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a b s t r a c t

Traditional subdivision schemes are applied on Euclidean coordinates (the spatial geometry of the
control mesh). Although the subdivision limit surfaces are almost everywhere C2 continuous, their mean-
curvature normals are only C0. In order to generate higher quality surfaces with better-distributedmean-
curvature normals, we propose a novel framework to apply subdivision for shape modeling, which
combines subdivision with differential shape processing. Our framework contains two parts: subdivision
on differential coordinates (a kind of differential geometry of the control mesh), and mutual conversions
between Euclidean coordinates and differential coordinates. Further discussions about various strategies
in both parts include a special subdivisionmethod formean-curvature normals, additional surface editing
options, and a version of our framework for curve design. Finally, we demonstrate the improvement on
surface quality by comparing the results between our framework and traditional subdivision methods.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Subdivision is well known for its modeling power in generat-
ing smooth surfaces from arbitrary polygonal meshes [1]. The uni-
formity of its representation allows users to model smooth shapes
by designing controlmeshes, avoiding constraintmanagement like
NURBS patches management. Moreover, the subdivision surfaces
naturally represent splines in the form of polygonalmeshes, which
leads to the potential for the seamless integration of CAD and
CAE [2]. Successful subdivision schemes like the Catmull–Clark and
Loop schemes iteratively refine control meshes and generate C2

continuous surfaces, except at extraordinary vertices where the
continuity is only C1 [3]. How to improve the quality of subdivision
surfaces, either globally or just near the extraordinary vertices, is
more attractive in CAD applications and still intensively discussed
in the field of shape modeling.

To describe the surface quality, besides parametric continuity,
the curvature distribution is also an important criterion [4]. The
ripple artifacts on subdivision surfaces near extraordinary vertices
can be measured by the variation of curvatures. Minimizing the
variation of Gaussian curvatures around extraordinary vertices
can substantially improve the local surface quality. In this paper,
instead of adjusting the subdivision stencil according to the
curvature variation, we directly adjust the vertex geometry
according to a refined mean-curvature distribution (see Fig. 1) at
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each iteration of subdivision. A smooth shape can be constructed
after several iterations of such subdivision. We name this new
modeling framework differential space subdivision.

Traditional subdivision is performed on the Euclidean coordi-
nates, i.e. the spatial geometry indicating where the control mesh
is embedded in R3. Our differential space subdivision instead sub-
divides the differential geometry of the control mesh. Guided by
the refined differential geometry, a smooth shape is finally recon-
structed. It turns out that the quality of the surfaces is improved
under our modeling framework, which differs from previous ef-
forts focusing on local stencil modifications near extraordinary
vertices [4,5]. Another feature of this modeling framework is that
the quality is improved all over the surface, not only near the ex-
traordinary vertices.

One related work named ‘‘subdivision shading’’ [6] presents
a subdivision on vertex normals for shading and reveals the
idea that subdivision is a general interpolation technique. Our
work is greatly inspired by this idea. However, we replace vertex
normals with discrete mean-curvature normals, whose direction
is the vertex normal and magnitude is the discrete vertex mean
curvature. Higher-order differential geometry (mean curvature) is
employed to improve the surface quality. A linear adjustment for
vertex positions according to the refined differential geometry is
also provided, which is not performed in [6].

Our work also follows a recent trend in shape modeling —
differential shape processing. Differential quantities of shapes
are used either directly or indirectly in shape editing [7–9] and
image painting [10]. All these works show that manipulating or
preserving the variation of geometry indirectly manipulates or
preserves the details of the shape. It will be no surprise that
smoothly interpolating the variation of geometry turns out a



L. Zhu et al. / Computer-Aided Design 43 (2011) 1126–1136 1127
Fig. 1. (a) The control mesh, (b) the refined discrete mean-curvature normals, and (c) the refined geometry adjusted according to the refined discrete mean-curvature
normals.
smoother shape. In the following text, we also call the discrete
mean-curvature normal differential coordinates for consistency
with the previous work on differential shape processing.

2. Related work

What has been subdivided. Subdivision schemes are commonly
used to generate smooth surfaces from sparse discrete surfaces.
Here we summarize them in the view of data interpolation,
especially for geometric data. Traditional subdivision schemes
can be classified into primal and dual schemes. Primal schemes
like Catmull–Clark and Loop create dense vertex data from
sparse control meshes. Dual schemes like Doo–Sabin and Midedge
essentially split the vertices and create dense face data [3]. Wang
et al. [11] present a novel class of subdivision schemes, which
could generate smooth vector fields from discrete edge data
on meshes. In contrast to subdividing spatial measurements on
control meshes, Vanraes et al. [12] subdivide control triangles
tangent to the surface at each vertex and then construct a surface,
which is constrained to be tangent to the refined control triangles.
Alexa et al. [6] subdivide the vertex normals of control meshes on
S2 and this yields high quality normals for surface rendering.
Subdivision with differential geometry. Instead of vertex nor-
mals, we are subdividing the discrete mean-curvature normals,
which additionally encode differential measurements of the con-
trol mesh. Existing subdivision schemes combined with differ-
ential measurements are mainly discussed in the curve design
community. Ohtake et al. [13] compute refined edge normals by
averaging normals of adjacent edges and then reconstructs the re-
fined polygon guided by these normals using a nonlinear optimiza-
tion. Yang [14] directly calculates the new vertices by averaging
vertices and normals of the control polygon and provides a detailed
convergence and continuity analysis. A variant of this scheme is
shown in [15], in which normals are replaced by curvature nor-
mals. Stoddard et al. [16] use tangents to guide the interpolatory
subdivision, whose new point corresponding to an edge is the in-
center of a triangle, which is formed by the edge and the two tan-
gent lines of the two end points. Compared to these subdivision
schemes, the 2Dversion of our framework is linear,which is prefer-
able to the above nonlinear schemes.

