Image and Vision Computing

!'_ Single view vision

Instructor: Chen Yisong
HCI & Multimedia Lab, Peking University



Projective geometry

= How does a scene map to its image?

= Projective Geometry g
= Homography '

Ames Room

= Readings

= Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix:
Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992

= available online: http://www.cs.cmu.edu/—ph/869/papers/zisser-mundy.pdf



http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf
http://www.illusionworks.com/html/ames_room.html

i Miller-Lyer Illusion

Votes for George Bush Votes for John Kerry

A clear and resounding victory

N

http://www.michaelbach.de/ot/sze muelue/index.html




Modeling Projection
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f': effective focal length (will be d from next slide)



Modeling Projection
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= The coordinate system /

= We will use the pin-hole model as an approximation
= Put the optical center (Center Of Projection) at the origin

= Put the image plane (Projection Plane) /n front of the COP
= The camera looks down the negative z axis
= We need this if we want right-handed-coordinates




Modeling Projection

1 PP
R d ..... / (X' y'_' —d)
(X, ¥, 2)
, . COP rt'/
= Perspective Projection " /
= Compute intersection with PP of ray from (Xx,),z) to COP

xI
= Derived using similar triangles (z,y,2) — (—d—, —dg, —d)

i . : 4 A
= We get the projection by throwing out the last coordinate:

(z,y,2) = (—d—, —d2)
Z A



Homogeneous Coordinates

m IS this a linear transformation?

= no—division by zis nonlinear (z,vy,z) — (—df, —d>%)
Z
s [rick: add one more coordinate:

£

(z,y) = | v
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homogeneous image coordinates

y | = (z/w,y/w)

(z,y,2) =
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homogeneous scene coordinates

= Converting frorm homogeneous coordinates
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Perspective Projection

= Projection Is a matrix multiplication using
homogeneous coordinates:

=| y |=(-d>, —d)
Z Z

=N e 8

divide by third coordinate

= This Is known as perspective projection
= The matrix is the projection matrix



i Perspective Projection

= How does scaling the projection matrix change the

transformation?
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= Conclusion: the Projection
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matrix Is scale independent



Orthographic Projection

Special case of perspective projection
= Put effective optical center to infinite:

A

= Also called “parallel projection”: (x, vy, z) = (x, ¥)

= What's the projection matrix?
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Other types of projection

= Scaled orthographic
= Also called “weak perspective”
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= Affine projection

= Also called “paraperspective”
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i Affine Projection

= Also called “paraperspective”

=N < 8
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‘L Camera Parameters
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Camera parameters

A camera is described by several parameters
« Translation T of the optical center from the origin of world coords
* Rotation R of the image plane
- focal length f, principle point (X', y'.), pixel size (s, s,)
* Dblue parameters are called “extrinsics,” red are “intrinsics”

Projection equation o Y /
SX * ok ok ok /
X
x<|sy|<le « o« oY |2mIX ”‘J[ (ol 41
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1 —

« The projection matrix models the cumulative effect of all parameters
» Useful to decompose into a series of operations _ _ _
identity matrix

5

3x3

01x3 1

R3X3

= o %, y. /|0 1 0 0
01x3 1

0 0 110 0 1 O
intrinsics projection rotation translation

* The definitions of these parameters are not completely standardized
— especially intrinsics—varies from one book to another

—fs, 0 X'C1000|:



i Camera Calibration

= Goal: estimate the camera parameters

= Version 1: solve for projection matrix

[WX} li* % ok *jl >Y(
X=|wy|=|* * * =
Z
® %k
W * 1

= Version 2. solve for camera parameters separately
= Intrinsics (focal length, principle point, pixel size)
= extrinsics (rotation angles, translation)
= radial distortion

- 11X




Estimating the Projection Matrix

= Place a known object In the scene
= Identify correspondence between image and scene
= compute mapping from scene to image
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Issues
e must know geometry very accurately
 must know 3D->2D correspondence



