
第 23 卷第 1 期

2011年 1月

计算机辅助设计与图形学学报
Journal of Computer-Aided Design &Computer G raphics

Vol.23 No.1
Jan.2011

　

收稿日期:2010-07-08;修回日期:2010-09-09.基金项目:国家“九七三”重点基础研究发展计划项目(2010CB328002);国家自然科学基金

(90915010 , 60925007 , 60833007).张慧娟(1987—),女 ,博士研究生 , CCF 会员 ,主要研究方向为计算机图形学 、几何造型等;耿　博(1983—),

男 ,硕士研究生 ,主要研究方向为计算机图形学 、几何造型等;汪国平(1964—),男 ,博士 ,教授 ,博士生导师 , CCF 高级会员 , 主要研究方向为计

算机图形学 、虚拟现实 、网络多媒体技术等.

采用张量投票理论的三角网格特征边提取算法

张慧娟
1 , 2)

, 耿　博
1 , 2)

, 汪国平
1 , 2)

1)(北京大学计算机系人机交互与多媒体实验室　北京　100871)
2)(北京大学机器感知与智能教育部重点实验室　北京　100871)

(zhanghj@graphics.pku.edu.cn)

摘 要:识别与提取模型几何特征在几何模型的编辑处理中起着重要作用 , 然而大多数已有算法在处理质量较差

的三角网格模型时往往会失效 ,为此提出一种基于张量投票理论的特征边提取算法.首先根据张量投票矩阵特征值

分布与顶点几何特征之间的对应关系对顶点进行分类;采用断点连接方法来保证顶点分类过程中能够正确地区分

平滑特征上的边点及角点;根据顶点的类别结果进行区域增长 ,并提取区域增长后的边界 , 从而得到网格特征边.实

验结果表明 ,文中算法对大多数模型可靠有效 , 能够处理网格分布不均匀 , 以及含有狭长三角形或含有孔 、缝的模

型 ,处理有噪声的模型也能达到较好的效果.
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Abstract:Feature detection and ex t raction play s important role in mesh edi ting.However , most

existing alg orithms of ten fail in dealing w ith irregular meshes.To ove rcome tho se problems , an

algo ri thm fo r ext racting feature edges of t riangle meshes based on tensor vo ting is presented.First , all

vertices of an input mesh are classi fied according to the observation that there is a close correspondence

between the eigenvalue dist ribution of the tensor vo ting matrix and geometrical features.The classif ied

vertices are then optimized by connecting breakpoints.Region g rowing is performed fo r each seed

triangle and the boundaries of the regions are ext racted as the edges.The experimental results show

that the propo sed algo ri thm is ef fective in nearly all cases , including models w ith non-uniformly

dist ributed t riang les , lo ng and narrow triang les o r even holes.It i s also robust on noisy data.
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　　随着坐标测绘及激光扫描等技术的迅速发展和

应用 ,复杂三维模型数据的采集技术走向成熟 ,并在

游戏动画 、产品设计与制造等领域中得到了广泛应

用.把扫描得到的点云数据重建为网格模型有利于

模型的形状分析和编辑形变 ,其中识别和提取网格

模型的几何特征成为必要的步骤.但现有的多种特

征提取算法对模型特征形状有一定的限制条件 ,处

理网格分布不规则或含有噪声的复杂模型的效果不

好 ,易忽略平缓的特征 ,不能够满足多个领域的模型

编辑和进一步的设计要求.本文提出一种基于张量

投票理论的特征边提取算法 ,能够计算给定的三角

网格模型的特征边 ,并提取模型的特征边框;在特征



提取的基础上 ,可以方便地对模型进行光顺 、重网格

化 、模型表示转换和纹理映射等多种操作.大量的实

例验证结果表明 ,本文算法对网格模型的特征提取

具有良好的鲁棒性 ,能够处理网格分布不均匀 ,以及

含有狭长三角形或者是孔 、缝的网格模型 ,处理有噪

声的模型也能达到良好的效果 ,表现出比现有方法

更好的适应性.