In the area of surface modeling, driving subdivision by
differentialmeasurements goes back to [17]. In thatwork, a control
mesh is calculated to meet the interpolation constraints of its
Catmull–Clark limit surface, and free vertices are set to minimize
certain smooth energy concerning differential measurements.
Later, Kobbelt’s variational construction [18,19] places new
vertices in the refined mesh to minimize a global smooth energy
functional. In recent works, curvatures are usually used to guide
the modifications near extraordinary vertices. For example, local
subdivision stencils are modified in [4], and local control vertices
are modified in [20].
Differential Shape Processing. Discrete differential quantities are
employed for mesh fairing [21] and thin shell simulation [22]
at first. Both theoretical and experimental results show that
minimizing an energy determined by certain differential measure-
ments leads to fair and physically meaningful shapes. Recently,
a collection of novel coordinates called differential coordinates
have been widely used in computer graphics [23]. The conversions
between Euclidean coordinates anddifferential coordinates are de-
veloped for shape processing on differential coordinates, e.g. quan-
tization [24] and filtering [25]. The most significant application of
differential coordinates is on mesh deformation, where shape de-
tails are preserved through preserving the differential coordinates
in a least-square sense [8]. Directmanipulation on curvatures in [7]
is based on a conversion from curvatures to spatial coordinates.
However, it involves a nonlinear optimization stage.

Another area relevant to our work is mesh refinement based
on discrete curvatures [26,27]. Discrete curvatures are used to
define an energy or threshold to guide some local refinement
operations such as edge swap, edge split or edge collapse. In
this paper we propose another way to use discrete curvatures
for mesh refining — to subdivide them instead of indirectly
using them as energies or thresholds. Previous work concerning
subdivision in differential shape editing is presented in [28].
The subdivision surfaces are deformed indirectly by deforming
their control meshes using differential coordinates. Instead of
subdivision surfaces deformation, our work concerns subdivision
in the area of shape modeling. The major contribution of our work
is directly combining subdivision with differential coordinates. It
can be regarded as a subdivision performed in the differential space
or an interpolating procedure on differential coordinates. A special
variant of the subdivision method and several surface editing
strategies exploiting differential coordinates are also designed for
our modeling framework.

3. Differential space subdivision

3.1. Preliminaries

We use triangular meshes to demonstrate our modeling
framework. Let M0

= (V 0, E0, F 0) be the given control mesh with
n vertices, whose spatial geometry is given by its vertex positions
V 0

= {v01, v
0
2, . . . , v

0
n} in Euclidean space, andwhose combinatorial

structure is described by a set of edges E0 and a set of faces F 0.
Traditional primal subdivisions for triangular meshes refine the
topology of the meshes by inserting new vertices on the edges
and update the geometry through a series of modifications on
both old and new vertices. The new positions of the vertices are
determined by the affine weights assigned to the old vertices in
the local combinatorial structure, which is also called the stencil of
subdivision. Selected stencils like Loop and Butterfly schemes can
generate a sequence ofmeshes {M1, M2, . . .}, which is convergent
to an almost everywhere C1 continuous surfaces. Assume themesh
Mk has nk vertices, the operation subdividing Mk−1 to Mk can be
encoded in a nk × nk−1 subdivision matrix Sk, such that SkV k−1

=

V k, if the subdivision is linearly dependent on the control mesh.
Note that the subdivision matrix Sk used in this paper is not a
square matrix, which locally maps the vertices of control mesh
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Fig. 2. Parameters in discrete Laplace–Beltrami operators. The pink region is the
Voronoi region Ai of vertex vi . Yellow region bounded by dashed lines is the
approximate Voronoi region after one iteration of subdivision, whose area is 1/4
of Ai . (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

to the subdivided mesh. It is a global matrix mapping all the
vertices of the control mesh to the subdivided mesh. Our matrix
is slightly different from the subdivision matrix for analyzing
subdivision surfaces. In this paper, the subdivision matrix Sk
is only used to introduce and formulate the differential space
subdivision. It is never explicitly formed in our implementation.
For better understanding our modeling framework, an example of
such subdivision matrix is given in the Appendix B.

The mean-curvature normal Hn of a vertex v on a surface S
is a vector with the vertex mean curvature H as its magnitude
and the vertex unit normal n as its direction. It simultaneously
encodes two-order differential geometry (vertex mean curvature)
and one-order differential geometry (vertex normal) of the surface.
Computing mean-curvature normals in the discrete settings
usually makes use of its connection with the Laplace–Beltrami
operator [23],

∆Sv = Hn.

If we apply the Laplace–Beltrami operator on each vertex, we get
its corresponding mean-curvature normal. Let δi denote the dis-
crete mean-curvature normal, then the discrete Laplace–Beltrami
operator can be formulated as

∆Mvi = δi =

−
j

ωij(vi − vj). (1)

Various discrete Laplace–Beltrami operators are developed for
different applications. Here we list three of them, which are most
relevant to our application:

1. Combinatorial Laplacian [29]. When the vertex j is in the 1-ring
neighborhood N(i) of the vertex i, the weight ωij in (1) is set as

ωij = 1/di, (2)

where di is the degree of vertex vi. Otherwise ωij is set to 0.
Applying the combinatorial Laplacian is efficient because the
weights are independent of the vertex geometry.

2. Cotangent Laplacian [30]. The weight ωij is set as 0 except when
the vertex j is in the 1-ring neighborhood N(i) of the vertex i,

ωij =
cotαij + cotβij∑

j∈N(i)
cotαij + cotβij

.