Direct Linear Calibration

ui | | Moo Mo1 Mo2 M03 }]%
Uy — | Mi1p0 Mmi1 Mmi2 mMm13 7.
1 Mmoo M21 M22 M3 1
v = mooX; + mo1Y; + mo24; + mo3
mooX; + m21Y; + mooZ; + mo3
v, m10X; + m11Y; + mi12Z; + mi3

mooX; + m21Y; + mooZ; + mo3z
ui(mooX; + m21Y; + mooZ; + mo3) = mooX; + mo1Y; + mo2Z; + mo3
v; (Mmoo X; + mo1Y; + mooZ; + mo3z) = my1oX; + m11Y; + mi12Z; + ma3

moo
mo1
mo2
?To!ro3
mio
0 —u; X; —wY, —u;jZ; —u; mi11 | | O
1 —uX; —vY; —vZi —v; || mi2 |

mi3
moq
mo1
Mmoo
mo23




i Direct linear calibration

= Advantage:
= Very simple to formulate and solve

= Disadvantages:
= Doesn’t tell you the camera parameters
= Doesn’'t model radial distortion
= Hard to impose constraints (e.g., known focal length)
= Doesn’t minimize the right error function

For these reasons, nonlinear methods are preferred

« Define error function E between projected 3D points and image positions

— E is nonlinear function of intrinsics, extrinsics, radial distortion

* Minimize E using nonlinear optimization techniques

— e.g., variants of Newton’s method (e.g., Levenberg Marquart)



Alternative: Multi-Plane Calibration
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Images courtesy Jean-Yves Bouguet, Intel Corp.

Only requires a plane

Good code available online!

Don’t have to know positions/orientations

EiImagcis| 4. ME E

Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

Matlab version by Jean-Yves Bouget:

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/


http://www.intel.com/research/mrl/research/opencv/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://research.microsoft.com/~zhang/Calib/
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs
http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm



Projective geometry
i—what’s It good for?

= Uses of projective geometry
= Drawing
= Measurements
= Mathematics for projection
= Undistorting images
= Focus of expansion
= Camera pose estimation, match move
= Object recognition



Applications of projective
geometry

Vermeer’'s Music Lesson Reconstructions by Criminisi et al.



Measurements on planes
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Approach: unwarp then measure

What kind of warp is this?



'= S 3 g
To un‘vvarg (rectify) an image
» solve for homography H given p and p’
» solve equations of the form: wp’ = Hp
— linear in unknowns: w and coefficients of H
— His defined up to an arbitrary scale factor
— how many points are necessary to solve for H?



Solving for homographies
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Solving for homographies
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= Defines a least squares problem: minimize ||Ah — 0|
= Since h is only defined up to scale, solve for unit vector h
= Solution: h = eigenvector of ATA with smallest eigenvalue
= Works with 4 or more points



3D to 2D:
i“perspective” projection

= Matrix Projection:

T 1| X

WX * %k %k Xk
P=|wy|=|* * * * Y _IIP

W « % % x||Z

E R -_1_

= What is not preserved under perspective projection?
= What IS preserved?



:Ll-lomographies of points and lines

= Computed by 3x3 matrix multiplication
= To transform a point: p’ = Hp

= To transform a line: Ip=0 —» I'p’=0
«0=Ilp=IHHp=IHp = I'=IH1
= lines are transformed by postmultiplication of H-1



i 3D projective geometry

= These concepts generalize naturally to 3D

= Homogeneous coordinates
= Projective 3D points have four coords: P = (X,Y,Z,W)

= Duality
= A plane N is also represented by a 4-vector
= Points and planes are dual in 3D: N P=0

= Projective transformations
= Represented by 4x4 matrices T: PP =TP, N =NT!



i Vanishing points

image plane

T~

vanishing point

camera
center

ground plane

= Vanishing point
= projection of a point at infinity



i Vanishing points (2D)

image plane
\
_vanishing point
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n ground plane



Vanishing points

image plane
\
_vanishing point V
o

e >
camera
center

C .
line on ground plane
line on ground plane
Properties

= Any two parallel lines have the same vanishing point v
= The ray from C through v is parallel to the lines
= An image may have more than one vanishing point

