme (Section 7).

4 THEORETICAL FOUNDATION
In this section, we start from a formulation of the pixel measurement
estimation and its unbiased condition within a bandwidth; then we
present the photon density function for multiple hit points based on
a unified space; finally, we propose a sufficient unbiased condition
for radiance estimation under our assumptions.

4.1 Pixel Measurement Estimation
The pixel measurement 𝐼 in photon mapping can be estimated by
kernel estimation, as proposed in APPM [2013] :

𝐼 =
1
𝑁 𝐽

𝑁∑
𝑖=1

𝐽∑
𝑗=1

𝑘𝑅𝑖 ( ®𝑥𝑖 − ®𝑝𝑖, 𝑗 )𝜓𝑖, 𝑗 , (1)

where 𝐼 is the estimate of the pixel measurement 𝐼 ; 𝑁 is the number
of hit points of a pixel; 𝐽 is the size of the photonmap per iteration;𝑅𝑖
is the bandwidth at the 𝑖-th iteration; 𝑘𝑅𝑖 is a normalized function
with bandwidth 𝑅𝑖 ; ®𝑥𝑖 is the location of the hit point; ®𝑝𝑖, 𝑗 is the
location of the 𝑗-th photon in the 𝑖-th photon map; and𝜓𝑖, 𝑗 is the
contribution of the full path constructed between the eye sub-path
ending at ®𝑥𝑖 and the light sub-path ending at ®𝑝𝑖, 𝑗 . 𝜓𝑖, 𝑗 includes
various factors such as BRDF value, contributions of the sub-paths,
and other possible factors [Kaplanyan and Dachsbacher 2013].

We make a location-independent assumption to regulate𝜓𝑖, 𝑗 , i.e.
we assume that 𝜓𝑖, 𝑗 is independent of the location of the photon
®𝑝𝑖, 𝑗 for any hit point ®𝑥𝑖 . This assumption can help to obtain a theo-
retically unbiased condition, which will be analyzed and discussed
in Subsection 4.3. Similar to conventional methods, an isotropic and
circular on-surface kernel function and a planar assumption of the
searching area [Hey and Purgathofer 2002] are used. In addition,
we assume that any two hit points are independent, and any two
photons are also independent.

From Eq. (1) and according to the principle in Section 3, having a
bias-free bandwidth 𝑅 for the pixel measurement 𝐼 should satisfy

𝐼 = E


1
𝑁 𝐽

𝑁∑
𝑖=1

𝐽∑
𝑗=1

𝑘𝑅 ( ®𝑥𝑖 − ®𝑝𝑖, 𝑗 )𝜓𝑖, 𝑗
 , (2)
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Fig. 3. Illustration of different hit points’ searching areas being aligned to
a unified domain Ω𝑅 . All the photons inside the corresponding searching
areas are also mapped to this unified space.

where 𝐸 [𝑋 ] indicates the expectation of expression 𝑋 .
Eq. (2) refers to the estimation of a probability density function

based on statistical sampling. To take advantage of the uniform
distribution of photons as illustrated in Figure 2, we transform the
sampling of photons in Eq. (2) to an integration of the photon density
function as

𝐼 = E
[

1
𝑁

𝑁∑
𝑖=1

∫
M

𝑘𝑅 ( ®𝑥𝑖 − ®𝑥)𝑝 ( ®𝑥)Ψ( ®𝑥𝑖 , ®𝑥)d®𝑥
]
, (3)

where M is the manifold of the all scene surfaces in R3; 𝑝 is the
photon density function corresponding to𝜓𝑖, 𝑗 in Eq. (2), andΨ( ®𝑥𝑖 , ®𝑥)
indicates the contribution of all possible full paths constructed by
the eye path ending at ®𝑥𝑖 and the light paths ending at ®𝑥 .

4.2 Density Function in Unified Space
Given that the𝑁 hit points in Eq. (3) are located at different positions,
their associated searching areas also do not coincide. Therefore, we
construct a unified space Ω with a unified domain Ω𝑅 on it, and we
then align different hit points to the origin of this 2D space Ω and
their searching areas to this unified domain Ω𝑅 . This process can
be treated as a conversion from the scene space to a unified space,
as illustrated in Figure 3. A position ®𝑥 within the searching area of
®𝑥𝑖 can be mapped to ®𝑥 ′ ∈ Ω𝑅 through

®𝑥 ′ = (⟨®𝑥 − ®𝑥𝑖 , ®𝑢𝑖 ⟩, ⟨®𝑥 − ®𝑥𝑖 , ®𝑣𝑖 ⟩) , (4)
where ®𝑢𝑖 and ®𝑣𝑖 are two orthonormal bases specified on the tangent
plane at hit point ®𝑥𝑖 , and ⟨·, ·⟩ indicates the operator of the inner
product.
Then the photon density function over ®𝑥𝑖 ’s searching area is

mapped to be a function 𝑝𝑖 over Ω𝑅 :
𝑝𝑖 ( ®𝑥 ′(𝑥 ′𝑢 , 𝑥 ′𝑣)) = 𝑝 (𝑥 ′𝑢 ®𝑢𝑖 + 𝑥 ′𝑣®𝑣𝑖 + ®𝑥𝑖 ) . (5)

Specifically, 𝑝𝑖 (®0) = 𝑝 ( ®𝑥𝑖 ). Function 𝑝𝑖 over Ω𝑅 is an aligned 2D
form of the PDF centered at ®𝑥𝑖 .