1　相关工作

近年来 ,为了适应不同应用的需要 ,人们提出了

很多模型的特征识别方法.根据对象的不同 ,这些方

法可以分为 2类:第一类是提取将网格模型分割成

对应的子几何体的特征[ 1-3] .该方法试图将“自然物

体”分割成为有意义的部分 ,这种分割希望与人的主

观想法一致 ,因此其主观性较强 ,对精度的要求不

高 ,常常应用于动画 、游戏等领域.另一类方法致力

于CAD模型的逆向工程应用[ 4] .这类方法提取特

征边并将网格分割成具有几何性质的表面片 ,对精

度的要求较高.本文算法根据网格曲面上的张量投

票性质将网格分割成若干表面片 ,因此其属于第二

类方法.

根据输入模型的不同 ,可以将特征边提取算法

分为 2类:输入点云数据和输入三角网格模型.第一

类算法首先要估计点处的曲率 ,根据估计曲率计算

得到特征边[ 5-7] ,但这类算法采用不同的曲率估计算

法得到的结果精确度相差较大.目前 ,点云重构网格

的技术已比较成熟 ,因此本文采用第二类方法 ,基于

三角网格模型进行特征边提取.

根据实现方法的不同 ,可以将特征边提取算法

分为 2类
[ 8]
.1)基于边的方法

[ 9-10]
.该类算法一般分

两步进行:找出曲率突变点作为边点(也称特征点),

再将这些离散的边点连接成线(也称特征边).由于

这类方法只利用了与边点相邻的数据点 ,因此对数

据点本身的误差以及计算误差很敏感;而在算法中

如何避免误差影响 ,提高特征的提取精度是很重要

的 ,文献[ 9-10]都没有对如何避免误差影响进行研

究.2)基于面的方法.该类方法首先从一组“种子面”

开始进行“区域增长” ,找出具有相似特征的一组点

构成曲面 ,直至周围邻域没有特征一致性的点才停

止增长;然后根据相邻曲面相交或其他算法求得曲

面边界[ 11-12] .该类算法主要是采用二面角以及顶点

处的主曲率作为顶点的特征 ,其中二面角阈值的确

定一般是凭经验给出的 ,不够精细 ,从而缺乏普适性 ,

给实际应用带来了不便;同时 ,由于仅使用了二面角

和主曲率的信息 ,使得该类算法对于某些复杂几何体

表面三角网格的特征 ,如含有狭长三角形的特征边 ,

难以精确地提取出来.本文的特征边提取算法是在

三角网格模型基础上采用基于面的方法实现的 ,根

据张量投票理论 ,采用张量投票矩阵特征值作为顶

点的特征 ,并根据该特征值分布与顶点几何特征之

间的对应关系对顶点进行分类 ,能有效地避免误差

及噪声影响 ,处理复杂几何体表面的三角网格模型.

本文参考并优化了 Kim 等
[ 13]
的方法 ,在利用

张量投票理论时 ,由于 Kim 等[ 13] 的方法计算张量

投票矩阵只考虑了三角形 1-邻域的三角形对其的

影响 ,因此对于网格分布极其不均匀的模型或者是

含有狭长三角形或狭长缝隙的模型得不到有效的结

果.本文依据三角形的邻域三角形面积的分布 ,动态

地选择 n-邻域三角形进行计算 ,有效地避免了网格

分布不均匀带来的误差.另外 ,对于一些特殊的情

况 ,采用传统的区域增长的方法往往会出现过度增

长的现象;因此本文提出了一种新的基于权重的区

域增长方法 ,有效地避免了传统方法的不足 ,其对大

多数模型都能得到较好的结果.

2　本文算法概述

特征通常是指曲面上具有至少一个较大的主曲

率的区域;特征边是指(极大或极小)主曲率沿相应

主曲率方向的极值点的连线(或主曲率沿着相应主

曲率方向的方向导数的过零点)
[ 14]
.本文算法的主

要目的是在给定的三角网格模型中识别出特征边 ,从

而提取该模型的特征边框.本文算法主要分为 4步:
Step1.针对三角网格模型每个顶点求其张量投票矩

阵 , 解得其对应的特征值.