Aspointed out in [31],when cotangent Laplacian is scaled by the
area of Voronoi region Ai (see Fig. 2), the differential coordinate
is a good analogue for the vertexmean-curvature normal. Later,
it is proved that under some assumptions, cotangent Laplacian
is convergent to Laplace operator around regular vertices [32].

3. Mesh Laplace operator [33]. Mesh Laplace operator has a little
complicated formulation, but it has a nice property that it
Fig. 3. A subdivision perspective of differential space subdivision.

is point-wise convergent to the Laplace–Beltrami operator
on continuous surfaces. We refer its formulation and the
convergence proof to [33].

If all the discrete mean-curvature normals and Euclidean coor-
dinates of vertices are arranged in two vectors: 1 = (δ1, δ2, . . . ,
δn)

T , V = (v1, v2, . . . , vn)T , we can get a linear operator repre-
sented in a n × n matrix form, called the Laplacian matrix L, such
that 1 = LV, where

L =


−

j

ωij i = j

−ωij j ∈ N(i)
0 otherwise.

(3)

Stacking the inverse of Voronoi region into a n×n diagonal matrix
M = {1/Ai}, called mass matrix, we get the Laplacian operator
represented byML.

Following the practice in the shape processing community [23],
we use the term differential coordinates to denote the discrete
mean-curvature normals. In the following, we show that subdi-
viding the differential coordinates can create smooth shapes. Note
that the shapes we design are intrinsic, i.e. they are equivalent un-
der rigid transformations. Their smoothness is determined by the
distribution of certain differential measurements, which is an im-
portant criterion besides the parametric continuity.

3.2. A framework for differential space subdivision

Instead of subdividing Euclidean coordinates, we subdivide
differential coordinates in order to model smooth shapes, which
is called differential space subdivision in the following. To be
clear, we call the subdivision on Euclidean coordinates spatial
subdivisions. In a perspective of subdivision, the discrete mean-
curvature normals are subdivided. After a reconstruction from
subdivided discrete mean-curvature normals, the limit surface is
expected to have a nice quality (see Fig. 3). In a perspective of
differential shape processing, discrete mean-curvature normals
are smoothly interpolated on a manifold surface, with smoothed
features on the reconstructed limit surface (see Fig. 1).

As stated in Section 3.1, when calculating the differential
coordinates by1 = MLV, each δi is an approximation of themean-
curvature normal of the vertex vi. Assume vertex v(0)

i on M0

carries its discrete mean-curvature normal δ
(0)
i as its data. Then

we employ a primal subdivision to generate denser smoothly
distributed data over the control mesh, preferably C2 continuous
away from extraordinary vertices in the limit case. Therefore, if
we can find a mesh whose differential coordinates are right the
ones generated by subdivision, in the sense of ‘‘mean-curvature
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normal continuity’’, thismesh is hoped to be smoother than the one
created by directly subdividing the spatial geometry of the control
mesh.

We illustrate our modeling framework in Fig. 3 and formulate
it as follows. Define the differential mesh L0

= (∆0, E0, F 0) of M0
with the same topology as M0 and the differential coordinates of
M0 as its vertex positions. Subdividing L0, we get {L1, L2, . . .}.
Subdividing M0, we get {M1, M2, . . .}. We aim to find a mesh
M̃k = (Ṽ k, Ek, F k), such that M̃k has the same topology as Mk,
and

MkLkṼk
= 1k (4)

where Mk, Lk are the mass matrix and the Laplacian matrix of M̃k,
and the vectors 1k are composed of the vertex positions of Lk.

Let L denote the subdivision limit surface of control polygon
L0. As shown in the Appendix A, when a convergent discrete
Laplace–Beltrami operator is applied in our framework, such as
mesh Laplace operator [33], the limit surface of M̃k generated from
our framework can be regarded as the solution of the Laplacian
equation

∆SM̃ = L, (5)

which can be solved after adding proper boundary conditions. The
analysis of the differential space subdivisions is briefly presented
in the Appendix A.

Due to the fact that we have to solve differential equations to
get the differential space subdivision surfaces, and what we are
subdividing is no longer the simple geometry of the shape, we
find that simply constructing the differential space subdivision
surfaces from the above equation is costly, and it may introduce
other artifacts to the shape. In order to reduce the computational
cost while improving the quality of the shape, we construct our
modeling framework fromapractical point of view in the following
subsections.

3.3. Laplacian discretization and reconstruction

In this section, we will explore how to choose the proper dis-
crete Laplace–Beltrami operator for discretizing (5) in our mod-
eling framework. Three candidates of discrete Laplace–Beltrami
operators mentioned in Section 3.1 are discussed and compared
here, andwe recommend to use the combinatorial Laplacian in the
end. Readers who are not interested in the details about how to
implement the other two discrete Laplace–Beltrami operators can
skip the following two paragraphs.

First, because we have to solve a Laplacian system (5), in order
to reduce the computational time and memory usage, a sparse
linear system is preferred. As stated in Section 3.2, if we use the
mesh Laplace operator [33], the reconstruction result is supposed
to be convergent theoretically. However, it is not efficient to apply
mesh Laplace operator in our modeling framework, because the
Laplacian matrix of mesh Laplace operator is a dense matrix.1

If we discretize (5) using the cotangent Laplacian with mass
matrix, the differential coordinates can best approximate the
vertex mean-curvature normals while the Laplacian matrix is
sparse. Theproblemwith this kindof discretization is that,αij, βij in
(3) and Ai inmassmatrix are all dependent on V , which is unknown
before we reconstruct the surface. That is, Eq. (5) can be written as

M(V )L(V )V = ∆. (6)

1 In fact, a lot of elements in the Laplacian matrix of mesh Laplace operator are
close to zero. However, in order to preserve the convergence property, the Laplacian
matrix of mesh Laplace operator cannot be simply approximated by a sparsematrix
without any strict proof for the convergence.
It becomes a nonlinear equation of V . A possible solution for (6) is
to convert it into a nonlinear optimization problem. Thus, we turn
to solve the corresponding optimization problem of (6),

min
V

‖M(V )L(V )V − ∆‖
2 def

= min
V

f (V ). (7)

Using the derivatives of f (V ) and the Levenberg–Marquardt
algorithm, the approximate solution of (7) can be calculated
iteratively. The process of the Levenberg–Marquardt algorithmand
the derivative of the Laplacian weights and Voronoi region are
discussed in [7].