= In fact every pixel is a potential vanishing point



Vanishing points

rImage by Q-T. Luong (a vision researcher & photographer)



i Vanishing lines

v \p)

= Multiple Vanishing Points
= Any set of parallel lines on the plane define a vanishing point
= The union of all of these vanishing points is the /orizon line
» also called vanishing line
= Note that different planes define different vanishing lines



i Vanishing lines

= Multiple Vanishing Points
= Any set of parallel lines on the plane define a vanishing point
= The union of all of these vanishing points is the Aorizon line
« also called vanishing line
= Note that different planes define different vanishing lines



i Computing vanishing points
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= Properties v=IIP,
=« P_ Is a point at /nfinity, v is its projection
= They depend only on line direction
= Parallel lines P, + tD, P, + tD intersect at P_,



Computing vanishing lines

/round plane

g

= Properties
= | is intersection of horizontal plane through C with image plane

= Compute | from two sets of parallel lines on ground plane
= All points at same height as C project to |

= points higher than C project above |
Provides way of comparing height of objects in the scene






with vanishing points

‘.h o
- e -.“:?El-'hr_ “r_::'hhl' _ x
i s Wwlad

f
B

.....
L, e o ol
s I




i Perspective cues
/




i Perspective cues




Perspective cues







S.4

i Measuring height

Camera height

3.3

= N

2.8
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Computing vanishing points (from lines)

P1

= Intersect p,q, with p,q,
v=(p1 X q1) X (P2 X q2)
= Least squares version

= Better to use more than two lines and compute the “closest” point of
Intersection

= See notes by Bob Collins for one good way of doing this:
= http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt



http://www-2.cs.cmu.edu/afs/cs/user/rcollins/www/home.html
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

il\/leasuring height without a ruler

C Z

v

ground plane

= Compute Z from image measurements
= Need more than vanishing points to do this



The cross-ratio of 4 collinear points

i The cross ratio

= A Projective Invariant

= Something that does not change under projective
transformations (including perspective projection)

E_RHE_E
P3 _Pz ‘ ‘P4 _P1
HP1 _P3H HP4 _PZH
= Can permute the point ordering P, —P,| |P, —P;|

« 4! = 24 different orders (but only 6 distinct values)
= This is the fundamental invariant of projective geometry

<

— N <



i Measuring height
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scene cross ratio

g T (top of object)

'R (reference point) Ht—bHHVZ —rH :i
R [r=bjv. -4 R
Image cross ratio
w~‘ v
B (bdttom of object)

ground plane X ]
Image pointsas p=|Yy

: Y
scene points represented as P = .
1
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Ishing line (horizon)

easuring height

=

Image cross ratio




Measuring height  Tv.

Ishing line (horizon)

‘@

= What if the point on the ground plane b, is not known?
= Here the guy is standing on the box, height of box is known
= Use one side of the box to help find b, as shown above



i Computing (X,Y,Z) coordinates

= Okay, we know how to compute height (Z
coords) -

= how can we compute X, Y? @
S

Q
= Easy — Just map it to the reference plane



i Vanishing point calibration

= Advantages:

= only need to see vanishing points
(e.g., architecture, table, ...)

= Disadvantages:
= Not that accurate

= Need rectahedral object(s) in scene



Single View Metrology

= A. Criminisi, I. Reid and A. Zisserman (ICCV 99)

= Make scene measurements from a single image
= Application: 3D from a single image
= Assumptions
1 3 orthogonal sets of parallel lines
> 4 known points on ground plane
3 1 height in the scene

s Can still get affine reconstruction without 2 and 3



i Problem

= IS it possible to extract 3D geometric
iInformation from single images?