Step2.根据特征值将顶点分类(分为面点 、边点 、角点 3

类).

Step3.进行区域增长 , 得到曲率尽可能平缓的模型区

域表面.

Step4.提取面与面之间的交界线 ,得到特征边.

3　基于法向的张量投票

Medioni等
[ 15]
定义了三角网格顶点 v 上基于法

向的张量投票 T v , Kim 等[ 13] 利用该张量投票理论

进行多维网格的特征识别.但是 ,由于该方法只考虑

了每个点 1-邻域三角形对该点位置的影响 ,当三角
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网格分布极其不均匀 ,尤其是含有较多狭长或者面

积近乎为零的三角形时 ,通过特征值分析得到的点

的位置信息往往是错误的.Page 等[ 16-17] 采用一种法

向投票的方法 ,它是由张量投票改进得到的.取每个

三角形法向在顶点 v 处的对称向量作为投票法向 ,

用测地线距离取代了欧氏距离 ,把 1-邻域三角形集

合扩大到了某个测地距离范围内的所有三角形集

合.该方法避免了网格分布不均匀带来的影响 ,但是

反复的求解测地距离导致算法效率较低.本文参考

了文献[ 13 ,15]中的张量投票的方法 ,对获取邻域三

角形集合做了改进 ,根据该点处网格平均面积的大

小动态选择邻域集合.

图 1　曲率与张量投票特征值所隐含的位置信息

3.1　张量投票矩阵

Medioni等[ 15] 定义 Tv 为三角网格顶点 v 处基

于法向的张量投票协方差矩阵.Vti表示三形 ti 的投

票分量 ,由■ti 的法向定义;nti表示三角形 ti 的法

向 ,设 nti =(a ,b , c),则

Tv = ∑
t
i
∈ S n

v

μtiVti ,

Vt
i =nt

i ·n
T
t
i =

a

b

c

·(a b c)=

a
2

ab ac

ab b
2

bc

ac bc c
2

.

其中 , Sn
v 表示顶点 v 的 n-邻域内所有三角形面片组

成的集合;μti为■ti 的投票分量在张量投票中所占

权重.本文在 Medioni等[ 15] 定义的权重函数的基础

上增加了邻域■ti 所处第 m 邻域对该点张量投票

矩阵的影响 ,定义

μti =
area(ti)

max area(Sn
v)

exp -
m · cti -pv

σ 3
(1)

其中 ,area(ti)表示■ti 的面积 , max area(Sn
v)表示

在 S
n
v 中最大三角形的面积;cti表示■ti 的中心的坐

标 , pv 表示点 v 的坐标;σ表示该邻域包围盒的边

长 ,m 表示■ti 位于顶点 v 的第 m 邻域(m ≤n).由

式(1)可知 ,三角形的面积越小 ,三角形距离顶点 v

越远 ,其在张量投票中占的权重越小.在面积一定的

情况下 , cti -pv 越大 ,权重越小.在求解张量投票

矩阵的过程中 ,首先是确定 n的大小 ,找到顶点 v的

S
n
v ;本文通过

∑
n

j=1
avg(subS j

v)≤u·avg(al l), n ≥1 (2)

来确定 n.其中 ,avg(all)表示整个网格所有三角形

的平均面积 ,avg(subS
j
v)表示属于顶点 v 的第 j 邻

域的三角形平均面积 , subS j
v 指顶点 v 的第 j 邻域中

的三角形集合 ,是 S
n
v 的子集.求得满足式(2)的 n的

最大值 ,即为要求的n;u为调整参数 ,当 u取值较大

时 ,则求得的 n较大.若式(2)无解 ,则认为 n=1.为

了处理在不均匀网格的同时不增加计算复杂度 ,本

文取 u=2.0.

