
Image and Vision Computing
Single view vision

Instructor: Chen Yisong
HCI & Multimedia Lab, Peking University



Projective geometry

Readings
Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: 
Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992
available online:  http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Ames Room

How does a scene map to its image?
Projective Geometry
Homography

http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf
http://www.illusionworks.com/html/ames_room.html


Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html



Modeling Projection
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Modeling Projection

The coordinate system
We will use the pin-hole model as an approximation
Put the optical center (Center Of Projection) at the origin
Put the image plane (Projection Plane) in front of the COP
The camera looks down the negative z axis

we need this if we want right-handed-coordinates



Modeling Projection

Perspective Projection
Compute intersection with PP of ray from (x,y,z) to COP
Derived using similar triangles
We get the projection by throwing out the last coordinate:



Homogeneous Coordinates

Is this a linear transformation?

Converting from homogeneous coordinates

no—division by z is nonlinear

Trick:  add one more coordinate:

homogeneous image coordinates homogeneous scene coordinates



Perspective Projection

Projection is a matrix multiplication using 
homogeneous coordinates:

divide by third coordinate

This is known as perspective projection
The matrix is the projection matrix



Perspective Projection
How does scaling the projection matrix change the 
transformation?

Conclusion: the Projection matrix is scale independent



Special case of perspective projection
Put effective optical center to infinite:

Also called “parallel projection”:  (x, y, z) → (x, y)
What’s the projection matrix?

Image World

Orthographic Projection



Other types of projection
Scaled orthographic

Also called “weak perspective”

Affine projection
Also called “paraperspective”



Weak-Perspective Projeciton
Scaled orthographic



Affine Projection
Also called “paraperspective”



Camera Parameters
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Projection equation

• The projection matrix models the cumulative effect of all parameters
• Useful to decompose into a series of operations
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Camera parameters
A camera is described by several parameters

• Translation T of the optical center from the origin of world coords
• Rotation R of the image plane
• focal length f, principle point (x’c, y’c), pixel size (sx, sy)
• blue parameters are called “extrinsics,” red are “intrinsics”

• The definitions of these parameters are not completely standardized
– especially intrinsics—varies from one book to another



Camera Calibration

Goal:  estimate the camera parameters

Version 1:  solve for projection matrix
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Version 2:  solve for camera parameters separately
intrinsics (focal length, principle point, pixel size)
extrinsics (rotation angles, translation)
radial distortion



Estimating the Projection Matrix

Place a known object in the scene
identify correspondence between image and scene
compute mapping from scene to image

Issues
• must know geometry very accurately
• must know 3D->2D correspondence



Direct Linear Calibration



Direct linear calibration
Advantage:

Very simple to formulate and solve

Disadvantages:
Doesn’t tell you the camera parameters
Doesn’t model radial distortion
Hard to impose constraints (e.g., known focal length)
Doesn’t minimize the right error function

For these reasons, nonlinear methods are preferred
• Define error function E between projected 3D points and image positions

– E is nonlinear function of intrinsics, extrinsics, radial distortion

• Minimize E using nonlinear optimization techniques
– e.g., variants of Newton’s method (e.g., Levenberg Marquart)



Alternative:  Multi-Plane Calibration

Images courtesy Jean‐Yves Bouguet, Intel Corp.

Advantage
• Only requires a plane
• Don’t have to know positions/orientations
• Good code available online!

– Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

– Matlab version by Jean‐Yves Bouget:  
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

– Zhengyou Zhang’s web site:  http://research.microsoft.com/~zhang/Calib/

http://www.intel.com/research/mrl/research/opencv/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://research.microsoft.com/~zhang/Calib/
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html


Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs
http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm



Projective geometry
—what’s it good for?

Uses of projective geometry
Drawing
Measurements
Mathematics for projection
Undistorting images
Focus of expansion
Camera pose estimation, match move
Object recognition



Applications of projective 
geometry 

Vermeer’s Music Lesson Reconstructions by Criminisi et al.
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Measurements on planes

Approach:  unwarp then measure

What kind of warp is this?