While the number of vertices exponentially increases after
subdivision, the computational cost and numerical instability
prohibit the performance of the nonlinear optimization. Thus, we
prefer to use the combinatorial Laplacian to linearize (5). In this
way, the Laplacian matrix is independent of the geometry of the
reconstructed mesh, and (5) can be reduced to a sparse linear
system. Although the cotangent Laplacian better approximates
the mean curvature normals, uniform weights do encode enough
differential information of the control mesh. After subdividing
M0 several times, in Mk, most of the vertices are regular, and
most of the faces are nearly isotropic. Therefore, the combinatorial
Laplacian is a valid substitute for the cotangent Laplacian. In the
uniform refinement scheme, A(k)

i is 1/4 of A(k−1)
i , as illustrated in

Fig. 2. Locally, the effect of subdivision matrix on mass matrix can
be formulated as

V̄ 1
= (M̄1L̄1)−1S1M̄0L̄0V̄ 0

= L̄−1
1 M̄−1

1
1
4
M̄1S1L̄0V̄ 0

=
1
4
L̄−1
1 S1L̄0V̄ 0,

which means if we use the combinatorial Laplacian, we can
simply scale it with a factor 1/4 instead of using the area of
the Voronoi region after each step of subdivision. Thus, the
Laplacian matrix becomes independent of the mesh geometry,
and the geometry of M̃k can be simply calculated by solving
(1/4)kL−1

k SkSk−1 . . . S1L0V 0.2
Although no theoretical proof for the convergence of the

combinatorial Laplacian exists, we find the surfaces modeled
from our framework convergent through the statistics. Given the
meshes {M̃1, M̃2, . . .} modeled from our framework using the
combinatorial Laplacian, we check the Hausdorff distance between
M̃i and M̃i−1. Let hi = dH(M̃i, M̃i−1), where dH(M1,M2) is the
Hausdorff distance of M1 and M2. If the sequence {h1, h2, . . .}
converges to zero superlinearly,

∑n
i=1 hi converges, hence the

sequence {M̃1, M̃2, . . .} is supposed to be a convergent sequence
due to the fact that dH(M̃n, M̃0) <

∑n
i=1 hi. In Fig. 4, we plot the

sequence {11.5h1, 21.5h2, . . .} of the local surface around the
vertices whose degree ranges from 3 to 12. The statistics shows
that i1.5hi monotonically decreases to zero, thus hi is convergent
superlinearly and the surfaces around both the regular and
extraordinary vertices are expected to be convergent.

We also need to note that differential coordinates are
translation-invariant [23], indicating that the rank of the Lapla-
cian matrix L is n − 1. To solve (5), additional constraints have
to be added in order to make the system have an unique solu-
tion. In the shape editing community, users are asked to place sev-
eral weighted handles to determine the reconstructedmesh. In our
modeling framework, since the intrinsic shape is also translation-
invariant, the placement of the shape does not matter. So we
suggest to add just one handle to fix the placement of the recon-
structed shape, e.g. make v0 at (0, 0, 0).

2 Strictly, L−1
k is not invertible (rank(Lk) = nk − 1, where nk is the number of

vertices in Mk). We use (·)−1 to represent the pseudo-inverse of Lk after adding a
handle.
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Fig. 4. The convergence of local surface around vertices whose degree range from
3 to 12.

Fig. 5. Different ways for refining differential coordinates of a square by simple
linear interpolation. The left column shows refined differential coordinates. The
right column shows the mean-curvature distribution on the parametric domain,
where the length of green lines represents themean curvatures. Awavy distribution
is found in the upper right figure.

3.4. Subdivide differential coordinates

In our modeling framework, all primal subdivision schemes for
triangular meshes are valid when they are performed in the dif-
ferential space. Since our aim is to produce a surface with higher
quality of curvature distribution, we explore the curvature dis-
tribution of our reconstructed surface. When directly performing
primal subdivision schemes in the differential space, wavy distri-
butions of mean curvatures will emerge, as shown in Fig. 6(a)(c)
(mean curvatures are mapped to colors). Looking closely into the
subdivision stage, we found that the weighted sum refinement for
the discrete mean-curvature normals is the reason for the wavy
distribution of mean curvatures. According to the characteristics
of themean-curvature and normal distribution around vertices,we
address the following two situations separately.
Case 1. When the discrete mean curvatures are almost uniformly
distributed and the normals are in different directions, trivial
weighted sum for vectors is prone to cause wavy distributions
of mean curvatures on parametric domain, as illustrated in the
upper row of Fig. 5. In this case, we introduce a new subdivision
method for subdividing differentialmesh calledDirMag subdivision
(short for Direction–magnitude subdivision). The implementation
of DirMag subdivision contains two steps — separation and
subdividing.
Suppose δi is the differential coordinate of vertex vi on M. As
stated in Section 3.1, δi approximates the mean-curvature normal
Hini of vi. Thus |Hi| = ‖δi‖. Noticing that mean curvature Hi can
be positive or negative at convex or concave vertices, we need to
determine the sign of Hi. We employ the angle weighted normal
n̄i [34] to help determine the sign. If n̄i·δi > 0,Hi = ‖δi‖, otherwise
Hi = −‖δi‖, and then ni = δi/Hi. When Hi = 0, we simply let
ni = n̄i.