当三角网格模型分布较均匀且取 u=1.0时 ,将

其代入式(2)计算得到 n=1 ,在式(1)中m=1.此时

上述计算方法简化为文献[ 13 ,15]中的张量投票矩

阵计算方法.

3.2　张量投票矩阵特征值分析

由于张量投票矩阵是一个对称半正定的矩阵 ,

因此可以将其对角化为

Tv =λ1e1e
T
1 +λ2e2 e

T
2 +λ3 e3e

T
3 (3)

其中 , λ1 , λ2 , λ3 是 Tv 的特征值;e1 , e2 , e3 是 Tv 的特

征向量.式(3)可以改写成

Tv =(λ1 -λ2)e1e
T
1 +(λ2-λ3)(e1 e

T
1 +e2 e

T
2)+

　λ3(e1e
T
1 +e2e

T
2 +e3 e

T
3).

Medioni等[ 18] 定义

S s=λ1-λ2

Sc =λ2-λ3

Sn =λ3

(4)

其中 ,S s表示顶点位于面上的特征大小 ,Sc表示顶点

位于边上的特征大小 , Sn表示顶点位于拐角处的特

征大小.因此 ,式(4)中特征值之间的关系式能够明

显表示顶点的位置信息.如图 1所示 ,图中的颜色条

由蓝色到红色 ,表示特征越来越尖锐.可以看出 ,特

征值对于曲率的变化较为敏感 ,能够很好地反映曲

率变化.
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4　顶点分类

Shimizu等[ 9] 提出 ,根据张量投票矩阵求得的

特征值可以将三角网格模型中的点分为面点 、边点

和角点 3类.λ1 , λ2 , λ3 是 Tv 的特征值 ,设 λ1 ≥λ2 ≥

λ3 ,则如果λ1 相对于 λ2 , λ3 较大 ,同时 λ2 ,λ3 都接近

于0时 ,相应的顶点为面点;如果λ1 , λ2 相对较大 ,λ3

接近于 0 ,相应的顶点为边点;如果λ1 ,λ2 , λ3 值比较

接近 ,都不为 0时 ,该顶点为角点.如图 2所示.

图 2　张量投票特征值分布与顶点几何特征的对应关系

　　文献[ 13] 中采用 K-Means聚类算法对顶点进

行聚类 ,这样做的优点是能够将网格顶点分成 n类 ,

可以考虑模型的颜色 、材质等信息.但是 ,采用 K-

Means聚类算法时初始点的选取对于最终的结果影

响较大 ,很难找到合适的初始点选择算法来保证对

于大多数模型都能得到较好的顶点聚类效果.如图 3

所示 ,在图 3 a中 ,平缓的边点聚为一类 ,尖锐的边

点跟角点聚为一类;在图 3 b 中 ,同一条边上的点可

能聚为不同的类;在图 3 c ,3 d 中 ,对“自然物体”模

型的处理效果也不理想.

本文并没有采用 K-Means聚类算法 ,而是根据

特征值与顶点几何特征的对应关系 ,采用简单的阈

值控制方法来进行顶点分类 ,即根据特征值中含有

0的个数将所有的点分成面点 、边点与角点.设置阈

值ξ来控制精度 ,当λi ≤ξ时 ,则认为 λi =0.采用这

种方法 ,ξ越小 ,对曲率的敏感性越强 ,在类似圆柱

表面的弧面上的点 ,即判断为边点;ξ越大 ,对曲率

的敏感性越低 ,同时具有一定的抗噪性.该方法简单

高效 ,并且通过后续断点连接可保证其对大多数模

型是有效的.

图 3　采用 K-Means 聚类算法得到的结果

　　由于在某些边上的点的曲率变化较小 ,会导致

有些边上的点无法识别 ,从而出现一些断点.不论采

用 K-Means聚类算法还是本文的阈值控制方法 ,都

会产生断点.本文定义的断点是指其 1-邻域中所有

邻接点只有一个为边点或者角点.当遇到断点时 ,则

采用下文描述的断点连接策略 ,识别出断点附近应

该位于边上的点 ,将断边继续生长 ,直到遇到其他边

并将其连接起来.

