Simulating Vivid 3D Solid Textures from 2D Growable Patterns

Yisong Chen and Horace H S Ip
Image Computing Group, Department of Computer Science, City University of Hong Kong

Abstract

An efficient model-independent 3D texture synthesis algorithm
based on texture growing and texture turbulence is presented to
simulate vivid 3D solid textures from 2D growable texture
patterns. Given a 2D texture pattern of some growable material,
our algorithm is able to create a tileable anisotropic 3D texture
pattern to simulate the natural property of the material. Target
objects are directly dipped into the 3D texture pattern to generate
creative, sculpture like models that can be presented with
reasonable interactive frame rates. Additionally, our method is
conceptually simple, computationally fast, and storage efficient.
To the best of our knowledge, this is the first approach that
transfers a given 2D texture naturally to point rendering systems.

Keywords: texture synthesis, fractal, point rendering.

1 Introduction

Texture transfer over arbitrary surfaces or volumes has attracted
much interest within the past few years. In this paper we propose
a method to simulate vivid solid texture from 2D growable texture
patterns. We use the concept of texture turbulence and texture
growing to simulate the growth of specified 2D texture and
procedurally produce tileable 3D solid texture pattern. With this
in hand, model-independent 3D texture mapping becomes very
easy because all one needs to do is to dip the object into the 3D
texture pattern. This method is particularly suitable for simulating
natural solid texture patterns such as marbles and woods to create
vivid virtual artworks like woodcarvings and stone carvings.
Since our technique is able to operate at frame rate, it is applicable
to interactive applications, like real-time scrulpting in VR
applications. Moreover, it offers one good solution to the problem
of texture synthesis on point rendering systems [Grossman1998],
for which most polygon surface based texturing methods are not
suitable.

The remainder of the paper is organized as follows. Related
work is briefly introduced in Section 2. Section 3 details our
texture-synthesis method. Simulating results are given in section
4. Finally, Section 5 concludes the paper and discusses future
work.

2 Related work

One important branch of texture synthesis is to decorate complex
3D scenes through solid texturing. Perlin and Peachey
independently invented the concept of solid texture [Perlin1985,
Peachy1985]. Solid texturing is suitable for simulating surface
textures that arise from their internal structure and is ideal for
rendering objects that have been carved out of a block of material
such as wood or granite. The key problem of solid texturing is
how to generate 3D texture pattern. Procedural texturing is
perhaps the most popular method for achieving this goal
[Ebert1998][Turk1991]. It can produce very impressive solid
textures with a nicely designed procedural process. Procedural
methods are more or less related to stochastic technique, in which
white noise plays a very important role [Cabral1993][Wijk1991].
However, it is difficult to simulate some existing texture patterns

with procedural methods. Although some attempts have been
made to handle this problem [Peachy1985][Lewis1989], most of
them are too simple to simulate complex textures naturally.
Another drawback of solid texturing is that it suffers from heavy
computational and storage burden when working on a large
texture space. Octree texture techniques to some extent alleviate
this burden [Bensen2002][DeBry2002]. However, it is achieved at
the expense of model-independence and rendering efficiency.

In this paper, we present a stochastic 3D procedural approach
to transfer 2D growable texture pattern to tileable 3D texture
pattern. The algorithm uses the idea of texture growing and
texture turbulence to generate translated, warped 2D texture
patterns from the original pattern and then concatenates them to
form a continuous, tileable 3D texture cube. The major advantage
of our algorithm is that it is model-independent and can give rise
to impressive rendering results. It is well suited for rendering of
complex models of even very large amounts of rendering
primitives.

3 Simulating 3D texture pattern by texture
growing and texture turbulence

Growable texture is one important class of textures that can grow
in 3D space to simulate many real world materials. The simplest
idea to extend a given 2D growable texture patterns is to
concatenate the original texture image in the z-direction that adds
a third dimension to form the 3D texture [Peachy1985]. However,
simple extrusion lacks the ability of simulating complex scenes
naturally, and artifacts can become remarkably perceptible when
the method works on most natural growable textures such as
woods and marbles.