Similarly, Ψ( ®𝑥𝑖 , ®𝑥) is also mapped to the unified space as
Ψ̃𝑖 ( ®𝑥 ′(𝑥 ′𝑢 , 𝑥 ′𝑣)) = Ψ( ®𝑥𝑖 , 𝑥 ′𝑢 ®𝑢𝑖 + 𝑥 ′𝑣®𝑣𝑖 + ®𝑥𝑖 ) . (6)

After the 𝑁 photon density functions are aligned, we define 𝑝 ,
the average photon density function (APDF) over Ω𝑅 as

𝑝 ( ®𝑥 ′) = 1
𝑁

𝑁∑
𝑖=1

𝑝𝑖 ( ®𝑥 ′). (7)

4.3 Unbiased Condition
The condition for a bias-free bandwidth in Eq. (3) can be transformed
to an integration over the unified domain Ω𝑅 by Eqs. (5), (6) as

𝐼 = E
[∫

Ω𝑅

𝑘𝑅 ( ®𝑥 ′)
1
𝑁

𝑁∑
𝑖=1

𝑝𝑖 ( ®𝑥 ′)Ψ̃𝑖 ( ®𝑥 ′)d®𝑥 ′
]
. (8)

Under the location-independent assumption, Ψ̃𝑖 ( ®𝑥 ′) becomes a
constant function for a given hit point ®𝑥𝑖 because Ψ̃𝑖 ( ®𝑥 ′) is inde-
pendent to the location ®𝑥 . We can then take Ψ̃𝑖 ( ®𝑥 ′) outside of the
integration, and by applying Eq. (7), we have

𝐼 = E
[∫

Ω𝑅

𝑘𝑅 ( ®𝑥 ′)𝑝 ( ®𝑥 ′)d®𝑥 ′
]

E
[
Ψ̃
]
. (9)

If APDF is a constant function, i.e. 𝑝 ( ®𝑥 ′) ≡ 𝑝

(
®0′

)
, then

𝐼 = E
[∫

Ω𝑅

𝑘𝑅 ( ®𝑥 ′)d®𝑥 ′
]

E
[
𝑝
]

E
[
Ψ̃
]
. (10)

Obviously, the first term on the right side equals one. Note that
since the expected value of a radiance estimate with an infinitely
small kernel bandwidth corresponds to the exact radiance [Knaus
and Zwicker 2011], we can express 𝐼 as

𝐼 = E
[
Ψ̃
]

E
[
𝛿 ( ®𝑥 ′)

]
= E

[
Ψ̃
]

E
[
𝑝

(
®0
)]

, (11)

where 𝛿 is the Dirac delta function. Eq. (11) explains that Eq. (10)
is true. In summary, the pixel measurement estimation is unbiased
if APDF is a constant function (uniform distribution of photons)
under our assumptions. We provide a detailed proof in Appendix A.
In general, radiance over a surface is mainly determined by the

photon density. Therefore, when the photons are uniformly dis-
tributed within a relatively small region, the contributions of the
constructed paths are usually close and can be approximately treated
as irrelevant to the photons’ locations. Consequently, when the
APDF is a constant function, the location-independent assumption
is usually tenable. However, there still exist some special cases in
practice in which this location-independent assumption may be
violated. As a result, bias may be introduced in these cases. We will
discuss these cases in Subsection 9.4.

5 PHOTON DISTRIBUTION EVALUATION
In this section, we present techniques to determine whether the
photons satisfy the constant condition of APDF.

5.1 Chi-squared Test Overview
We use the chi-squared test to evaluate the property of photon distri-
bution through an evaluation of the goodness of fit. The chi-squared
test can evaluate the goodness of fit between an observed distribu-
tion and a hypothetical probability distribution [Cochran 1952]. It
first sets up a null hypothesis, i.e. there is no difference between the
observed distribution and the hypothetical probability distribution.
Next, it calculates a statistic (chi-squared statistic) based on the
observed distribution to decide whether to reject the null hypothe-
sis. Compared to other goodness of fit tests, including the KS-test
(Kolmogorov–Smirnov test) and the Cramér–von Mises criterion
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(a) Reference (b) SPPM (c) APPM (d) CPPM

Fig. 4. Validity of photon alignment on a curved surface (Torus). We high-
light the adaptive bandwidth (bottom row) computed by CPPM with better
results (error visualization in the middle row). The black to white color scale
corresponds to a small to large bandwidth range.

[Stephens 1974], the chi-squared test is lightweight because it does
not require an empirical distribution function of the samples.

5.2 Photon Projection and Alignment
To perform the chi-squared test on the accumulated photons within
a bandwidth, all the photons in multiple searching areas should be
aligned to the unified domain Ω𝑅 according to the conversion in
Subsection 4.2 as illustrated in Figure 3.

Given that the photons associated with a hit point can be located
on curved surfaces, the photons should first be projected to the
tangent plane of this hit point ®𝑥𝑖 according to the planar assumption.
Each projected photonmaintains its attributes, including orientation
and distance, with respect to hit point, as well as its contribution to
the radiance. We then align these projected photons to the unified
domain Ω𝑅 by Eq. (4). The above process can handle the photon at
any position in the scene space regardless of whether the surface
is flat or there is occlusion due to the projection. Taking a Torus
scene as the example, we show our strategy is workable for the
curved surface and can compute an appropriate bandwidth with
better results, as shown in Figure 4. We provide a formulation of this
process that combines the projection and alignment of the photons
in Appendix B.

5.3 Chi-squared Test over Photon Distribution
In this section, we explain how to perform the chi-squared test,
including how to calculate the chi-squared test statistic and when to
reject the null hypothesis. The null hypothesis of the chi-squared test
in CPPM is that there is no difference between the aligned photons
and uniform distribution, i.e. the APDF is a constant function.
The chi-squared test requires grouping the samples into cate-

gories. To this end, we first partition the unified domain Ω𝑅 into
𝑛𝑎 concentric annuli of equal areas. Next, we further partition each
annulus into 𝑛𝑠 sectors of equal areas, as illustrated in Figure 5. The
effect of different values of 𝑛𝑎 and 𝑛𝑠 will be discussed in Subsec-
tion 9.3. Using equally sized sectors makes it easier to compute the
sector to which each photon belongs. Other partitioning schemes
can also be used if the sector size is not too small.

𝑅𝑖

SectorAnnulus

𝜒2 < 𝑐𝜒

𝑅𝑖+1

𝑅𝑖

Fig. 5. Disc shaped domain Ω𝑅 with bandwidth 𝑅𝑖 (left); partitioning of
this disc into annuli with equal areas, and then further partitioning of
annuli into sectors with equal areas (middle). When reducing the bandwidth,
our method tests the distribution in every sub-disc (concentric discs with
different radius), finds one (green region) not rejected by the chi-squared
test, and assigns its radius to the bandwidth 𝑅𝑖+1 (right).