进行断点连接时 ,首先要找到断点 1-邻域中最

可能位于边上的点.由式(4)可知 , Sc =λ2 -λ3 表示

点位于边上的特征值 ,其中 , λ2 与 λ3 为待判断的顶

点的特征值;同时边越平滑 ,则认为该边质量越好.

因此 ,采用权重函数

W i =cos(θi)·Sc , i ∈V 1
v

选择最可能位于边上的点作为边连接的新增长点.

其中 V
1
v ,指在顶点 v 的 1-邻域处的所有顶点的集

合 ,W i 是指顶点 v i 的权重 , θi 是在 vvi 与边原始方

向 v pv 之间的夹角(如图 4所示), vp 是指断点 v 的

前一个边点.最终取权重最高的顶点作为增长出去

的点 ,若该点已经是边点或角点 ,则停止增长;否则 ,

把新增的边点设为断点 ,继续增长 ,直至其与边连

接.图 5 a所示为未进行连接的断点 ,图 5 b所示为

断点连接处理后的结果.图 5中黄色的点表示面点 ,

浅蓝色的点表示边点 ,深蓝色的点表示角点.

图 4　断点增长时边方向的改变角度
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图 5　顶点分类的结果

5　区域增长

Kim 等[ 13] 借鉴了 Lavoué 等[ 20] 的方法进行区

域增长.首先选取 3个顶点类型一致的三角形作为

“种子面” ,然后向边相邻的 3个三角形做扩展测试.

若通过测试 ,则将其合并为一个区域;否则 ,停止增

长.该方法不能处理如图 6所示某些比较特殊的情

况.对图 6 a 中红色矩形框中的三角形 ,选取 3个顶

点都为边点的三角形作为种子面 ,因此会沿着边一

直增长产生错误的结果 ,出现如图 6 b中的情况.本

文中如未做特殊说明 ,则黄色的点表示面点 ,浅蓝色

的点表示边点 ,深蓝色的点表示角点.

图 6　传统区域增长算法不能处理的特殊情况

本文并未采用上述区域增长算法 ,而是采用一

种新的基于权重的区域增长算法 ,在任意的三角网

格模型中 ,只存在如图 7中所示的 10类三角形和 6

类边.设置面点 、边点 、角点的权值分别是 0 ,1和 2 ,

由此计算得到相应边及相应三角形的权值 ,其中 , 6

类边及 10类三角形所对应的权值如图 7所示 ,图中

红色数字表示编号 ,黑色数字表示权值.

本文进行扩展测试的主要思想如下:在一般的

三角网格模型中 ,若每一个三角形不孤立成为一个

区域 ,则其必定与一个邻居三角形同属一个区域.

图 7　在三角网格模型中所有点 、线 、面的分类

图 7中标记＊的边指的是在该三角形中权值最小的

边.每个三角形必定与以权值最小的边为公共边的

邻居三角形属于同一区域 ,当三角形含有 2条或者

2条以上权值最小的边时 ,则认为该三角形与这 2

个或者 2个以上的邻居三角形都属于同一区域.另

外 ,当三角形的 3个顶点与初始种子三角形的顶点

类型均不一致时 ,则此三角形一定不属于该区域.

本文算法首先寻找一个种子三角形 ,其选取原

则是三角形的 3个顶点权值相同 ,并且未进行过区

域扩展 ,按照权值从低到高的顺序选取.如图 7中的

1 , 6及 10号三角形都可以作为种子三角形 ,按其权

值顺序分别选择 1号 、6号和 10号三角形.然后 ,再

进行区域的扩展测试.

选择好种子三角形后 ,对其进行标记;然后分别

向周围的 3个邻居三角形做扩展测试.如果通过测

试 ,则将其并入同一区域 ,与种子三角形做同样的标

记;否则 ,停止测试.直到第一个区域扩展结束之后

寻找下一个种子三角形;当不存在候选种子三角形

时 ,区域扩展测试阶段结束.注:若该种子三角形是

一个孤立的区域 ,则其 3个点往往是角点 ,其不能通

过邻域扩展测试从而标记为单独的区域.