After the separation, we subdivide ni and Hi respectively. Since
normals are entities in S2, they are subdivided using weighted
sums in S2. We use the method introduced in [6] to subdivide
normals. On the other hand, mean curvature is a scalar associated
with each vertex. We subdivide them by weighted sums in
Euclidean space using the same subdivision scheme. Finally, the
refined differential coordinates are calculated by multiplying the
refined mean curvatures with the refined normals.
Case 2. When the discrete mean curvatures are sufficiently differ-
ent or the normals are similar between neighboring vertices, the
weighted sum in Euclidean space for mean curvatures contributes
more than the weighted sum in S2 for normals. The wavy distribu-
tion caused by trivial weighted sum in R3 is insignificant. There-
fore, in this case, we employ the trivial weighted sum in R3 to
subdivide the differential coordinates.

In our experiment, we find that vertices on very coarse control
meshes usually belong to the first case. Sowe need to apply DirMag
subdivision. Forwell structured densemeshes, most of the vertices
can be classified into the second case. Trivial weighted sum, due to
its linearity and simplicity, is preferred. An interesting case is that
when a mesh is subdivided one or two times, most of its vertices
belong to the second case. Therefore, in our implementation, we
only perform the DirMag subdivision in the first one or two
iterations. A comparison between the modified Butterfly scheme
and the DirMag subdivision using the modified Butterfly stencil is
shown in Fig. 6.

3.5. Summary and extensions

We summarize the steps of our framework as follows:
Input: Control triangular mesh M0

= (V 0, E0, F 0)
Output: Mesh subdivided k times from differential space

subdivision, M̃k

1. Calculate the geometry of L0 by ∆ = L0V 0 using the combina-
torial Laplacian, see (2) and (3).

2. Subdivide L0 k times using a primal subdivision scheme, such
as the Loop scheme, the Modified Butterfly scheme, or our
DirMag subdivision method, get a subdivided differential mesh
Lk

= (∆k, Ek, F k).

3. Let the combinatorial structure of M̃k be the edge and face
structure of Lk. Calculate Laplacian matrix L̃k of M̃k using the
combinatorial Laplacian, see (2) and (3).

4. Solve for Ṽ k from 4kL̃kṼ k
= ∆k as the geometry of M̃k. For L̃k

is not invertible, we add a constraint v0 = (0, 0, 0) into the
above linear system, form an over-determined linear equation
AṼ k

= b, and get a least-square solution Ṽ k
= (ATA)−1ATb.

Note that in the second stage, we do not need to index the
subdivided mesh and explicitly construct the subdivision matrix.
The subdivided mesh can be obtained by splitting the vertices
and updating the vertex positions using the chosen subdivision
stencils.
Curve case. In the 2D case, the differential coordinates of a polygon
can be defined as

δi = vi −
1
2
(vi−1 + vi+1). (8)

Analogously, we define a differential polygon∆ = {δi} for the con-
trol polygon P = {vi}. Traditional subdivision schemes for curves,
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Fig. 6. Comparison between the Modified Butterfly Subdivision (a) (c) and DirMag Subdivision using the Modified Butterfly stencil (b) (d) in differential space subdivision.
The mean curvatures are mapped to colors. A bad distribution of mean curvature is spotted in (a). However, it is less obvious in complex models (c). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. From left to right are the control mesh, the subdivision surface with and
without boundary treatment.

such as the cubic spline algorithm or the four-point interpolatory
scheme, are performed on∆. A smooth shape can be reconstructed
from the subdivided differential polygon ∆k, and the scaling fac-
tor is still (1/4)k. The proofs for the convergence and smooth-
ness of the differential space subdivision curves are included in the
Appendix A.
Boundary treatment. When a control mesh M0 is not closed,
special stencils are designed to handle the boundary in traditional
subdivision schemes, which make the boundary of subdivision
surfaces like the limit curve of the boundary polygon. In the
differential space subdivision, directly using (1) will cause artifacts
around surface boundary, see Fig. 7(right). Similar to the boundary
cases of traditional subdivisions, we propose to use the previous
curve version of differential coordinates (8) as a substitute for the
discrete mean-curvature normals on the boundary. Therefore, the
shape of the boundary is preserved, see Fig. 7(middle).

4. Discussions and applications

4.1. Discussions

Computation in the reconstruction Compared to the spatial sub-
divisions for surfaces, which only need weighted sum operations
to calculate the new vertex positions, our differential space subdi-
vision is costly, because the final geometry is reconstructed from
the subdivided discretemean-curvature normals by solving sparse
linear systems. However, the vertex positions of themesh at depth
k satisfy that

Ṽ k
= (MkLk)−1S(Mk−1Lk−1Ṽ k−1)

= (MkLk)−1S(Mk−1Lk−1)

(Mk−1Lk−1)
−1S(Mk−2Lk−2Ṽ k−2)

= (MkLk)−1S2(Mk−2Lk−2Ṽ k−2)

= · · · = (MkLk)−1Sk(M0L0Ṽ 0).