YES

= How? \_‘7
O Why') ; o

Q
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i Introduction

= 3D affine measurements may be
measured from a single perspective




Geometry

= Overview

= Measurements between parallel lines
= Measurements on parallel planes

= Determining the camera position

plane vanishing line camera centre
|I =
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1 =, -
B e o
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~— ref.
x“‘ximﬂge plane\:‘ T Eﬂﬁ?[ilsthjng i
s
H‘“\_‘\\\l

reference plane



i Assumptions

= Assume that images are obtained by
perspective projection

= Assume that, from the image, a:
= Vanishing line of a reference plane

= Vanishing point of another reference
direction

may be determined from the image




Geometric Cues

= Vanishing Line ¢

= Projection of the line at infinity of the reference plane
Into the image




i Geometric Cues

= Vanishing Point(s) v
= A point at infinity in the reference direction
s Reference direction is NOT parallel to reference plane
= Also known as the vertical vanishing point



Geometric Cues

TVerticaI vanishing
point
g (@t infinity)
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poin point




Automatic estimation of vanishing
points and lines

RANSAC algorithm

Candidate vanishing point



Automatic estimation of vanishing
i points and lines




* Estimating Height

eThe distance || t, — b, || is known
eUsed to estimate the height of the man in the scene



* Parallel Line Segments

eBasis points are manually selected and measured

In the real world
eUsing ratios of lengths, the size of the windows

are calculated



Camera Position

= Using the technigues we developed in the previous
sections, we can:
= Determine the distance of the camera from the scene

= Determine the height of the camera relative to the
reference plane

plane vanishing line camera centre
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i Camera Distance from Scene

s N Measurements between
Parallel Lines, distances between planes
are computed as a ratio relative to the
camera’s distance from the reference
plane

= Thus we can compute the camera’s
distance from a particular frame
knowing a single reference distance



Camera Position Relative to
Reference Plane

= The location of the camera relative to the reference
plane is the back-projection of the vanishing point
onto the reference plane

plane vanishing line camera centre
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i Representation

Image plane

Referen{:l object
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Vanishing line

Image plane
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i Camera In Scene




i Applications

= Forensic Science (V:ER#)
= Height of suspect

= Virtual Modeling
= 3D reconstruction of a scene

= Art History
= Modeling paintings




i Forensic Science




‘L Virtual Modeling







i Conclusions

= Affine structure of 3D space may be
partially recovered from perspective
Images

= Measurements between and on parallel
planes can be determined

= Practical applications can be derived



Criminisi et al., ICCV 99

= Complete approach
=« Load in an image
= Click on parallel lines defining X, Y, and Z directions
= Compute vanishing points
= Specify points on reference plane, ref. height
= Compute 3D positions of several points
= Create a 3D model from these points
« Extract texture maps
= Output a VRML model



* A general pipeline

R
!
et

SingleView/Detection/fitting/calibration/metrology/optimization/
Structure/modeling/Texture/editing/...




from a Photograph

ing

3D Model




‘LBD Modeling from a Photograph




iAssignment/Project

= Any work related to image and vision
computing Is acceptable

= Presentation at the end of the semester
= Pre-submission of demos, codes, and documents
= PPT and DEMO at presentation
= Each student has around 30 minutes

= Good work win exemption of final exam



iAssignment/Project presentation

= June 3rd, Tuesday, 16:50-18:40
= Presentation: powerpoint slides, 30 minutes

= Presubmission (By June 1st, 23:59):

= Codes (concise) with comments (Detailed)
= Distinct your work from open sources (if any)

» Result demos (Mandatory)
= Documents (Emphasis on your own work)

= The sooner, the better.



iDocument/PPT format

s Abstract(#i% %)
= Introduction(5]5)
= Related work(#H% T.1F)

Your work--major part(/R 1) LA
= Main idea(,EE\Z"E)

= Global framework / Step-by-step pipeline (B&{&HEZER)
= Implementation details / Algorithms(SZ 3141 77)

= Experimental result(i% 45 %)
= Conclusion and future work(45it)
m Please refer to formal technical papers

)

\\\\\




iSource code format

s Executable

= Comment whenever possible (with your name)
= Open source: highlight your understanding
= Your work: tell technical detail
= Sample:

« glCallList(iframe % Npat + 1); chenyisong
« gIBegin(GL_QUAD_STRIP); chenyisong

= Make your work understandable and
convincible
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