The value of the chi-squared test statistic is

𝜒2 =

𝑛𝑎∑
𝑎=1

𝑛𝑠∑
𝑠=1

(𝑂𝑎,𝑠 −𝑀𝑝𝑎,𝑠 )2

𝑀𝑝𝑎,𝑠
=

𝑛𝑎∑
𝑎=1

𝑛𝑠∑
𝑠=1

𝑂2
𝑎,𝑠

𝑀𝑝𝑎,𝑠
−𝑀, (12)

where𝑀 is the total number of photons collected in Ω𝑅 ; 𝑝𝑎,𝑠 is the
expected probability of the 𝑠-th sector of the 𝑎-th annulus under
the null hypothesis, and 𝑂𝑎,𝑠 is the number of photons in the 𝑠-th
sector of the 𝑎-th annulus.𝑀 , 𝑝𝑎,𝑠 and 𝑂𝑎,𝑠 are shared by multiple
hit points of a pixel. When all sectors have the same area and the
null hypothesis is that the average photon density function is a
constant function, 𝑝𝑎,𝑠 is simply 1

𝑛𝑎𝑛𝑠
. The chi-squared test statistic

approximately follows the chi-squared distribution with (𝑛𝑎𝑛𝑠 − 1)
degrees of freedom if the null hypothesis is true.
A predetermined significance level 𝛼𝜒 (typically 0.05) is used to

decide whether to reject the null hypothesis. The quantile (1 − 𝛼𝜒 )
of the chi-squared distribution with (𝑛𝑎𝑛𝑠 − 1) degrees of freedom
is taken as a critical value 𝑐𝜒 , i.e. the probability that X larger than
𝑐𝜒 is 𝛼𝜒 , where X is a random variable following the chi-squared
distribution with (𝑛𝑎𝑛𝑠 − 1) degrees of freedom. The chi-squared
test statistic 𝜒2 is compared to the critical value 𝑐𝜒 . If 𝜒2 is larger
than 𝑐𝜒 , the null hypothesis is rejected. Otherwise, the chi-squared
test does not reject the null hypothesis, and the distribution within
this bandwidth is deemed to make an unbiased estimation under
our assumptions.

6 PROGRESSIVE BANDWIDTH SCHEME
In this section, we introduce a novel bandwidth strategy based on
the results of the chi-squared test in Subsection 6.1. Accordingly,
we set a photon count lower bound for the bandwidth in Subsec-
tion 6.2, which can guarantee infinite photons being collected pro-
gressively for radiance estimation as well as sufficient photons for
the chi-squared test.

6.1 Bandwidth Reduction
The result of the chi-squared test will be either "rejecting the null
hypothesis" or "not rejecting the null hypothesis," as described in
Subsection 5.3. If the test fails to reject the null hypothesis and
deems that the estimation is unbiased, the bandwidth should re-
main unchanged. Otherwise, the bandwidth should be reduced to
eliminate bias.
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Fig. 6. Illustration of bias variation along with changing of the bandwidth
in kernel estimation, taking the green point in the left figure as the central
point. Compared to SPPM, CPPM can reduce its bandwidth to the largest
possible bandwidth that can make bias-free estimation at the 𝑖-th iteration.

To determine a new bandwidth for the next iteration, an additional
chi-squared test is performed on each sub-disc in Ω𝑅 using the
statistics of the previously collected photons. In order to find an
ideal bandwidth as soon as possible, the bandwidth is reduced using
the following scheme.

• If any of the distribution within a sub-disc is not rejected by
the chi-squared test, we select the largest of the sub-discs not
rejected by the test and assign its radius as the new bandwidth
for the next iteration (right of Figure 5). The benefit of this
approach is illustrated in Figure 6, and the reduced bandwidth
can obtain a bias-free result while helping reduce the variance
due to a relatively large bandwidth when compared to SPPM.
Our reduction rate 𝑅𝑖+1/𝑅𝑖 is at least

√
1
𝑛𝑎

.
• If none of these distributions passes the test, we reduce the
bandwidth in a novel way. Here, we introduce a new parame-
ter 𝑘 (constant) to regulate the next bandwidth as:

𝑅2
𝑖+1 = 𝑘𝑅2

𝑖 , 0 < 𝑘 < 1. (13)

Generally, 𝑘 controls the rate of bandwidth reduction with
a reduction rate 𝑅𝑖+1/𝑅𝑖 =

√
𝑘 . A smaller 𝑘 is appropriate

for reducing the bandwidth quickly but may also lead to an
increase in variance due to an insufficient number of photons.
Wewill theoretically analyze the convergence of our approach
as a function of 𝑘 in Section 8, and discuss the selection of 𝑘
empirically in Subsection 9.3.

After the new bandwidth is determined, we discard the statistics
of previously collected photons and partition the new domain Ω𝑅𝑖+1 .

6.2 Constraint on Photon Accumulation
Our method should follow the general rule that the number of ac-
cumulated photons should increase to guarantee convergence. Fur-
thermore, the chi-squared test also requires sufficient photons to
ensure its accuracy. Therefore, a certain number of photons needs to
be accumulated before the chi-squared test is performed. However,
when CPPM decides to reduce the bandwidth, the reduction rate
𝑅𝑖+1/𝑅𝑖 is at least min

(√
𝑘,

√
1
𝑛𝑎

)
according to Subsection 6.1. This

is very aggressive if the bandwidth keeps reducing continuously.
In order to satisfy the convergence rule mentioned above, we set

a progressively increasing lower bound on photon accumulation. It
is also used as a necessary condition for the chi-squared test, i.e. the

Fig. 7. Our pipeline with the novel modules highlighted. The chi-squared
test is activated only if enough photons are collected, and the bandwidth
reduction occurs only if the chi-squared test rejects the null hypothesis.

test will be performed only when the number of photons collected
within the current bandwidth exceeds this lower bound.

We denote the lower bound as 𝐵 and introduce a parameter 𝛽
to control the increment of 𝐵 to guarantee convergence. For a hit
point, the lower bound at the 𝑖-th iteration is 𝐵𝑖 , and successive 𝐵𝑖+1
is given as

𝐵𝑖+1 =

{
𝐵𝑖 if 𝑅𝑖 is fixed in the i-th iteration;
𝛽𝐵𝑖 if 𝑅𝑖 is reduced in the i-th iteration,

(14)

where 𝛽 is a user-predefined parameter. 𝛽 > 1 can guarantee infinite
photons being collected for radiance estimation. 𝐵1 is set to 𝑘𝑁𝑁 of
𝑘-NN search to trigger the chi-squared test at the very beginning.