Image rectification

To unwarp (rectify) an image
• solve for homography H given p and p’
• solve equations of the form:  wp’ = Hp

– linear in unknowns:  w and coefficients of H
– H is defined up to an arbitrary scale factor
– how many points are necessary to solve for H?

p
p’



Solving for homographies



Solving for homographies

A h 0
2n × 9 9 2n

Defines a least squares problem:
Since h is only defined up to scale, solve for unit vector ĥ
Solution: ĥ = eigenvector of ATA with smallest eigenvalue
Works with 4 or more points



3D to 2D: 
“perspective” projection

Matrix Projection:

ΠPp =
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What is not preserved under perspective projection?
What IS preserved?



Homographies of points and lines

Computed by 3x3 matrix multiplication
To transform a point:  p’ = Hp
To transform a line:  lp=0 → l’p’=0

0 = lp = lH-1Hp = lH-1p’ ⇒ l’ = lH-1

lines are transformed by postmultiplication of H-1



3D projective geometry

These concepts generalize naturally to 3D
Homogeneous coordinates

Projective 3D points have four coords:  P = (X,Y,Z,W)

Duality
A plane N is also represented by a 4-vector
Points and planes are dual in 3D: N P=0

Projective transformations
Represented by 4x4 matrices T:  P’ = TP,    N’ = N T-1



Vanishing points

Vanishing point
projection of a point at infinity

image plane

camera
center

ground plane

vanishing point



Vanishing points (2D)

image plane

camera
center

line on ground plane

vanishing point



Vanishing points

Properties
Any two parallel lines have the same vanishing point v
The ray from C through v is parallel to the lines
An image may have more than one vanishing point

in fact every pixel is a potential vanishing point

image plane

camera
center

C

line on ground plane

vanishing point V

line on ground plane



Vanishing points

Image by Q‐T. Luong (a vision researcher & photographer)



Vanishing lines

Multiple Vanishing Points
Any set of parallel lines on the plane define a vanishing point
The union of all of these vanishing points is the horizon line

also called vanishing line
Note that different planes define different vanishing lines

v1 v2



Vanishing lines

Multiple Vanishing Points
Any set of parallel lines on the plane define a vanishing point
The union of all of these vanishing points is the horizon line

also called vanishing line
Note that different planes define different vanishing lines



Computing vanishing points

Properties
P∞ is a point at infinity, v is its projection
They depend only on line direction
Parallel lines P0 + tD, P1 + tD intersect at P∞
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Computing vanishing lines

Properties
l is intersection of horizontal plane through C with image plane
Compute l from two sets of parallel lines on ground plane
All points at same height as C project to l

points higher than C project above l
Provides way of comparing height of objects in the scene

ground plane

lC





Fun with vanishing points



Perspective cues



Perspective cues



Perspective cues



Comparing heights
VanishingVanishing

PointPoint



Measuring height
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Computing vanishing points (from lines)

Intersect p1q1 with p2q2

q1

v

p1

p2

q2

Least squares version
Better to use more than two lines and compute the “closest” point of 
intersection
See notes by Bob Collins for one good way of doing this:

http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

http://www-2.cs.cmu.edu/afs/cs/user/rcollins/www/home.html
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt


Measuring height without a ruler

Compute Z from image measurements
Need more than vanishing points to do this

C

ground plane

Z



The cross ratio
The cross-ratio of 4 collinear points

A Projective Invariant
Something that does not change under projective 
transformations (including perspective projection)

Can permute the point ordering
4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry
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Measuring height
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Measuring height

RH

vz

r

b

t

R
H

Z

Z =
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−−

tvbr
rvbt

image cross ratio

H

b0

t0
vvx vy

vanishing line (horizon)



Measuring height vz

r

b

t0
vx vy

vanishing line (horizon)

v

t0

m0

What if the point on the ground plane b0 is not known?
Here the guy is standing on the box, height of box is known
Use one side of the box to help find b0 as shown above

b0

t1

b1



Computing (X,Y,Z) coordinates

Okay, we know how to compute height (Z 
coords)
how can we compute X, Y?

Easy – Just map it to the reference plane



Vanishing point calibration

Advantages:
only need to see vanishing points
(e.g., architecture, table, …)

Disadvantages:
not that accurate

need rectahedral object(s) in scene



Single View Metrology
A. Criminisi, I. Reid and A. Zisserman (ICCV 99)

Make scene measurements from a single image
Application:  3D from a single image

Assumptions
1 3 orthogonal sets of parallel lines

2 4 known points on ground plane

3 1 height in the scene

Can still get affine reconstruction without 2 and 3



Problem

Is it possible to extract 3D geometric 
information from single images?