Our objective is to overcome this drawback by simulating the
real-life growth of natural materials in a procedural manner.
Specifically, our approach is designed such that during the
process of creating the 3D texture cube, the growing of the texture
in the z-direction should go along a more random path that can
simulate the actual growth of the solid material better.
Additionally, small warps between neighboring frames are
expected to pursue better realism. That is, the texture pattern of
the frame currently in consideration should not be a strict clone,
but a perturbed version of the previous one. These two ideas lead
to two essential concepts of our work, texture growing and texture
turbulence. For convenience’s sake, we will address the problem
of texture turbulence first in section 3.1 and then return to the
problem of texture growing in section 3.2.

3.1 Texture turbulence

The technique of image perturbation [Ebert1998] can be used to
implement texture warping. The first attempt is to yield each
frame by giving the previous frame an appropriate perturbation. If
we consider the z-dimension as the time dimension and each new
generated image as a frame, then the problem may be converted to
temporal or dynamic texture synthesis [Soatto2001]. For
convenience we will treat the variable z and t equivalently. The
spatio-temporal autoregressive (STAR) model that is widely used
in temporal texture and flow visualization is helpful for creating
the visual sense of motion texture [Wang2002]. Let I(x,y,t) be the

intensity of a pixel (x,y) at time t, the corresponding STAR model
has the form

P
I(x,y,t)= Zail(x + 00X,y +0y,t +0t)+a(x,y,t) (1)
i=1

where the signal I(x,y,t) is modeled as a linear combination of
lagged values of itself plus a Gaussian white noise process
a(x,y,t). Such a model can be considered as an extension from a
causal Gaussian Markov random model used in texture modeling
by adding the time dimension.

Unfortunately, although this approach performs well in
simulating several natural scenes such as fire and water, it is not
well suited for generating 3D texture cube of most rigid objects.
First, the existence of the noise term in the formulation limits the
STAR model’s usage to simulating only fluid like scenes. As
shown by Wijk [Wijk2002], with the proceeding of the time
dimension, the effect of the original texture image becomes
weaker and weaker, while the effect of the noise term becomes
greater and greater. Second, turbulence itself has the effect of
blurring the input image [Cabral1993]. Continued turbulence of
previous neighboring frame will unavoidably ruin more and more
the original texture structure as the texture grows in the z-
direction. Accordingly, generating a new texture frame by
disturbing a couple of previous frames is not a good choice in our
application.

To avoid the disadvantage of accumulated blurring, our
solution is to generate every texture frame directly from the
original texture frame by giving it an appropriate turbulence that
maintains the continuity between neighboring frames. Although
the turbulence will slightly blur the texture pattern, it will not
cause serious accumulated distortion as in the STAR model
because each frame is just a turbulence of the original frame and
the effects of blurring will not propagate. The turbulence,
therefore, keeps the major structural feature of the original texture
pattern while changing its appearance in a random mannar to
simulate the features of a lot of natural textures. Our texture
computing equation has the following form:
I(xay’zi):I(x+dxiay+dyi,zo) @
where dx; and dy; are vectors that indicate the direction and
strength of the turbulence of the i-th frame in the z-direction. The
parameter z, means that every frame is directly warped from the
very first frame, i.e. the given texture image. The noise term in
equation (1) is removed to avoid the impact of the noise.

At this point the only requirement is to choose a turbulence
function that enforces the continuity between neighboring frames.
Fortunately, the well-known turbulence function of Perlin fits the
requirement quite well as long as the parameters are carefully
selected. In most of our experiments, we adopt the following
equations to calculate the turbulence of a given pixel:

dx = mscale*turbulence((float)x, (float)y, (float)z, tfactor) 3)

dy = mscale*turbulence((float)z, (float)y, (float)x, tfactor)

where (dx,dy) is the displacement vector of the current pixel from
its original position, (X,y,z) is the position vector of the current
pixel in the 3D cube, and mscale and tfactor are two parameters
controlling the property of the turbulence. turbulence() is the well-
known turbulence function introduced by Perlin [Perlin1985].
Equation (3) can be easily discretized in the z-direction to
calculate dx; and dy; of equation (2).

Note that the use of the reordered coordinate values of the
current pixel as the parameters of the turbulence function is the
key idea of our texture warping algorithm. This successfully
guarantees that the resulting 3D texture cube has a random, yet
continuous look throughout. We call this method texture
turbulence.