We will analyze the convergence of our algorithm due to 𝛽 theo-
retically in Section 8 and discuss the selection of 𝛽 empirically in
Subsection 9.3.

7 ALGORITHM AND IMPLEMENTATION
Based on the aforementioned chi-squared test on the photon distri-
bution and bandwidth strategy, we present our chi-squared PPM
(CPPM) algorithm in this section.

7.1 Pipeline
The overall pipeline of the CPPM method is illustrated in Figure 7.
Each iteration starts with an eye pass (i.e. ray tracing) to obtain a
hit point for each pixel, followed by a photon tracing and collec-
tion module, where a new photon map is generated; photon col-
lection is then performed. The two highlighted modules, photon
distribution chi-squared test (see Section 5) and bandwidth reduction
(see Section 6), are the two novel components in this pipeline. The
chi-squared test will be activated only if a certain number of photons
has been accumulated within the same bandwidth, as discussed in
Subsection 6.2. Otherwise, the algorithm will jump from photon
collection directly to a flux accumulation module while keeping
the bandwidth unchanged. Meanwhile, if the chi-squared distribu-
tion does not reject the null hypothesis, the pipeline will also skip
over the bandwidth reduction to a flux accumulation module with-
out bandwidth reduction. Each pixel will be re-traced regardless of

ACM Trans. Graph., Vol. 39, No. 6, Article 240. Publication date: December 2020.



CPPM: Chi-squared Progressive Photon Mapping • 240:7

the bandwidth reduction in the distributed ray tracing pass. Conse-
quently, a new hit point associated with the corresponding pixel
will be generated in the next iteration. During each iteration, the
pixel measurement estimation module can synthesize the rendering
results using Eq. (1).

In prior SPPM algorithms, the bandwidth is updated during each
iteration. In contrast, the bandwidth reduction in CPPM happens
only if the chi-squared test rejects the null hypothesis. Our method
continues to collect photons and then checks for photon distribution
even though the test failed to reject the null hypothesis in last itera-
tion. Since any false null hypothesis will be rejected using infinite
samples [Cochran 1952], our method can progressively reduce the
probability of not rejecting a false null hypothesis.

7.2 Photon Collection
An extra data module is required to perform the chi-squared test
for each pixel other than the conventional setting in SPPM. Ac-
cording to the method discussed in Subsection 5.3, the number of
photons accumulated within the bandwidth and within each sector
should be stored. Particularly, we discard those photons with zero
contribution.
Specifically, we use two types of photon counters for each pixel

in CPPM: one is to record the total number of photons in the current
bandwidth, which is used to determine whether a sufficient number
of photons has been collected; the other one is to record the number
of photons in each sector for the chi-squared test statistic (Eq. 12).
Therefore, only additional (𝑛𝑎𝑛𝑠 + 1) integers are required for each
pixel, and the additional memory overhead (generally 10% ∼ 20% in
different scenes over SPPM) is constant during all these iterations.

8 CONVERGENCE ANALYSIS
Generally, the chi-squared test is assumed to produce a correct result,
i.e. a true null hypothesis is never rejected by the chi-squared test,
while a false null hypothesis is always rejected. We first analyze the
worst case: the null hypothesis is always rejected, i.e. CPPM fails to
find a desired bandwidth and the bandwidth keeps reducing. Next,
we analyze the opposite case in which we can find the bandwidth
that satisfies the hypothesis.
If the null hypothesis is always rejected, i.e., CPPM fails to find

a bandwidth that satisfies the hypothetical model, the bandwidth
will keep reducing and converge to 0. According to our progressive
bandwidth scheme, the bandwidth convergence can be given as

𝑅𝑁 = 𝑂

(
𝑁
− 1

2 log 𝛽
𝑘

1
𝑘

)
. (15)

We give a detailed analysis in Appendix C. If 𝛽𝛼−1 = 𝑘𝛼 , this band-
width convergence is asymptotically equivalent to that of SPPM,
which is 𝑂

(
𝑁 (𝛼−1)/2

)
according to [Knaus and Zwicker 2011].

We adopt the definition of the average radiance estimation error
𝜖𝑁 from Knaus and Zwicker [2011]. Based on their probabilistic
framework, we can derive the convergence rate of bias and variance

from the convergence rate of bandwidth:

E[𝜖𝑁 ] =


𝑂

(
𝑅2
𝑁

)
= 𝑂

(
𝑁
− log 𝛽

𝑘

1
𝑘

)
, 𝛽 > 1

𝑂

(
log𝑁
𝑁

)
, 𝛽 = 1

(16)

Var[𝜖𝑁 ] = 𝑂

(
𝑁−1𝑅−2

𝑁

)
= 𝑂

(
𝑁
−1+log 𝛽

𝑘

1
𝑘

)
. (17)

Specifically, the variance does not converge if 𝛽 = 1. Based on the
analysis in [Kaplanyan and Dachsbacher 2013] and the formulas
in Eqs.(16,17), the optimal AMSE[𝐼𝑁 ] can be obtained if Var[𝜖𝑁 ] =
E[𝜖𝑁 ]2, which requires 𝛽 = 1

𝑘2 ,

AMSE[𝐼𝑁 ] = 𝑂

(
𝑁− 2

3
)
. (18)

We get the same optimal AMSE convergence rate as SPPM/APPM,
when we have the same optimal bandwidth convergence rate.

If the chi-squared test does not reject the null hypothesis, based
on our assumptions given in Subsection 4.1, the pixel measurement
can be estimated in an unbiased way, while the bandwidth does
not reduce. Therefore, the estimator becomes a pure Monte Carlo
estimator, and we have Var[𝜖𝑁 ] = 𝑂 (𝑁−1) and 𝐸 [𝜖𝑁 ] = 0. Based
on the analysis in [Kaplanyan and Dachsbacher 2013], AMSE[𝐼𝑁 ]
can be approximated as

AMSE[𝐼𝑁 ] ≈ 1
𝑁

Var[𝜙𝐿] + E[𝜙]2 (Var[𝜖𝑁 ] + E[𝜖𝑁 ]2)

= 𝑂 (𝑁−1). (19)
This indicates that CPPM can theoretically converge and achieve
very fast convergence even if the bandwidth does not reduce.