YES
How?
Why?



Background

2D
3D

Optical
centre

Painter,Linear perspective

Real or imaginary
object

Painting

Camera,Laws of Optics

Real object

Photograph

Architect,Descriptive Geometry

A mental model

Drawing
Projective Geometry

Reconstructed
3D model

Flat image



Introduction

3D affine measurements may be 
measured from a single perspective 
image



Geometry
Overview
Measurements between parallel lines
Measurements on parallel planes
Determining the camera position



Assumptions

Assume that images are obtained by 
perspective projection
Assume that, from the image, a:

vanishing line of a reference plane
vanishing point of another reference 
direction

may be determined from the image



Geometric Cues
Vanishing Line ℓ

Projection of the line at infinity of the reference plane 
into the image



Geometric Cues

Vanishing Point(s) v
A point at infinity in the reference direction
Reference direction is NOT parallel to reference plane
Also known as the vertical vanishing point



Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

Geometric Cues



Automatic estimation of vanishing 
points and lines

RANSAC algorithm

Candidate vanishing point



Automatic estimation of vanishing 
points and lines



Estimating Height

•The distance  || tr – br || is known
•Used to estimate the height of the man in the scene



Parallel Line Segments

•Basis points are manually selected and measured 
in the real world
•Using ratios of lengths, the size of the windows 
are calculated



Camera Position
Using the techniques we developed in the previous 
sections, we can:

Determine the distance of the camera from the scene
Determine the height of the camera relative to the 
reference plane



Camera Distance from Scene

In Measurements between 
Parallel Lines, distances between planes 
are computed as a ratio relative to the 
camera’s distance from the reference 
plane
Thus we can compute the camera’s 
distance from a particular frame 
knowing a single reference distance



Camera Position Relative to 
Reference Plane

The location of the camera relative to the reference 
plane is the back-projection of the vanishing point 
onto the reference plane



Representation



Camera In Scene



Applications

Forensic Science (法医科学)
Height of suspect

Virtual Modeling
3D reconstruction of a scene

Art History
Modeling paintings



Forensic Science



Virtual Modeling



Art History



Conclusions

Affine structure of 3D space may be 
partially recovered from perspective 
images
Measurements between and on parallel 
planes can be determined
Practical applications can be derived



Criminisi et al., ICCV 99

Complete approach
Load in an image
Click on parallel lines defining X, Y, and Z directions
Compute vanishing points
Specify points on reference plane, ref. height
Compute 3D positions of several points
Create a 3D model from these points
Extract texture maps
Output a VRML model



A general pipeline

Edge detection

Line fitting

Vanishing point

computing

Metrology

2D/3D

Reconstruction

2D/3D

Texture analysis

Texture mapping

Postprocessing

(3D editing)

SingleView/Detection/fitting/calibration/metrology/optimization/
Structure/modeling/Texture/editing/…



3D Modeling from a Photograph



3D Modeling from a Photograph



Assignment/Project

Any work related to image and vision 
computing is acceptable
Presentation at the end of the semester

Pre-submission of demos, codes, and documents
PPT and DEMO at presentation
Each student has around 30 minutes

Good work win exemption of final exam



Assignment/Project presentation

June 3rd, Tuesday, 16:50-18:40
Presentation: powerpoint slides, 30 minutes
Presubmission (By June 1st, 23:59): 

Codes (concise) with comments (Detailed)
Distinct your work from open sources (if any) 

Result demos (Mandatory)
Documents (Emphasis on your own work)

The sooner, the better.



Document/PPT format

Abstract(摘要)
Introduction(引言)
Related work(相关工作)
Your work--major part(你的工作——重点)

Main idea(思想)
Global framework / Step-by-step pipeline (整体框架)
Implementation details / Algorithms(实现细节)

Experimental result(试验结果)
Conclusion and future work(结论)
Please refer to formal technical papers



Source code format

Executable 
Comment whenever possible (with your name)

Open source: highlight your understanding 
Your work: tell technical detail
Sample: 

glCallList(iframe % Npat + 1); // chenyisong:每Npat=32帧一循环，每一帧调用一个显示列表

glBegin(GL_QUAD_STRIP); // chenyisong:将新的背景噪音作为源混合，为什么这里只绘制一个单位方格？

Make your work understandable and 
convincible
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