It means that we do not need to solve the linear system k times.
Only one linear system is required to access the subdivided mesh
at a specific depth, which makes our scheme still practicable.
Linearity. Another nice feature of our framework is the linearity.
Previous normal or curvature normal driven subdivision schemes
for curves [13–15] are all nonlinear. Their generalizations to
surfaces are supposed to be nonlinear. In our framework, since
both the Laplacian operator M0L0 and the reconstruction operator
(MkLk)−1 are linear, if a linear subdivision scheme S is taken on the
differential mesh L0, the final reconstructed subdivision mesh is
supposed to be linear dependent on the controlmesh, i.e. the entire
framework is linear.
Globality. The vertex position on the limit surface of the differential
space subdivision is affected by all the vertices on the control
mesh. It is because the reconstructed vertex positions are solved
from a linear system covering all the vertices on the control
mesh. That will cause a global effect in the differential space
subdivision, i.e. modifying one vertex of the control mesh can
affect the geometry of the entire limit surface. However, it is also
the globality that makes the entire limit surface possess a better
surface quality. At the same subdivision depth, differential space
subdivision can globally adjust vertices around the area, where bad
surface quality issues may occur, to improve the surface quality.
This is not supported in spatial subdivisions, because the affected
region of each control vertex is local.
Differences from related works. Our modeling framework is
closely related to two previous subdivision constructions —
the divided difference schemes and the Kobbelt’s variational
subdivision. Divided difference schemes emerge in the analysis
of subdivision schemes [3]. It points out that local refinement for
divideddifferences improves the continuity of subdivision. Divided
difference schemes locally subdivide the divided differences.
For example, from the divided difference view of the four-
point subdivision, only the inserted vertices are set to satisfy
the subdivided differences. In contrast, performing subdivisions
on differential meshes is a global version of divided difference
scheme. All vertices are updated to satisfy the subdivided divided
differences. In Kobbelt’s variational construction [18,19], new
vertices are set to minimize ‖∆Vk+1‖— a termmeasuring the total
roughness of the shape. Comparatively, our modeling framework
relaxes all the old and new vertices to minimize ‖∆Vk+1 −

S∆Vk‖. Although they all implicitly define the subdivision results
by solving linear systems, our method needs to solve only
one linear system to access the mesh at a specific subdivision
depth. Moreover, our differential space subdivision is a modeling
framework rather than a subdivision scheme. Both the divided
difference schemes and variational subdivisions can be employed
in the subdivision stage.

4.2. Implementation

In our configuration, besides the DirMag subdivision men-
tioned in Section 3.4, all the primal subdivision schemes work
on the differential meshes. The final distribution of discrete
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Fig. 8. An example of differential space subdivision for curves. From left to right
are the control polygon, its four-point subdivision curve, and its differential space
four-point subdivision curve.

mean-curvature normals possesses the characteristics of the cho-
sen scheme. For example, the Loop scheme can generate an al-
most C2 discrete mean-curvature normals; the Butterfly scheme
can keep the discretemean-curvature normal interpolatory at each
vertex after subdivisions. Non-stationary modifications, such as
blending the subdivision surfaces [35], are also applicable. Using
such approaches, discrete mean-curvature normals are C2 contin-
uous at extraordinary vertices.

Among all the candidates for subdividing a shape in the
differential space, we prefer to adopt interpolatory schemes.
Interpolatory schemes keep the old mean-curvature normals after
each iteration of the subdivision, and the shape of the controlmesh
is well preserved with its details properly interpolated. Various
interpolatory schemes are available in [36].

4.3. Results and comparison

Examples of differential spaces subdivisions for surfaces can be
seen in Figs. 3, 6, 7, 12(c). Fig. 8 is an illustration of differential space
subdivision for curves. Table 1 lists the statistics for the models
in Figs. 10 and 13. In our experiment, each model is subdivided
three times and the Loop scheme is adopted in the subdivision
stage of our modeling framework. Notice that the timing for the
spatial subdivision is right the timing for the second stage in
differential space subdivision, because the differential mesh and
the control mesh have the same combinatorial structure. We use
the CGAL library [37] to implement the subdivision, and the TAUCS
library [38] to solve the sparse linear systems. All timings in Table 1
were measured on a PC with Intel Core i3 CPU 530/2.93 GHz.

One significant advantage of our modeling framework is the
improvement on curvature distribution of the limit surface. Fig. 9
illustrates the comparison between our framework and traditional
subdivisions. We map the Gaussian curvatures to the parametric
Table 1
Number of vertices and faces of models and the timing results in each stage
(computing differential coordinates, subdividing and reconstruction) of differential
space subdivision.

Model #V #F Comp. Diff. Sub- Recon-

Star 50 96 0.00025s 0.04673s 0.15729s
Fertility 115 242 0.00052s 0.11356s 0.64840s
Vase 235 442 0.00097s 0.20417s 1.73913s
Kitten 265 530 0.00114s 0.24932s 1.98092s
Rock-arm 323 646 0.00142s 0.30475s 3.25046s

domain. Colormaps of the Gaussian curvature are used to illustrate
the surface quality. Since the Gaussian curvature of the differential
space subdivision surface is relatively low, wemagnify it to clearly
illustrate the curvature distribution. In Fig. 9 we find that, around
a convex vertex of valence 12, the Modified Butterfly subdivision
and the Loop subdivision lead to ripples, while our framework
does not (the Gaussian curvatures are all positive and small). Even
though the continuity of the modified Butterfly scheme is lower
than the Loop scheme, when it is adopted in the differential space,
the quality of the result surface gets much more better than the
Loop scheme in spatial subdivision.

The comparison on the smoothness can be characterized by
highlight lines as well. Fig. 13 provides examples using complex
models. We also provide a quantitative evaluation of the surface
quality for the examples in Fig. 13. The normalized thin-plate
energy

E =


S
(κ2

1 + κ2
2 )ds

S
ds

is employed to measure the surface quality here, where κ1 and
κ2 are the two principle curvatures of the element ds on the
surface S. Since not all the subdivision surfaces have analytical
expressions, we estimate the principle curvatures κ1 and κ2 on
the subdivided mesh using the curvature tensor proposed in [39],
as it approximates the curvature tensor on the smooth surface
when the subdivided mesh is sufficiently dense. Note that smooth
surfaces usually have low thin-plate energy, and the thin-plate
energy is normalized to measure the smoothness per unit area.