Although CPPM degenerates to SPPM in the worst case, we still
benefit from the situation when the samples are consistent with the
null hypothesis. Although the chi-squared test cannot be expected to
always produce correct results, our experimental results (Section 9)
demonstrate that this test is quite reliable in practice.

9 EXPERIMENT AND DISCUSSION
In this section, we provide experiments and results on various bench-
marks and make comparisons between CPPM, SPPM [Hachisuka
and Jensen 2009] (baseline), and APPM [Kaplanyan and Dachs-
bacher 2013] (state of the art). In addition, we discuss the effect of
the parameters related to CPPM in the experiment, including initial
value (𝑘𝑁𝑁 ), convergence rate related parameters (𝛽 and 𝑘), domain
partition (𝑛𝑎 , 𝑛𝑠 ), and test significant level (𝛼𝜒 ).

9.1 Settings
In total, we use 11 benchmarks to evaluate the performance. The
Box, Dining Room, Glass, and Water scenes are rendered based on
the Mitsuba renderer [Jakob 2010], while others are rendered based
on NVIDIA OptiX 6.0 [Parker et al. 2010], which demonstrates the
compatibility and availability of our method. Mitsuba runs on an In-
tel(R) Xeon(R) Silver 4210 CPU on a Linux System, while OptiX runs
on an NVIDIA GeForce RTX 2080 GPU with an Intel(R) Core(TM)
i7-8700 CPU on a Windows system.
The initial bandwidths for the SPPM, APPM, and CPPM are de-

termined by setting 𝑘𝑁𝑁 = 10 using 𝑘-NN search [Hachisuka and
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Table 1. Benchmarks (in alphabetical order) for performance comparison on the iterations and time (sec.) between CPPM and APPM. MSE value obtained
from SPPM after 1,000 iterations is used as the baseline. CPPM shows significant improvement over APPM on all scenes.

Scene Box Clocks Conference Cornell Diamond Dining Glass Sibenik Sponza Torus Water

Overview

MSE ≤ 4.825 2.288 12.663 11.494 4.233 19.145 10.525 18.068 15.442 3.500 11.870

SPPM Iters 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Time 128.685 78.802 108.082 232.403 120.371 166.856 371.223 123.665 70.701 39.254 205.176

APPM Iters 765 655 538 763 678 961 778 788 823 556 870
Time 101.415 48.391 62.782 195.307 81.137 162.215 300.411 88.289 56.283 25.091 204.589

CPPM Iters 376 327 239 547 362 541 582 562 499 252 629
Time 63.505 24.483 27.614 151.350 59.506 101.389 255.023 69.435 35.861 11.283 176.873

(a) Reference (b) SPPM (c) APPM (d) CPPM

Fig. 8. Close-up images of the Torus scene for comparison. The heat map
visualizes the absolute difference w.r.t. the reference image.

Jensen 2009]. The optimal setting 𝛼 = 2/3 is used for SPPM [Ka-
planyan and Dachsbacher 2013]. In our implementation, we use
𝑛𝑎 = 2, 𝑛𝑠 = 6, 𝑘 = 0.8 and 𝛽 = 1.2 for CPPM unless otherwise
stated. The same number of photons (216) per iteration is used for
all the methods.

9.2 Results
Performance comparisons between different methods for all the
benchmarks are listed in alphabetical order in Table 1. The MSE
value obtained after running SPPM with 1,000 iterations is used as
the baseline. Then we record the number of iterations and corre-
sponding time cost (in seconds) required to reach that MSE. These
benchmarks include scenes with caustics (Box and Torus), scenes
with glossy surfaces (Cornell Box), more challenging scenes with
complicated caustics (Diamond, Glass, and Water), and other scenes
of different scales without caustics. Overall, CPPM outperforms
prior algorithms on all the scenes with the fewest iterations and the
lowest time costs. We also show their plots over 1,000 iterations in
the supplemental material.

We show the difference between each algorithm in Figure 8. In a
local region, SPPM has noticeable noise and severe blur problems
at discontinuities; APPM has some visual noise near discontinuities,
as pointed out by Kaplanyan and Dachsbacher [2013]; CPPM has
less blur or noise.
To evaluate CPPM’s performance, we plot the bandwidth and

absolute error over iterations in Figure 9, picking two points, A
and B (illustrated in Figure 8), as representatives. We provide these
algorithms with the same photon maps for fair comparisons. Point

A is a typical point with smooth illumination and Point B is at the
boundary of a caustic.

At Point A (see Figure 9 (a)(b)), where the initial bandwidth brings
lower bias, CPPM’s bandwidth is fixed for 1,000 iterations and is
generally larger than the bandwidth of SPPM and APPM. It is apt
to collect more photons, so CPPM’s error quickly converges to 0.
APPM’s bandwidth varies drastically, which may introduce extra
bias and variance. This is because its bandwidth is obtained by
estimating bias and variance, which may have some fluctuations.

At Point B (see Figure 9 (c)(d)), where the initial bandwidth brings
severe bias, CPPM quickly reduces its bandwidth to find a distribu-
tion close to uniform distribution using our bandwidth selection
scheme. The bandwidth reduces like a step function. APPM also
quickly reduces its bandwidth to lower the bias. However, many
approximations used in computing the optimal bandwidth make
APPM underestimate the bias.

These diagrams exhibit different behaviors of CPPM, SPPM, and
APPM in terms of bandwidth reduction. CPPM’s bandwidth behav-
ior exhibits a more robust evaluation of the local photon distribution
than APPM. The error caused by CPPM during these iterations tends
to be consistently less than that generated by SPPMorAPPM, regard-
less of whether the bandwidth reduces or not. This also indicates
that CPPM’s faster convergence to a correct value is due to its adap-
tive bandwidth reduction. In fact, CPPM can obtain a bandwidth
consistent with the null hypothesis under different conditions. This
strategy helps to reduce the bias and variance to achieve better per-
formance compared to other methods. We also provide bandwidth
visualizations of different methods in the supplementary video.

We design an artware scene including a translucent object, a
glossy material, a mirror, and complex caustics for comparison, as
shown in Figure 10. CPPM demonstrates better results than APPM.
We provide more results with comparisons between different meth-
ods to show the advantages of our method in the supplementary
material.