3.2 Texture growing

Although texture turbulence imparts a certain degree of creativity
to the original texture pattern, the turbulence is only constrained
to a local region because the center position of the turbulence
remains unchanged on each frame along the z-direction. This is
not consistent with the growing process of many natural materials.
Although there are several procedural approaches to simulate
evolution of natural scenes such as particle system and L-system,
they suffer from similar drawbacks of the STAR model and can
hardly meet the requirement here. To simulate such a growing
process, we define a unique texture path each time we create a 3D
texture cube. Namely, for each pixel of the given texture pattern,
one path is generated in the z-direction to denote the path along
which it travels from its start point on the front surface of the 3D
cube to its end point on the back surface. The path is the same for
all pixels to maintain the consistency of the global texture motion.
Texture path should be a 2-dimensional vector function defined in
z axes that satisfies the following equation:

V(z,)=V(z,)+ TexturePath(z,) “)

where V(Zi) is a 2D position vector that denotes the pixel position
on the i-th frame of the 3D texture cube in the z-direction, and
TexturePath() is a 2D motion vector that describes the motion of
the pixel through all frames in the 3D cube.

The function TexturePath() can be defined with different
methods, thus providing the freedom to simulate different
growing styles. In forming a natural simulation, it should be
continuous, yet also have some property of randomness. We
accomplished two different TexturePath() functions, both based
on multi-scale fractal methods. Namely, turbulence based path
function and fractional Brown motion (fBm) based path function.

v Uy

u
Figure 1, Illustration of Turbulence based TexturePath function

The principle of turbulence based texture growing requires
one to create one 2-dimensional turbulence map in u-v Cartesian
coordinates, randomly select two different straight-lines on it, and
use the turbulence value along the two paths respectively as the
values of x and y components of the motion vector in equation
(4). This method is illustrated in Figure 1. The two black straight
lines in the figure are two randomly selected paths with the
method mentioned above. Then, the TexturePath() function can be
defined as the following equation:

TexturePath (z;) = turbulence(u,,v.))
TexturePath (z,) = turbulence(u,,v,)

Fractional Brownian motion based texture growing simulates
the texture-growing path with the trace of a fractional Brownian
motion. Usual Brownian motion can be easily created through
integrating pseudo white noise. More general fractional Brownian
motions can be simulated by multi-resolution approaches, such as
random midpoint displacement method [Peitgen1988].

The principle of using random midpoint method for
approximation of fBm is as follows. If the process is to be
computed for times t, between 0 and 1, then one starts by setting

X(0)=0 and selecting X(1) as a sample of a Gaussian random
variable with mean 0 and variance o> . The values of X in the
interval [0, 1] can be computed recursively with the following
equation:

t, L
2" 2"

whezre Dn is a Gaussian random offset with mean 0 and variance

x((+;;)/z)=0.5[X(>+X(;1)]+Dn ©

n
Under the assumption

20
Var(X(t,)- X (1) =, —-t,| " o (7)
Anz can be calculated with the following equation:
2
2 o 2H-2
2=—T (-2 ®)
(2n)ZH

where H is a parameter that controls the motion property. This
method can simulate general 1/f* noise conveniently by choosing
different H values in equation (8) [Peitgen1988].

Both turbulence based method and fBm based method prove
to be able to generate reasonable results. Figure 2 illustrates two
texture paths defined on the interval [0,1], one generated by
turbulence based function, the other by fBm based function. The
domain and the range of both functions can be scaled as needed.

~ JA,,A\’\\\

EACAWANIVA A We g ST NN T

Figure 2, Turbulence based Texture path and fBm based
Texture path (H=0.75)

Compared with turbulence based method, fBm based method
is more powerful and flexible to give different looking paths by
selecting different values of the parameter H in equation (8).
Therefore, fBm based method is more attractive. Another virtue of
fBm based function is that, with random midpoint displacement
method, the positions of the start and end points can be assigned
freely as needed. This makes it possible to tile texture cube in the
z-direction, which will be discussed in detail in section 3.3.