As a substitute for subdivision surfaces, curved triangles also
refine the control mesh guided by vertex normals [40]. However,
the tangents are not continuous across the edges, because the
interior geometry of a curved triangle is actually determined
by only one triangle with its vertex normals. Differential space
subdivision takes advantage of the combinatorial structure of
the control mesh, and the mean-curvature normals are refined
guided by the neighboring ones. It gives up the efficiency curved
triangles may have and gets a better continuity across the edges.
Fig. 10 shows a comparison between a recent progress in curved
triangles [41] and our differential space subdivision.
Fig. 9. Gaussian curvature distributions around a 12-degree extraordinary vertex of (a) the modified Butterfly subdivision, (b) the Loop subdivision and (c) the modified
Butterfly subdivision in differential space.
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Fig. 10. From left to right are the control mesh, the geometry of Phong tessellation
(image courtesy of [41]), and the modified Butterfly subdivision in differential
space.

4.4. Applications

Tomanipulate the limit shape, besides manipulating the vertex
positions of the control mesh, it is also possible to adjust the vertex
positions of its differential mesh. As mentioned above, the vertex
position of the differential mesh is an approximation to the vertex
mean-curvature normal. Sowe canmodify the subdivision surfaces
with the support of additional normal and curvature controls.
Fig. 11(b) demonstrates the editing result bymodifying the normal
directions of the control mesh. Four vertex normals at corners
and four vertex normals on edges are adjusted upwards (red) and
downwards (yellow dotted) respectively.

Figs. 11(c) and 12 illustrates the editing result by adjusting the
mean curvatures. In Fig. 11(c) the mean curvatures of the four
vertices at corners are enlarged. In Fig. 12, the mean-curvature
distribution on the control mesh is normalized to [0, 1]. Then a
filter

f (x) =


1/2 + (x/8 − 1/16)1/4, 0.5 < x ≤ 1
1/2 − (1/16 − x/8)1/4, 0 ≤ x ≤ 0.5

is employed to polarize the mean-curvature distribution. The
differential space subdivision generates a smooth shape with
exaggerated geometric features of the control mesh.

4.5. Limitations

Differential space subdivision is inappropriate for applications
like real-time interactive modeling and local adjustment for very
complex meshes. The high quality of the shape is at the cost of
high computational cost. The locality of traditional subdivision
schemes enables them to be efficiently mapped to GPU [42], while
the global minimization in the differential space subdivision has
high computational costs. Some local operations enforce that most
of the surface is fixed during the editing. They are not supported in
the differential space subdivision due to its globality.

5. Conclusion and future work

Wepropose a shapemodeling framework,which combines sub-
division with differential coordinates. Based on the investigation
about discrete approximation for mean-curvature normals, we de-
sign a framework for subdivision in differential space, together
with a special subdivision method for differential coordinates and
a curve version of the framework. The improvements on the curva-
ture distribution and editing power are then presented. The exper-
imental results show that subdividing the geometry in differential
space can improve the quality of the subdivision surfaces.

In the future, we will look for other possible quantities in
differential space, which have efficient mutual conversions with
vertex positions in R3, and discuss the possibility they can be
smoothly refined. Following the progress on discrete Laplacian
operators of quadrilateral meshes [43], the generalization of
our algorithm to quadrilateral meshes using the Catmull–Clark
subdivision and its interpolatory counterpart is also a realistic goal.
In differential space subdivision, subdivisions are performed on
the differential quantities of a surface. We think ripples that may
occur on the surface are moved to the higher-order derivatives of
the surface. The remaining roughness in the magnified map (see
Fig. 9) implies that there is still room for further improvement on
the surface quality.
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Appendix A

Here we briefly list the proof sketch for the properties of the
differential space subdivision curves and surfaces.

First, let us recall the notations for the differential space
subdivision curves. Denote by P0 = {v(0)

i } a closed control polygon,
and denote by ∆0 = {δ

(0)
i } its differential polygon, where δ

(0)
i

is computed from (8). Assume the curve subdivided k times has
Fig. 11. (a) Differential spacemodified Butterfly subdivision for octahedron, (b) editing result by adjusting normal directions, (c) editing result by enlargingmean curvatures.
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Fig. 12. The differential space subdivision surface of tooth model (a) is modified by filtering the mean curvatures on (a) with a filter (b). The editing result is (d), comparing
to the result without modification (c).
Fig. 13. Highlight lines for (a) the modified Butterfly subdivision, (b) the modified Butterfly subdivision in differential space, (c) the Loop subdivision and (d) the Loop
subdivision in differential space. Each model’s normalized thin-plate energy E is indicated below.
nk vertices. Then the polygon Pk subdivided k times from the
differential space subdivision satisfies

4DkPk = SkDk−1Pk−1, (A.1)

where the nk×nk matrixDk is the second-order difference operator
and nk × nk−1 matrix Sk is the subdivision operator.

Lemma 1. Suppose polygon P = {pi} is uniformly sampled from a
sufficiently smooth curve c(u), i.e. c(ui) = pi and ui+1−ui = h. Then
the second-order difference of pi satisfies (pi−1 + pi+1 − 2pi)/h2

=

c ′′(ui) + O(h2).

Proof. By Taylor’s formula,

c(ui + h) = c(ui) + c ′(ui)h +
c ′′(ui)h2

2
+

c ′′′(u)h3

6
+ O(h4)
c(ui − h) = c(ui) − c ′(ui)h +
c ′′(ui)h2

2
−

c ′′′(u)h3

6
+ O(h4).