9.3 Parameters and Discussions
We investigate the reliability of CPPM by tuning the parameters
used in the experiments that may affect the performance.

9.3.1 Initial Bandwidth 𝑘𝑁𝑁 . Generally, the initial bandwidth de-
termined by 𝑘𝑁𝑁 is set to 10 in prior progressive methods. We vary
this value on the Cornell Box (simple flat surfaces with smooth
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Fig. 9. Visualization of bandwidth and error at two representative points: A and B. These diagrams are in log-log plot except (b). The highlighted bandwidth
(green) of CPPM in (c) indicates that the chi-squared test has been performed at that iteration. CPPM exhibits better performance than SPPM and APPM.
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Fig. 10. Artware scene rendered by our approach (CPPM) and APPM [Kaplanyan and Dachsbacher 2013] (10,000 iterations). We illustrate zoomed-in results
with absolute error visualization. The overall MSE of APPM and CPPM are 1.670 and 0.840, respectively. CPPM exhibits better rendering quality.

radiance) and the Water (complex caustic effects) scene and show
the effect of 𝑘𝑁𝑁 in Figure 11. For further comparisons, we also
use a global bandwidth (10−1 scene scale) for APPM, which is also
used in [Kaplanyan and Dachsbacher 2013]. We can see that CPPM
always outperforms APPM using different 𝑘𝑁𝑁 on different types of
scenes, which demonstrates the reliability of our method regardless
of the variation in the initial value. In fact, the plots of APPM using
different initial bandwidth almost coincident in (b).
The optimal initial bandwidth is generally related to the type of

scene. If a scene has smooth radiance like Cornell Box, there are
many pixels where the photon distribution within a large band-
widths is consistent with the null hypothesis, then a larger initial
bandwidth will help to collect more photons and reduce the variance.
In contrast, in a scene like Water, which has more complicated radi-
ance, the photon distribution within a large bandwidth has a high
probability of being rejected by the test. Therefore, using a smaller
initial bandwidth will help quickly find the bandwidth where the
photon distribution is consistent with the null hypothesis, reducing
the bias in some early iterations.

9.3.2 Convergence Control 𝑘 , 𝛽 . As described in Subsection 5.3 and
analyzed in Section 8, 𝛽 and 𝑘 theoretically affect the convergence
of CPPM. We vary values of 𝛽 and 𝑘 and show the results in Table 2,
where the first, the fourth, and the last group of parameters satisfy
𝛽 ≈ 1/𝑘2.
If the null hypothesis is always rejected, CPPM will degenerate

to SPPM, and using 𝛽 = 1/𝑘2 should have the best performance
according to Section 8. If 𝛽 < 1/𝑘2, the bandwidth reduces more
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Fig. 11. Various 𝑘𝑁𝑁 for CPPM over iterations on the Cornell Box (no
caustics) and the Water (caustics) scenes. APPM-GR represents a 10−1 scene
scale is used as the initial bandwidth.

Table 2. Different 𝑘 and 𝛽 for the Sibenik (no caustics) and the Diamond
and Torus (caustics) scenes after 1, 000 iterations.

𝑘 , 𝛽 0.7, 2.0 0.8, 1.0 0.8, 1.2 0.8, 1.6 0.9, 1.2

Sibenik MSE 15.929 14.887 14.907 15.445 15.074
Time 110.722 108.216 110.969 108.582 110.500

Diamond MSE 2.907 2.347 2.350 2.692 2.467
Time 125.911 127.206 126.063 126.989 132.470

Torus MSE 1.758 1.452 1.435 1.572 1.446
Time 42.096 41.566 41.482 41.752 42.365

aggressively and is apt to quickly find a desired bandwidth consis-
tent with the null hypothesis. However, if the null hypothesis is
always rejected, aggressively reducing the bandwidth will result
in high variance. In Table 2, we can see that 𝛽 < 1/𝑘2 have better
performance, which implies that most pixels can achieve a band-
width where the null hypothesis is not rejected by the chi-squared
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Table 3. Water scene rendered using different 𝑛𝑎 and 𝑛𝑠 by CPPM. 𝑛𝑎 = 2
and 𝑛𝑠 = 6 achieves the best performance.

MSE 𝑛𝑎 = 1 𝑛𝑎 = 2 𝑛𝑎 = 3
𝑛𝑠 = 4 12.315 10.326 10.555
𝑛𝑠 = 6 12.006 10.237 10.385
𝑛𝑠 = 8 11.981 10.248 10.448
𝑛𝑠 = 10 12.051 10.271 10.452

Table 4. Cornell Box and Sponza rendered with different 𝛼𝜒 with 1, 000
iterations .

MSE 𝛼𝜒 = 0.01 𝛼𝜒 = 0.05 𝛼𝜒 = 0.10
Cornell 0.871 1.095 1.651
Sponza 11.371 10.359 10.842

test. Even if 𝛽 = 1.0, where the bandwidth reduction is extremely
aggressive and the convergence cannot be guaranteed, CPPM still
exhibits a very good performance. This indicates that our band-
width preserving strategy works. We conservatively use 𝑘 = 0.8 and
𝛽 = 1.2 to guarantee MSE convergence in the benchmarks.

9.3.3 Domain Partition 𝑛𝑎 , 𝑛𝑠 . A larger 𝑛𝑎 can provide more can-
didates for bandwidth selection, but when the chi-squared test is
not reliable enough, the bandwidth may reduce inaccurately and
thereby result in a noisy image. A larger 𝑛𝑠 can reduce the impact
of the parametric partition, but it increases the number of sectors
and the sample size should also be increased accordingly, otherwise
the result from the chi-squared test may become unreliable, also
resulting in a noisy image. We list the MSE on theWater scene using
different 𝑛𝑎 and 𝑛𝑠 , as shown in Table 3. We also get similar results
on other scenes, which shows (𝑛𝑎, 𝑛𝑠 ) = (2, 6) is the best setting for
CPPM. Using 𝑛𝑎 = 1 always produce worse results, which shows
the benefits of our bandwidth selection (based on 𝑛𝑎 ≥ 2) described
in Subsection 6.1.