3.3 3D texture tiling

Generally, we take a square texture image as the input texture
pattern and create a 3D texture cube with the same depth as the
size of the image. The method can be used for image of any sizes.
Nonetheless, larger size means more computations and higher
storage costs, which is expensive for many low-end machines.
Here we apply tiling technique to solve this problem. That is, only
a relatively small tileable cube is generated and stored, and it is
tiled to form a bigger 3D texture space for final use. To achieve
this goal, we begin with a tileable texture pattern. In each frame,
we will give stronger turbulence to the center region of the cube,
and weaken the effect of the turbulence little by little towards the
frame border in a proper brim range. All edge pixels keep
unchanged. This can be easily achieved by modulating the mscale
parameter of equation (3) with the well-known s_curve function
[Ebert1998].

S(t)=3t> -2t ©9)

With such a modification, for each texture frame just
generated, the pixels on x and y edges remain unchanged, and the
pixels near the edge receive only constrained turbulences. Since
the original image is tileable, the final cube is tileable in both x
and the y directions.

We achieve tileable property in the z-direction by using an
fBm based texture path generation with the positions of start point
and end point assigned equally. In such a texture growing path, as
the frame moves closer to the end of the cube in the z-direction,

the distance from the original position in x-y plane also becomes
weaker towards zero. The texture path function is modulated with
equation (9) exactly as we did in x and y direction, so that the last
z frame is smoothly tileable with the first z frame. Consequently,
the final cube is also tileable in the z-direction.

Once the 3D texture cube is prepared, it can be tiled
conveniently to any size as needed for the decoration of different
3D objects. Tiling can significantly save both computation and
storage costs of solid texturing.

To summarize, our 3D texture generation algorithm can be
regarded as a stochastic extrusion approach where noise technique
based procedural method is used to control the growing process of
the texture, not the texture itself. This makes our method distinct
from other approaches, and correspondingly, a lot of interesting
properties come to light.

4 Results

Our experiments are conducted via a C++ implementation running
on one PC workstation equipped with a 1.6G Pentium4 processor,
256MB of RAM and an NVIDIA GeForce4 display adaptor.

Since the texture synthesis addressed in Section 3 is a solid
texture technique, it is particularly suitable for decorating
complex point rendering system. We borrow the QSplat system
created by Rusinkiewicz et al. to test the performance of our 3D
solid texturing on point rendering systems [Rusinkiewicz2000].
As in previous research [Pfister2000], we separate texture
generating from rendering. The 3D texture cube is produced in a
preprocessing routine, and texture mapping during rendering takes
negligible time. Accordingly, the good performance of interactive
rendering of QSplat is kept unchanged. Examples of 2D texture
patterns used in our experiments are shown in Figure 3. Figure 4
shows the results of applying the technique to complex models. In
each case, a 128*%128*128 3D texture cube is synthesized from a
given 128*128 texture pattern. Then several such 3D cubes are
tiled to construct a larger 3D texture space of variable size. All
models in Figure 4 can be interactively browsed in a 512*512
window with a frame rate of about 8 frames/second. See Table 1
for more details.

The uses of texture growing and texture turbulence are
optional. Generally speaking, one or both of them can be disabled
to accommodate textures with certain regular structure or to make
some special effects. The wood texture of figure 3 is an example
of such texture patterns. When enabled, the parameters mscale,
tfactor and H offer flexible control on overall appearance.

Table 1 illustrates that the algorithm can be executed very
fast. When both texture growing and texture turbulence options
are enabled, the 128*128*128 3D texture cube can be constructed
in around 10 seconds using our non-optimized program. Once the
cube has been produced, it can be tiled to any size and decorate
the point rendering system in an object-independent manner.
Tiling leads to a significant saving of storage compared with
conventional solid texturing techniques, and object-independent
texturing results in substantial saving of computation when
rendering different objects. Although the final texture space is
built by tiling several copies that are exactly the same, the
repetition is successfully masked by the complexity of the scene
and become imperceptible. Therefore, the approach is very
efficient in terms of time and space occupancy.

From Figure 4 we can see that our method is particularly
suited for natural growable texture materials such as marbles and
woods because the generation of the texture cube successfully
emulates the growing nature of these materials. For instance, a
marble vein in the vase model is successfully simulated by texture
growing and texture turbulence. So the method can be used to
produce vivid artistic effects over complex object to give the
effects of stone or wood sculptures.

The limitation of the approach is that the seeds for our 3D
texture synthesis scheme are constrained to natural growable
textures. The method is not well suited for surface decorating
textures because randomly looking stripes will appear in the z-
direction.