Summing up the above two equations, we get

pi−1 + pi+1 − 2pi

h2
=

c(ui − h) + c(ui + h) − 2c(ui)

h2

= c ′′(ui) + O(h2). �

Lemma 2. Under uniform parameterization, the second-order di-
vided differences of vertices on Pk (Pk is computed from (A.1)) can be
computed by subdividing the second-order divided differences of ver-
tices on P0 k times.

Proof. Suppose the control polygon P0 = {v(0)
i } has n0 vertices and

its parameter domain is [0, n0h]. Under uniform parameterization,
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Fig. B.14. (a) The stencil of the Loop scheme for interior edge-points. (b) The stencil of the Loop scheme for interior vertex-points of valence n, here βn =
1
n ( 5

8 −

1
64


3 + 2 ∗ cos( 2π

n )) when n ≠ 6 and βn =
1
16 when n = 6. (c) The stencil of the Loop scheme for boundary edge-points. (d) The stencil of the Loop scheme for boundary

vertex-points. (e) The indexes of vertices on M0 . (f) The indexes of vertices on M1 .
the parameter values of v(0)
i is ih. When subdivided k times, the

vertices v(k)
i on Pk have parameter values ih/2k under uniform

parameterization. Let hk = h/2k, by Eq. (A.1), we get

1
(0.5hk−1)2

DkPk =
1

(hk−1)2
SkDk−1Pk−1.

Iteratively substitute 1
(0.5hk−2)2

Dk−1Pk−1 =
1

(hk−2)2
Sk−1Dk−2Pk−2

into the above equation, finally we get

1
h2
k
DkPk = SkSk−1 . . . S1

1
h2
0
D0P0. � (A.2)

Proposition 1. Adding proper boundary conditions, the differential
space subdivision curves defined by (A.1) converge.

Proof. If Pk is uniformly sampled from a curve dk(u), by Lemma 1,
the left side of (A.2) can bewritten as d′′

k (u)+O(h2
k). Using standard

subdivision rules, when k → ∞, the right side of (A.2) uniformly
converges to the subdivision limit curve c(u) of the control polygon
D0P0, which means d′′

k (u) uniformly converges to c(u). Thus, dk(u)
converges to the solution of the differential equation

d2x(u)/du2
= c(u). (A.3)

Adding proper boundary conditions, such as fixing one vertex of
the closed curve (Dirichlet boundary condition), the differential
space subdivision curve converges to the solution of the differential
equation (A.3), which can be obtained by integrating it twice. �

Proposition 2. If the subdivision schemes used in the subdivision
stage of differential space subdivision can generate Ck continuous
curves, the differential space subdivision curves defined by (A.1) are
at least Ck+2 continuous.

Proof. If the subdivision scheme SkSk−1 . . . S1 generates a Ck

continuous curve, then subdividing the differential polygon ∆0,
we get a Ck continuous limit curve c(u). By Proposition 1, the
differential space subdivision curve d(u) can be regarded as the
solution of (A.3). So d(u) is at least Ck+2 continuous. �

The proof for the convergence of the differential space subdi-
vision curves can also be extended to the surface case. For differ-
ential space subdivision surfaces defined by (4), the differential
mesh ∆k uniformly converges under standard subdivision rules,
which means when k → ∞, the right hand side of (4) converges
to the limit surface of the differential mesh, denoted by L.
Just like the second-order difference operator converges to the
second-order differential operator in the curve case, if the dis-
crete Laplace–Beltrami operator MkLk in (4) converges to the
Laplace–Beltrami operator ∆S , the differential space subdivision
surface is expected to be convergent to the solution of the Laplacian
equation ∆SX = L. Convergent discrete Laplace–Beltrami oper-
ators do exist [33], but the formulation and the proof for the con-
vergence is more complicated than the curve case, and we are not
planning to repeat it here. Interested readers are referred to [33]
for more details.

Proposition 3. Using convergent discrete Laplace–Beltrami opera-
tors, the differential space subdivision surfaces defined by (4) converge
when proper boundary conditions are added.

By Proposition 2, we know that the differential space subdi-
vision curve is smoother than its spatial subdivision counterpart
in the sense of geometric continuity. For the surface case, when
convergent discrete Laplace–Beltrami operators are adopted, the
vertices on the differential mesh are convergent to the mean-
curvature normals of the differential space subdivision surface. So
its distribution enjoys the same property of the chosen subdivision
schemes performed in the differential spaces.

Appendix B

The construction of the subdivision matrix Sk used in this paper
depends on the chosen subdivision scheme and how the vertices
are indexed. Here we give an example of Sk, see Fig. B.14. In the
example, the mesh M0 is subdivided one time using the Loop
scheme. The original mesh M0 and the subdivided mesh M1 are
indexed as Fig. B.14(e) and (f). The element sij in the matrix is the
affine weight of the jth vertex on M0 when we are calculating the
ith vertex onM1. For example, in Fig. B.14, according to the stencil,
the vertex v

(1)
1 on M1 is computed as a weighted sum of vertices

on M0,

v
(1)
1 =

5
8
v

(0)
1 +

1
16

v
(0)
2 +

1
16

v
(0)
3 +

1
16

v
(0)
4

+
1
16

v
(0)
7 +

1
16

v
(0)
8 +

1
16

v
(0)
9 .
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Therefore, the elements s11, s12, s13, s14, s17, s18, s19 of the subdi-
visionmatrix are 5/8, 1/16, 1/16, 1/16, 1/16, 1/16, 1/16 respec-
tively, and the other elements on the first row are all zero.
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