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ABSTRACT

A new metric rectification method for planar homography is
proposed based on a closed form algebraic solution of the
image of the absolute conic on the image plane. Our solution
allows shape measurement to be made directly on the image
plane without explicitly computing the homography matrix or
recoreringing the rectified image. We show that the invariance
property of the relationship between the circular points and the
absolute conic under projective transformation can effectively
do planar metric rectification. In this approach, the image of the
absolute conic is solved algebraically to achieve metric
rectification based only on the vanishing line and the image of
one arbitrary circle on the world plane extracted automatically
from the image plane. The process of conic solving introduces
no errors and the performance of the method is mainly
dependent on the robustness of the straight line and ellipse
fitting processes. The fitting scheme suggested in the paper is
robust and give good results in most cases.
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1. INTRODUCTION

Metric rectification aims to remove the projective distortion in
the perspective image of a world plane to the extent that
similarity properties on the original plane could be measured
[1]. It is well known that a planar homography can be
determined uniquely from four or more point correspondences.
In the cases where point correspondences are not readily
available the solution can be acquired through either stratified
or unstratified rectification [2]. Both approaches are based on
the principle that the metric properties can be recovered once
the absolute conic is identified on the image plane.

In this paper, a new method is proposed to estimate the
image of the absolute conic (IAC) algebraically. The
mathematical foundation of our method is the invariance
property of the relationship between the absolute conic and the
circular points under projective transform. In our approach, the
algebraic representation of the vanishing line and the image of
an arbitrary circle on the world plane are first identified on the
image plane. Then the images of two circular points are
computed on the image plane by algebraically solving the
intersection of the image of the identified circle and the
vanishing line. Finally, the image of the absolute conic is
calculated directly from two identified perspectively
transformed circular points.

The rest of the paper is organized as follows. Section 2 offers
a brief overview of the related work. Section 3 highlights the
principle for computing the absolute conic algebraically given
the vanishing line and the image of one circle under perspective
transformation. Section 4 explains the implementation details of
feature extraction and ellipse fitting. Section 5 gives the
experimental results. Finally, Section 6 concludes the paper.

2. RELATED WORK

A 2D homography denotes a planar projective transformation
represented by a non-singular 3*3 matrix H. Points on the
image plane, x’, are related to points on the world plane, x, as
x’~Hx, where x and x’ are homogeneous 3-vectors, and the
notation “~” indicates equality up to a nonzero scale factor [6].
Metric properties on the world plane can be used to partially
determine the projective transformation up to a particular
ambiguity [3][4]. This partial determination requires far less
information about the world plane to be known, but is
nevertheless sufficient to enable metric measurements of
entities on the world plane to be made from their images [7][9].

The concept of strata structure of projective, affine and
metric representations was first described by Faugeras et al.[5].
Stratified rectification stems from this concept. In this approach,
an affine transformation is first determined through identifying
the vanishing line on the image plane, which is the image of the
line at infinity on the world plane. Then the affinity can be
reduced to similarity by additional information, such as a length
ratio or a known angle [1][2][6].

Metric rectification can also be achieved via unstratified
method [11]. Let @ be the conic dual of the circular points. It
can be shown that orthogonal lines are conjugate with respect to
o under perspective transformations. Each pair of orthogonal
lines thus places a linear constraint on @ . Consequently, five
right angles are sufficient to determine @ linearly, provided
that lines of more than two orientations are included. Once the
absolute conic is identified on the image plane, projective
distortion may be rectified up to a similarity [11][12]. However,
right-angle based approach requires 5 orthogonal line pairs in
more than two orientations to be identified on the image plane.
This is quite a strong constraint in practice.

This paper suggests an alternative unstratified method for
identifying the absolute conic on the image plane. We show that
the relationship between the absolute conic and the circular
points is invariant under 2D homography and that metric
rectification can be achieved by identifying the images of the
circular points via algebraically solving the intersection of the
image of one circle on the world plane and the vanishing line.
The accuracy of the approach depends on the precision of the
vanishing line and the transformed circle on the image plane.

The major contribution of the paper is an algebraic
framework to solve the absolute conic on the image plane given
the vanishing line and one circle under the projective
transformation. An implementation scheme is also addressed to
make the framework practical.

3. SOLVING THE IMAGE OF THE ABSOLUTE
CONIC

It is a well known result in projective geometry that every circle
on the plane intersects the line at infinity at two fixed complex
circular points 1=(1,i,0)" and J=(1,-,0)". These two points are



fixed under any similarity transformation. It has been shown
that identifying the circular points (or equivalently their dual)
allows the recovery of similarity properties. The dual conic to
the circular points, @, is called the absolute conic of the plane,
which is also fixed under similarity transformations. @ can be
associated with the circular points through the following
equation [6]:
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Suppose that the homography is represented by a 3*3 matrix
H which transforms the point x on the world plane to the point
x’ on the image plane by P(x)=x’~Hx. It is easily shown that
one line conic C on the world plane is mapped to the conic C’
on the image plane by C’=HCH". Accordingly, the image of the
absolute conic can be computed with the following equation:
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That is, equation (1) still holds on the perspective image plane,
as long as the circular points and the absolute conic are
replaced by their corresponding images under the homography.