5 Conclusion

We have presented a method of creating vivid 3D texture based
on the principles of texture growing and texture turbulence. The
algorithm is efficient and is able to generate impressive 3D
texture independent of the target objects and is particularly suited
for decorating of complex range scanned objects.

Acknowledgement

The work described in this paper was supported by a grant from
CityU (Project # 9010005) and RGC grant No. CityU 1150/01E.

References

[Benson2002] Benson, D., and Davis, J. 2002. Octree textures. In
Proceedings of ACM SIGGRAPH 2002, ACM Press / ACM
SIGGRAPH, Computer Graphics Proceedings, Annual
Conference Series, 101-106.

[Cabral1993] Cabral,B., and Leedom, L. C. 1993. Imaging vector
fields using line integral convolution, in Proceedings of ACM
SIGGRAPH93, Computer Graphics Proceedings, Annual
Conference Series, pp. 263-272.

[DeBry2002] D. DeBry, J. Gibbs, D. Petty, and N. Robins.
Painting and rendering textures on unparameterized models,
Proceedings of SIGGRAPH 02, 2002, 763-768.

[Ebert1998] Ebert, D., Musgrave,F.,Peachey, D., Perlin, K., AND
Worley, S., Eds. 1998. Texturing and Modelling: A procedural
approach. Morgan Kaufmann Publishers, 1998.

[Grossman1998] J. P. Grossman and W. Dally. Point Sample
Rendering. In Rendering Techniques 98, pages 181-192.
Springer, Wien, Vienna, Austria, July 1998.

[Pfister2000] Pfister, H., Zwicker, M., Vanbaar, J., Gross, M.
2000. Surfels: Surface elements as rendering primitives. In
SIGGRAPH 2000, pages 335-342. New Orleans, LA, July 23-
28, 2000.

[Lewis1989] Lewis, J. P., Algorithms for Solid Noise Synthesis,
Computer Graphics, Vol. 23, No. 3 (SIGGRAPHS9), pp. 263—
270, (July 1989).

[Peachey1985] Peachey, Darwyn R., Solid Texturing of Complex
Surfaces, Computer Graphics, Vol. 19, No. 3, (SIGGRAPH 85),
July 1985, pp. 279-286.

[Peitgen1988] Heinz-Otto Peitgen, Dietmar Saupe, editors. The
Science of Fractal Images. Springer. 1988.

[Perlin1985] Perlin, Ken, An Image Synthesizer, Computer
Graphics, Vol. 19, No. 3, (SIGGRAPH 85), July 1985, pp. 287—
296.

[Rusinkiewicz2000] S. Rusinkiewicz and M. Levoy. QSplat: A
Multiresolution Point Rendering System for Large Meshes. In
Computer Graphics, SIGGRAPH 2000 Proceedings.

[Soatto2001] Soatto, S., Doretto, G., and Wu, Y. 2001. Dynamic
textures. In Proceedings of IEEE International Conference on
Computer Vision, vol. 2, 439-446.

[Wang2002] Y. Z. Wang, Song Chun Zhu, A Generative Method
for Textured Motion: Analysis and Synthesis, Proc. of European
Conf. on Computer Vision (ECCV), Copenhagen, June 2002,
pages 583-598.

[Wijk1991] Van Wijk, J. 1991. Spot noise: Texture synthesis for
data visualization, Computer Graphics 25, 309-318.
Proceedings ACM SIGGRAPH 91.

[Wijk2002] Jarke J. van Wijk, Image Based Flow Visualization,
SIGGRAPH 2002.

Table 1, model and texture pattern details

Model Total points /| Texture pattern | Texture Texture Time(s) | Main

rendered points (scaling size) growing turbulence viewing
direction

Vase 68097/38519 Marblel(4*4*4) Enabled Enabled 11.73 X

Venus 134345/62292 Marble2(4*4*4) Enabled Enabled 10.42 y

Horse 48485/27094 Wood(4*4*4) Enabled Disabled 2.98 X-Z

Dragon 1279481/625726 Marble3(4*4*4) Enabled Enabled 10.92 X-Z

Hip 530168/238934 Marble4(4*4*4) Enabled Enabled 10.43 X-y-Z

Figure .3, texture patterns used in our experiments.
From left to right: marblel, marble2, wood, marble3, marble4

Figure 4, Results of texturing point rendering based models