根据此区域增长策略有2个特例 ,即在图6 a中

遇到的 6号三角形及 8号三角形.由于其位于面的

边缘处 ,因此应该也归入该面三角形增长的区域.遇
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到此类三角形时 ,判断的方法是选择与其法向最相

近的邻居三角形归入同一区域;若其邻居三角形中

有多于一个三角形与其法向方向一致 ,则认为该三

角形与此多个邻居三角形同属于一个区域.

依据此区域增长算法 ,能够对大多数模型得到

较好的效果 ,如图 8所示.

图 8　区域增长后的结果

6　提取特征边

在区域增长结束之后 ,各个面被明显地标记为

不同的区域 ,只需将区域之间的边界提取出来 ,即能

得到需要的特征边.图 9 a所示为由图8区域增长结

果得到的特征边识别结果 ,图 9 b 所示为由此提取

的特征边.

图 9　提取特征边后的结果

图 10　本文算法与文献[ 13] 算法的特征提取效果比较

7　实验结果

本文选用的 Fandisk模型及 Cast ing 模型经过

特征值计算之后 ,均出现图 6所示的特殊三角形 ,因

此采用文献[ 13]的区域增长方法会出现过度增长 ,

提取结果不理想 ,如图 10 a 所示.相比而言 ,本文算

法能够在时间效率更快的情况下得到较好的特征边

提取结果 ,如图 10 b所示 ,其与文献[ 13] 时间效率

比较如表 1所示.由表 1数据可知 ,本文算法在顶点
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分类这一步的效率远远高于文献[ 13] 的 K-Means

聚类的效率 ,因此总时间效率较高.运行时间是在一台

具有 Intel酷睿 2.9GHz CPU和 2GB内存的 PC 机

上进行测量的 ,本文对Fandisk模型与 Casting 模型

进行顶点分类时的阈值ξ分别为 0.01和 0.06;采用

文献[ 13]方法对三维模型进行处理 ,聚类时将顶点

聚为 3类.

表 1　本文算法与文献[ 13] 算法的运行时间比较

算法 步骤 Fandisk模型 s Casting 模型 s

文献[ 13] 算法

本文算法

特征值计算 0.312 0.292

顶点 K-Mean s聚类 3.241 1.697

区域增长 0.075 0.062

总时间 3.628 2.051

特征值计算 0.481 0.326

顶点分类 0.003 0.002

区域增长 0.094 0.062

总时间 0.578 0.39

　　在文献[ 13]算法中 ,区域合并及清理两步时间

占用的权重较小 ,而本文方法无需进行这两步 ,因此

未做这两步算法的时间比较.

本文算法具有更广的适用性 ,能够对大多数模

型进行特征边的提取 ,并且具有一定的抗噪性 ,图 11

所示为其对具有噪声的模型的处理结果.

在对于噪声模型的处理中 ,可以通过调整阈值

ξ来得到比较理想的效果 ,但是在噪声影响较大的

情况下 ,往往识别不出比较平缓的特征.图 11中阈

值ξ分别为 0.02 ,0.08 ,0.2和 0.4 ,红色的矩形框表

示未被识别的特征.由图 11可以看出 ,在噪声较小

时的识别效果还是不错的;但是当噪声增大到 20%

时 ,识别效果不是很理想.

采用本文算法对一系列 CAD 模型进行了实

验 ,表 2与图 12分别列举了针对例子模型用本文算

法得到的时间结果与特征提取效果.实验结果表明 ,

本文算法对网格模型的特征提取具有良好的鲁棒

性 ,执行效率比较高.