Equation (2) shows that @' can be computed once I’ and J’
are identified. Note that I and J are the intersection of the line at
infinity and any circle on the world plane, which is invariant
under arbitrary 2D perspective transformation. As a result, I’
and J’ can be identified on the image plane by solving the
intersection of the vanishing line, I’, and the imaged circle, C’,
which is in general an ellipse on the image plane.

Under homogeneous representation, C’ is a conic on the
image plane with the form of a symmetric matrix as in equation
(3), and 1’ is a line on the image plane with the form of a
column vector as in equation (4).
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The intersection of C” and I’ is the solution of the following
equation group:
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As long as 1 is not kept infinite on the image plane, it can
never occur that both I; and 1, are zeros. Without loss of
generality, suppose that 1, is nonzero and equation (6) can be
written as
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where y, =—1 /1,,u, =—1,/1,.

Substitute (7) into (5), we get quadratic equation (8) about x.

Since all coefficients in equation (8) are real numbers, we
can easily solve Equation (8) to obtain a pair of conjugate roots

Re(x,)£i-Im(x,). Similarly, the corresponding solutions of
y are also conjugate values Re(y,)+i-Im(y,) - Therefore, the
homogenous coordinates of the two solutions of the problem
can be written as equation (9).

Substitute (9) into (2), after simplification we get the solution
for @' asin equation (10).

It is worth noting that @' is a real symmetric matrix
although I’ and J’* are complex. With equation (10) the angle &
between two lines can be calculated with the following
equation (11):
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Equation (11) is invariant to projective transformations.
Therefore, it can be used to compute any angle between two

lines on the world plane directly from the image plane. This
means that metric rectification is achieved.

cos(f) =

4. PRACTICAL APPLICATIONS

To apply the framework of Section 3 in practice, first some
edge features should be extracted from the image plane. Then
the work of identifying vanishing line and ellipse follows. In
this section, we suggest a convenient and robust approach to
handle these problems.

4.1. Vanishing line identifying

Affine properties may be recovered by specifying the
vanishing line on the image plane. The problem of identifying
the vanishing line is not the focus of this paper. Here we only
briefly outline one generic approach. The vanishing line can be
identified from the image plane with the help of several sets of
parallel lines [4]. Each line can be extracted by least squares
fitting of several feature points on the line. Each parallel line set
determines one vanishing point and all vanishing points jointly
determine the vanishing line.

4.2. Ellipse extraction

Roughly speaking, a conventional edge detector reports
much more responses than what are really needed. To guarantee
a reliable fitting, all false alarms should be removed before
further work can be done. These can be realized with the help
of color information. Firstly, a conventional edge-detecting
algorithm is executed to give the initial edge responses.
Secondly, each of these responses is checked to see whether its
local color distribution is consistent with the given information
of the edge of the target circle. Finally, some human
intervention may be introduced if necessary to guarantee no
false alarms survive. The approach is robust enough to exclude
all outliers in most practical situations.
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4.3 Ellipse fitting

Ellipse identifying is the major challenge in applying our
algorithm in practice. All ellipse edge points have to be fitted to
obtain the algebraic conic representation of the ellipse in the
image plane coordinate. The fitting problem is to solve the
vector v=[a,b,c,d,e.f] in equation (5) subject to the constraint
b* —4ac < 0. It has been treated with different approaches
such as curve fitting and Hough transform [8]. We adopt a
practical approach that performs a general conic fitting by
least-squares method and then reject non-elliptical fits. Details
are as follows.

Given all responses reported by the ellipse detecting
algorithm the problem 1is that of solving a set of
over-determined equations of the form Av=0, where A is the
coefficient matrix determined by the coordinates of all edge
points of the ellipse. The trivial solution v=0 is not of our
interest. Observe that v is to be solved up to a nonzero scale
factor. So a reasonable constraint would be to seek a solution
for which |[v[=1. In general, such a set of equations will not
have an exact solution. We will normally seek a least-squares
solution instead. The problem may be stated as follow:

Find the v that minimizes ||Av|| subject to ||v||=1.

The problem can be settled by performing an SVD
decomposition, A=UDV", of the coefficient matrix A. The
solution v is exactly the last column of V [6]. Data
normalization is an essential step in the algorithm for a better
precision [10].

The constraint h* — 4ac < 0 is not considered in the above
approach. Nevertheless, experiments show that with a carefully
designed ellipse extraction routine the constraint always holds.