9.3.4 Significance Level 𝛼𝜒 . From a statistical view, when a smaller
𝛼𝜒 is used, the chi-squared test is more tolerant of the null hypoth-
esis and is less likely to reject the null hypothesis; when a larger 𝛼𝜒
is used, the chi-square test is stricter and more likely to reject the
null hypothesis. In other words, using a small 𝛼𝜒 can reduce the
probability of incorrectly rejecting the null hypothesis when the
null hypothesis is true; using a large 𝛼𝜒 can reduce the probability
of not rejecting the null hypothesis when the null hypothesis is
false. We vary 𝛼𝜒 for different type of scenes and show the results
in Table 4.
For scenes (like the Cornell Box) with overall smooth radiance,

where a vast majority of pixels have large bandwidths consistent
with the null hypothesis, a small 𝛼𝜒 is apt to reduce the probability
of rejecting a true null hypothesis and then maintain the bandwidth.
So the Cornell Box scene gets the best performance using 𝛼𝜒 = 0.01.
For scenes (like the Sponza) with relatively complex radiance, where
many pixels may not have large bandwidths consistent with the
null hypothesis when the bandwidth is large, a relatively large 𝛼𝜒 is
apt to reduce the probability of not rejecting a false null hypothesis
and then reduce the bandwidth. Therefore, the Sponza scene gets
the best performance using 𝛼𝜒 = 0.05 . Overall, 𝛼𝜒 = 0.01 ∼ 0.05 is
a good trade-off in practice.

Reference Reference SPPM

CPPM CPPM+

Fig. 12. A special case using a textured spotlight, where the loca-
tion-independent assumption is violated and CPPM exhibits blurrier results
than SPPM. CPPM+ improves the quality by specific processing based on
CPPM.

9.4 Discussion
It is possible that the chi-squared test fails to reject the null hy-
pothesis for several iterations when the null hypothesis is false. At
the point B in Figure 8, the estimation is always biased in the first
1,000 iterations of CPPM, as shown in Figure 9(d). We can see in
Figure 9(c) that the chi-squared test is performed in many iterations.
In most of these iterations, it does not reject the null hypothesis and
decides not to reduce the bandwidth, which implies that the null
hypothesis is not correctly rejected. However, CPPM continues to
collect photons and check the photon distribution even though the
test in the last iteration failed to reject the null hypothesis; the null
hypothesis is rejected later and the bandwidth continues to reduce.
This shows that our method is robust in this case.

On the other hand, it is also possible that the null hypothesis is
true while the estimation is still biased due to a violation of the
location-independent assumption. Spatially-varying BRDF, textured
spotlight, complex geometry with occlusions, or other special cases
may cause the violation of assumption. Under such conditions, the
contributions of the constructed paths are dependent on their loca-
tions even though the photons are uniformly distributed. Taking
textured spotlight as an example, CPPM suspends the bandwidth
reduction incorrectly only based on the uniformity of the photons
while wrongly treating the contribution as identical and performs
biased estimation with an over blurred result, as shown in Figure 12.
To deal with this case, an add-on to correct the photon contri-

bution and make it identical would make CPPM workable. This
add-on combines several techniques together including rendering
RGB channels separately, emitting the light path proportional to
the light source luminance, and bouncing the light path by Russian
Roulette. Using this specific processing in CPPM, we can tackle
the assumption-violated problem to some extent, the new result
(CPPM+) is shown in Figure 12 with better quality. In addition, a dif-
fuse textured surface, which is a particular case of spatially-varying
BRDF, we believe that using the hit point’s BRDF for all photons
can handle this situation. However, these assumption-violated cases
generally need specific case-by-case processing with careful imple-
mentation, and these processes may consume more time overhead.
Theoretically, identical photon contribution is not strictly equiva-
lent to identical path contribution, there may be some situations
that make difference between them. Therefore, the proposed add-on
can not cover all these special cases.
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We have evaluated CPPM in various scenes that include caustics,
glossy surfaces, complex geometries, and different kinds of light
sources. The experimental results suggest that extreme cases rarely
occur in general settings and CPPM outperforms prior methods.

10 CONCLUSION, LIMITATION, AND FUTURE WORK
We present an algorithm that consistently evaluates the distribution
of photons based on the chi-squared test and a novel bandwidth
reduction strategy. It suspends bandwidth reduction if the test does
not reject the null hypothesis and deems that the distribution within
this bandwidth permits unbiased estimation. We analyze the asymp-
totic average error of our CPPM algorithm, which degrades to SPPM
in the worst case. We demonstrate through experiments that CPPM
performs better than SPPM and APPM. In practice, our approach
can be easily implemented in any progressive framework. In our
framework, other hypothetical models such as linear functions or
generalized odd functions can also be used instead of the constant
function; we provide more results in supplementary material.
However, CPPM has some limitations. For example, CPPM can

be more sensitive to bias than APPM, meaning that it reduces the
bandwidth in a more dramatic way in some local regions, includ-
ing wall corners and the edges of shadows, resulting in more noise
(variance) than APPM. The overall performance of CPPM is better,
but APPM may get better performance than CPPM in some local
regions. It would be an interesting future work to combine APPM
and CPPM in a hybrid manner, e.g., automatically choosing one
of them for each pixel. If the null hypothesis is always false and
being rejected, the convergence rate will degenerate to the same as
that in SPPM. Fortunately, CPPM performs well when the actual
photon distribution is slightly different from the uniform distri-
bution. Although there always needs to be specific processing for
different assumption-violated cases, as discussed in Subsection 9.4,
a better solution is to design a hypothetical model that takes the
contribution of photons at different location into account, which
we leave for future work. CPPM’s bandwidth cannot become larger
than the initial bandwidth. It would be interesting to modify the
bandwidth reduction scheme of CPPM to allow the bandwidth to
grow. Finally, CPPM has the potential to work in combination with
other sampling-based techniques like VCM [Georgiev et al. 2012]
/ UPS [Hachisuka et al. 2012] for realistic rendering. However, a
method for integrating them seamlessly needs further investigation.