图 11　噪声模型的处理结果

表 2　针对例子模型用本文算法得到的结果

图序号 模型 面片数 ξ值 特征值计算时间 ms 区域增长时间 ms 特征边提取时间 m s 总运行时间 ms

图 9 c , 9d SharpSphere 18 864 0.08 749 109 62 920

图 12 a Gear 5 110 0.01 218 47 78 343

图 12b Alterm oto r 4 448 0.01 265 62 212 539

图 12c Coolingup 2541 0.01 172 234 188 594

图 12d Coolingdow n 1741 0.01 78 16 47 141

图 12e Body 768 0.01 47 15 31 93

　　本文算法处理 CAD 模型的效果较好 ,但是处

理“自然物体”模型的效果还有待提高.如果模型中

不含有较细长的部分 ,其效果相对好一些.如图 13

处理时阈值ξ分别为 0.08 , 0.02和 0.09.图 13 a 所

示的 bunny 模型面片数较多(共有 7 461个面片),

在特征处面片的曲率变化不大 ,因此本文算法误将

某些局部的噪声识别为特征 ,如图中耳朵及前腿处.

图 13 b所示的 bunny 模型为简化后的模型(共有

704个面片),并且面片的分布均匀 ,因此识别效果

还可以.对于另外一类“自然物体”模型 ,如四肢动物

以及其他一些局部含有细长部分的模型 ,本文算法

的处理效果不理想.如图13c所示 ,由于在手指处横

截面积相对整个模型来说较小 ,其上面的点即使未

处于特征处 ,曲率变化可能比模型其他部位特征上

点的曲率变化大.因此 ,本文算法会忽略掉模型较平

缓部位的特征 ,若过于关注细长部位的变化 ,则特征
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图 12　部分模型的实验结果

图 13　部分“自然物体”模型的实验结果

提取的结果不理想.Kim 等[ 13] 的方法能够处理多维

的网格模型 ,采用 K-Means聚类算法分类可以将其

分为 n类 ,因此能够识别平缓部位的特征 ,处理“自

然物体”模型的效果比本文算法好.但是 ,若在 K-

Means聚类时初始点选取不合适 ,或者是区域增长时

出现过度增长现象 ,则特征提取效果不如本文算法.

8　结　　论

本文提出了一种基于张量投票的特征边提取算

法 ,通过引入张量投票的度量快速地对顶点进行分

类 ,并通过区域增长的边界线找到特征边 ,该算法
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能够使用于网格分布不均匀 、有噪声 、有空洞或者边

界不连接的网格模型.但是 ,本文算法仅仅对处理

CAD模型效果较好 ,对于“自然物体”模型(如兔子 、

马等)提取特征边的效果不够理想.我们今后的研究

重点是针对更加广泛的模型进行特征边提取.

致谢　感谢本实验室朱利丰 、李声韧及高雷雷

同学对本文提出的建设性意见.文中所有的模型由

AIM @SHA PE模型库提供 ,在此表示感谢 !

参考文献(References):

[ 1] Reniers D , T elea A .H ierarchical part-t ype s egmentat ion

u sing voxel-based curve skeleton s [ J] .The Visual C om puter ,

2008 , 24(6):383-395

[ 2] Lai Y K , H u S M , Mart in R R , et a l.Fast mesh

segmentation using random walk s [ C]   Proceedings of ACM

Symposium on S olid an d Ph ysical M odeling.New York:ACM

Press , 2008:183-191

[ 3] M ortara M , Patané G , Spagnuolo M .From geomet ric to

semant ic human body models [ J] .Com puters & Graphics ,

2006 , 30(2):185-196

[ 4] A ttene M , Falcidien o B, Spagnu olo M .H ierarchical mesh

segmentation based on fi tt ing p rimitives [ J] .The Visual

C om puter , 2006 , 22(3):181-193

[ 5] Tong W S , Tang C K .Robu st est imation of adaptive tensors

of curvatu re by tens or voting [ J] .IEEE T ransact ions on

Pat tern Analy sis.M achine.Intelligence , 2005 , 27(3):434-

449

[ 6] Yang P H , Qian X P.Direct compu ting of surface curvatu res

for poin t-set surfaces [ C]   Proceedings of IEEE Eu rographics

S ymposium on Point-Based Graphics. Aire-la-Vil le:

E urograp hics Association Pres s , 2007:29-36

[ 7] M érigot Q , Ovsjanikov M , Guibas L .Robu st Voronoi-based

curvatu re and featu re es tim at ion [ C]   Proceeding s of ACM

Symposium on S olid an d Ph ysical M odeling.New York:ACM

Press , 2009:1-12

[ 8] Liu Sh englan , Zhou Ru rong , Zh ang Liy an.Featu re line

ext raction f rom triangu lar mesh model [ J] . Journal of

C om puter-Aided Design &Computer Graphics , 2003 , 15(4):

444-453(in Chinese)

(刘胜兰 , 周儒荣 , 张丽艳.三角网格模型的特征线提取[ J] .

计算机辅助设计与图形学学报 , 2003 , 15(4):444-453)

[ 9] Mil roy M J , Bradley C , Vickers G W.S egmentation of a

w rap-around model using an active contou r [ J] .Com puter-

Aided Design , 1997 , 29(4):299-320

[ 10] Yang M , Lee E.S egmentation of measured point data u sing a

paramet ric quadric su rface approximation [ J] .Com puter-

Aided Design , 1999 , 31(7):449-457

[ 11] Sapidis N S , Besl P J.Direct cons tru ction of polynomial

su rfaces f rom dense range im ages th rough region growin g [ J] .

ACM T ransaction s on Grap hics , 1995 , 14(2):171-200

[ 12] Chen Y H , Liu C Y.Quadric surface ext ract ion u sing genetic

algori thms [ J] .C om puter-Aided Design , 1999 , 31(2):101

-110

[ 13] Kim H S , C hoi H K , Lee K H .Feature detect ion of

t riangular meshes based on tensor voting theory [ J] .

Computer-Aided Design , 2009 , 41(1):47-58

[ 14] H u Shimin , Yang Yongliang , Lai Yukun.Research progres s

of digital geometry processing [ J] . Chinese J ou rnal of

Computers , 2009 , 32(8):1-18(in Chinese)

(胡事民 , 杨永亮 , 来煜坤.数字几何处理研究进展[ J] .计算

机学报 , 2009 , 32(8):1-18)

[ 15] Medioni G , Tang C K , Lee Mi-Suen.Ten sor voting:theory

and applications [ OL] .[ 2010-07-08] .ht tp:  citeseerx.i st.

psu.edu view doc summ ary ?doi=10.1.1.41.9125

[ 16] Page D L , Kosch an A , Sun Y , et al.Robu st crease detection

and curvatu re est imation of piece wise smooth surfaces f rom

triangle m esh approximation s using normal voting [ C]   

Proceedings of IEEE C om puter S ociety C onferen ce on

Computer Vision and Pat tern Recogni tion.Washington D C:

IEEE Computer S ociety Press , 2001 , (1):162-167

[ 17] Sun Y , Page D L , Paik J K , et al.Triangle mesh-based edge

detect ion and i t s applicat ion to surface segm entation and

adapt ive su rface smoothing [ C]   Proceedings of IE EE

Internat ional C onferen ce on Image Processing.Piscataw ay:

IEEE Pres s , 2002:825-828

[ 18] Medioni G , Lee M S , Tang C K .A computation al f ramew ork

for segm en tation and grouping [M ] .Am sterdam:Elsevier ,

2000

[ 19] Shimizu T , Date H , Kanai S , et al.A new bi lateral m esh

sm oothing m ethod b y recognizin g features [ C]   Proceeding s

of the 9th Internat ional Conference on C om puter Aided Design

and Computer Graphics.Washington D C:IEEE Compu ter

Society Press , 2005:281-286

[ 20] Lavoué G , Dupont F , Basku rt A .A new CAD m esh

segmen tat ion method , b ased on curvatu re tensor analysis [ J] .

Computer-Aided Design , 2007 , 37(1):975-987

70 计算机辅助设计与图形学学报　　　　　 第 23 卷