Once the work of ellipse fitting is completed, the method
described in Section 3 can be used to find the imaged circular
points and estimate the image of the absolute conic. Since the
process of solving IAC is totally algebraic and thus introduces
no errors, the performance of the algorithm is mainly
determined by the accuracy of extracting the vanishing line and
ellipse in practice.

5. EXPERIMENTAL RESULTS

The first scene in our experiments is a photograph of two signs
on the mosaic wall, as shown in Figure 1-a. Our target is to
estimate the absolute conic on the image plane. Since the
mosaic is not square, right-angle based approach is not
applicable here. The result of edge feature extraction is shown
in Figure 1-b. It is evident from Figure 1-b that SUSAN edge
detector is able to output enough valid edge point features on
both the mosaic lines and the ellipses associated with the sign.

The vanishing line is estimated as described in Section 4.1,
and one target feature ellipse is identified as described in
Section 4.2-4.3. After that, the intersection of the ellipse and the
vanishing line is solved algebraically as described in section 3
to estimate the image of the absolute conic.

Several feature points are flagged on the image plane as
shown in Figure 1-a to assess the performance. Some
representative angles formed by these points in the image are
selected and Equation (11) is used to calculate these angles with
the estimated absolute conics. Table 1 gives cosine values and
angle values (in degree) of the acute angles between several
lines on the world plane. We can see that all different angles
can be estimated quite precisely. Orthogonal lines always result

in cosine values close to 0 and parallel lines always lead to
cosine values close to 1. Three inner angles of the regular
triangle are all very close to 60 degrees. The scale of the width
and the height of the mosaic on the wall is estimated to be
0.4982, which is very close to the actual measured value of 0.50
(The measured width is 12.5cm and height is 25.0cm).

The second scene is a photograph of the ground of a plaza
with one circle and several star-like stripes, as shown in Figure
2-a. Again right-angle based approach is not applicable here for
the lack of sufficient right angles. Although this scene is much
noisier compared with the previous one, the distinct magenta
color of the circle and the stripes helps the edge detector find
sufficient features of both ellipse edges and stripe edges. We
use the two edges of each stripe as parallel line pairs and the
edges of the inner ring as the target ellipses. The ellipse
detection result is shown in Figure 2-b. Both edges of the inner
ring are extracted with high accuracy.

The circular points and the absolute conic can be computed
with either of the two edges of the inner ring. We give both
results in Table 2. Both absolute conics do well in metric
rectification. The results in table 3 successfully verified that
each neighboring stripe pairs form a 30 degree angle. In
addition, further planar measurement can be done easily once
the absolute conic is estimated from the image plane. For
instance, if the width of one stripe is known to be 45cm, the
diameter of the outer circle can be estimated to be about
1000cm by using the Sine theorem on triangle ABC in Figure
2-a. The value is almost the same as the actual measurement.

In these two experiments, the largest deviation from the
expected value is only 1.9 degrees, which is within the accepted
range considering the image noise and the feature extraction
errors. This shows that the approach addressed in this paper is
an effective and practical one for metric rectification.

6. CONCLUSION

This paper shows that the image of the absolute conic can be
estimated algebraically given the vanishing line and the image
of one arbitrary circle on the image plane. Our experiments
show that the estimated absolute conic works well to estimate
metric properties directly through the image plane without
explicitly computing the homography parameters or the
rectified image. Future work includes more robust feature
extraction algorithm, more reliable fitting algorithm and
generalization to 3D environments.
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Table 1. Results of mosaic wall scene experiment

AD/AB | AD/BC | BC/BD | CD/BD | EF/FG FG/GE | GE/EF FG/AD
Cos(0) 0.0165 0.9999 0.4300 0.8951 0.5027 0.4706 0.5262 0.9999
6 89.055 0.120 64.530 26.480 59.822 61.926 58.252 0.729
Table 2. Estimated circular points and absolute conic parameters in plaza scene image
X Y a b/2 c dn2 e/2 f
Ellipsel 141+ 851i 721+ 3431 | 7.44%10° | 3.94*¥10° | 6.38*10° | 1.41*10° | 7.21*10° | 1.00
Ellipse2 128 + 822i 716+ 3321 | 6.93*10° | 3.64*10° | 6.23*10° | 1.28*10% | 7.16*10% | 1.00
Table 3. Results of the plaza scene experiment
L1/L2 L1/L3 L1/L5 L1/L7 L3/L5 L3/L7 L5/L7
Innerellipse Cos(0) 0.9999 0.8587 0.4891 0.0040 0.8660 0.5142 0.8742
Innerellipse 0 (degree) | 0.046 30.715 60.719 89.77 30.004 59.055 29.051
Outerellipse Cos(8) 0.9999 0.8602 0.4756 0.0266 0.8577 0.4860 0.8662
Outerellipse 0 (degree) | 0.045 30.664 61.602 88.475 30.938 60.922 29.985

Figure 2-a. The photograph of one plaza

Figure 1-b. The edge feature extraction result

Figure 2-b. two ellipses extracted from the photograph