There are many areas for future work in addition to overcoming
the limitations. Our CPPM is designed for on-surface estimation.
Applying CPPM to volumetric radiance estimation requires modify-
ing the partition scheme, i.e. making a spatial partition instead of
a planar one. The optimal bandwidth for volumetric radiance esti-
mation results in an MSE convergence rate 𝑂 (𝑁−4/7) [Kaplanyan
and Dachsbacher 2013] that is slower than on-surface estimation.
Finding a low bias bandwidth in this context would be an interesting
future work. With hypothetical testing, finding some solutions to
reduce the bias and variance of the plug-in variables in APPM is
also an interesting idea.
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A UNBIASED PIXEL MEASUREMENT ESTIMATION
According to [Kaplanyan and Dachsbacher 2013],

𝐼 =

∫
M×M

𝛿 ( ®𝑥 − ®𝑥 ′)Ψ( ®𝑥, ®𝑥 ′)d®𝑥d®𝑥 ′ (20)

where 𝛿 is the Dirac delta function, and Ψ( ®𝑥, ®𝑥 ′) is the contribution
of all possible full paths constructed by the hit point ®𝑥 and photon
®𝑥 ′. Expressing the Dirac delta function in Eq. (20) with limiting, we
obtain

𝐼 = lim
𝑟→0

∫
M×M

𝑘𝑟 ( ®𝑥 − ®𝑥 ′)Ψ( ®𝑥, ®𝑥 ′)d®𝑥d®𝑥 ′. (21)

Expressing the integral in Eq. (21) with expectation of sampling hit
point ®𝑥𝑖 , we have

𝐼 = lim
𝑟→0

E
[∫

M
𝑘𝑟 ( ®𝑥𝑖 − ®𝑥 ′)𝑝 ( ®𝑥 ′)Ψ( ®𝑥𝑖 , ®𝑥 ′)d®𝑥 ′

]
. (22)

We then transform M to Ω𝑟 and substitute 𝑝 and Ψ by Eqs. (5) and
(6); Eq. (22) becomes

𝐼 = lim
𝑟→0

E
[∫

Ω𝑟

𝑘𝑟 ( ®𝑥 ′)𝑝𝑖 ( ®𝑥 ′)Ψ̃𝑖 ( ®𝑥 ′)d®𝑥 ′
]
. (23)

We assume that Ψ̃𝑖 is a constant function. Therefore, we can factor
the expectation into a product of expectations:

𝐼 = lim
𝑟→0

E
[∫

Ω𝑟

𝑘𝑟 ( ®𝑥 ′)𝑝𝑖 ( ®𝑥 ′)d®𝑥 ′
]

E
[
Ψ̃
]
. (24)

Substitute the first expectation of Eq. (24) by the expectation of the
average of 𝑁 samples and apply Fubini’s theorem; we then have

𝐼 = lim
𝑟→0

E
[∫

Ω𝑟

𝑘𝑟 ( ®𝑥 ′)
1
𝑁

𝑁∑
𝑖=1

𝑝𝑖 ( ®𝑥 ′)d®𝑥 ′
]

E
[
Ψ̃
]
. (25)

When APDF 𝑝 ( ®𝑥 ′) = 1
𝑁

∑𝑁
𝑖=1 𝑝𝑖 ( ®𝑥 ′) is a constant function within

bandwidth 𝑅, we can extract it outside of the integral as

𝐼 = lim
𝑟→0

E
[∫

Ω𝑟

𝑘𝑟 ( ®𝑥 ′)d®𝑥 ′
]

E
[
𝑝
]

E
[
Ψ̃
]
, (26)

where the first expectation equals one. Therefore, we can substitute
the bandwidth 𝑟 with 𝑅, remove the limit symbol, and go back along
with the above deductions to Eq. (23). Then, we will get Eq. (8),
which implies the pixel measurement estimation is unbiased.

B PHOTON PROJECTION AND ALIGNMENT
We calculate the corresponding 2D coordinate of the 𝑗-th photon in
the searching area of the 𝑖-th hit point as:

®𝑝 ′𝑖, 𝑗 =
®𝑝𝑖, 𝑗 − ®𝑥𝑖

 · (⟨®𝑝𝑖, 𝑗 − ®𝑥𝑖 , ®𝑢𝑖 ⟩, ⟨®𝑝𝑖, 𝑗 − ®𝑥𝑖 , ®𝑣𝑖 ⟩
)(⟨®𝑝𝑖, 𝑗 − ®𝑥𝑖 , ®𝑢𝑖 ⟩, ⟨®𝑝𝑖, 𝑗 − ®𝑥𝑖 , ®𝑣𝑖 ⟩

) , (27)

where ®𝑢𝑖 and ®𝑣𝑖 are two orthonormal bases vectors on the tangent
plane at hit point ®𝑥𝑖 ; ⟨·, ·⟩ indicates inner product; and ∥·∥ indicates
Euclidean length.

C BANDWIDTH CONVERGENCE ANALYSIS
Wegive an analysis of the bandwidth convergencewhen the chi-squared
test always rejects the null hypothesis; we then show that the band-
width convergence in CPPM will degenerate to the same as that in
SPPM in this case.
Assume the duration between two successive bandwidth reduc-

tions is 𝑃𝑖 . When the chi-squared test always rejects the null hy-
pothesis, from Eq. (13), we can derive that 𝑃𝑖 is proportional to the
required number of photons 𝐵𝑖 , and inversely proportional to the
area of the searching area. Therefore, we can obtain 𝑃𝑖 as

𝑃𝑖 =

(
𝛽

𝑘

)𝑖−1
𝑃1 . (28)

For the 𝑁 hit points in the first 𝑁 iterations, let 𝑡 be the number
of different bandwidths. We can infer bounds of 𝑁 by 𝑃𝑖 as

𝑡−1∑
𝑖=1

𝑃𝑖 ≤ 𝑁 ≤
𝑡∑
𝑖=1

𝑃𝑖 . (29)

Substitute 𝑃𝑖 with Eq. (28) and we have the relation between 𝑡 and
𝑁 :

𝑡−1∑
𝑖=1

(
𝛽

𝑘

)𝑖−1
𝑃1 ≤ 𝑁 ≤

𝑡∑
𝑖=1

(
𝛽

𝑘

)𝑖−1
𝑃1 ⇒

(
𝛽

𝑘

)𝑡
= 𝑂 (𝑁 ). (30)

Since 𝑅𝑁 is the 𝑡-th bandwidth, based on Eq. (30), we assess the
bandwidth convergence as

𝑅𝑁 = 𝑘
1
2 (𝑡−1)𝑅1 = 𝑂

(
𝑁
− 1

2 log 𝛽
𝑘

1
𝑘

)
. (31)
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