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Projective Geometry



Homogeneous Coordinates

Multiply the coordinates by a non-zero scalar 
and add an extra coordinate equal to that 
scalar.  For example,

0   ),,,(),,(
0   ),,(),(

≠⋅⋅⋅→
≠⋅⋅→

wwwzwywxzyx
zzzyzxyx

• NOTE: If the scalar is 1, there is no need 
for the multiplication!
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Back to Cartesian Coordinates:

• Divide by the last coordinate and eliminate it. For 
example,
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Perspective Distortion

Q: Where do parallel lines meet?

A: Parallel lines meet at the horizon (“vanishing line”)



Line Perspective

1P

Pencil of rays

Perspective mapping



Plane Perspective

2P



Ideal points

Projective transformation can map ∞ to a real point



Coordinates in Euclidean 
Space

0                1                2                 3           ∞

Not in space



Coordinates in Projective Line

-1               0                1                 2            ∞

k(0,1)

k(1,0)

k(2,1)
k(1,1)k(-1,1)

Points on a line P1 are represented as rays from origin in 2D,
Origin is excluded from space

“Ideal point”



Coordinates in Projective 
Plane

k(0,0,1)

k(1,1,1)

k(1,0,1)

k(0,1,1)

k(x,y,0)

“Ideal point”



Euclidean 1D vector space:

Geometric Primitives: points
Representation: 1D vector: p = (x)

Transformations:

Translation: p‘ = (x+t)

Scaling: p‘ = (s*x)

Translation and Scaling: p‘ = (s*x+t)

1D Projective Geometry

p1 p2 p3 p4 x

p‘1 p‘2 p‘3 p‘4 x

p‘1 p‘2 p‘3 p‘4 x

ℝ1

p1 p2 p3 p4
x

dp1p2

p‘1 p‘2 p‘3 p‘4 x



1D Projective space:

1D Projective Geometry ℙ1

p1 p2 p3 p4

x

w

W=1

Representation: 1D vector: p‘ = (x‘ w‘)T, where p = (x) = (x‘/w‘)

e.g. p‘ = (2 1)T = (4 2)T = (10,5)T are all equivalent to p = (2)



1D Projective Geometry

1D Projective space:
Geometric Primitives: points
Representation: 1D vector: p = (x w)T

Transformations:
Translation: p‘ = T * p, 1DOF

Scaling: p‘ = S * p, 1DOF

Translation and Scaling: p‘ = M * p, 2DOF

Projective Mapping: p‘ = P * p,  3DOF
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1D Projective Geometry

Translation:

x

w

W=1

p‘1 p‘2 p‘3 p‘4
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1D Projective Geometry

Scaling:
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1D Projective Geometry

Projective Mapping: p
a
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Analogy to central projective camera!
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1D Projective Geometry

Invariants: 
transformations form a hierarchy, some geometric
features remain unchanged under the transformations
Translation (isometry)

Length, overall scale

Translation and Scaling (similarity)
Ratio of lengths (d12 : d23)

Projective Mapping (projectivity)
Cross ratio (ratio of ratios):

d12*d34/d13*d24



Points, lines & conics
Transformations & invariants

1D projective geometry and 
the Cross-ratio

Projective 2D Geometry



Homogeneous coordinates

( )Ta,b,cl =
0=++ cbyax ( )Ta,b,c

0,0)()( ≠∀=++ kkcykbxka ( ) ( )TT a,b,cka,b,c ~

Homogeneous representation of lines

equivalence class of vectors, any vector is representative
Set of all equivalence classes in R3−(0,0,0)T forms P2

Homogeneous representation of points
0=++ cbyax( )Ta,b,c=l( )Tyx,x = on if and only if

( )( ) ( ) 0l 11 == x,y,a,b,cx,y, T ( ) ( ) 0,1,,~1,, ≠∀kyxkyx TT

The point x lies on the line l if and only if xTl=lTx=0

Homogeneous coordinates
Inhomogeneous coordinates ( )Tyx,

( )T
321 ,, xxx but only 2DOF

( )T1x,y,p =



Points and lines
The point p(x,y,1)T lies on the line l(a,b,c)T if and only if pTl=lTp=0

i.e. ax+by+c=0

The line l pass through two points p1(x1,y1,1) and p2(x2,y2,1) is 
homogeneously defined by l=p1xp2

Note that (p1xp2)Tp1=0, (p1xp2)Tp2=0
The intersection point p of two lines l1(a1,b1,c1) and l2(a2,b2,c2) is 
homogeneously defined by p=l1xl2
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Ideal points

1 1 2 2

1 2 1 2

( , , ) , ( , , )
( )( , ,0) ( , ,0)
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l l c c b a b a

= =
× = − − ∝ −

Q: How many ideal points are there in P2?
A: 1 degree of freedom family – the line at infinity

l1

l2

It is independent of the third coordinate c
It is solely dependent on the ratio a/b



Ideal Points

The ideal point

Infinity Infinity
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All parallel lines uniquely 
determine one ideal point

)0,0,1(=hP
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All ideal points of a 2D plane form an ideal line, 
which is called the line at infinity of this 2D plane.

Parallel lines

Line at infinity

Line at infinity



Plane at infinity

Plane at infinity

Parallel lines

Parallel planes

All ideal points of a 3D space form an ideal plane, 
which is called the plane at infinity of this 3D space.



Points from lines and vice-versa

l'lx ×=

Intersections of lines 

The intersection of two lines and    is l l'

Line joining two points
The line through two points  and     is x'xl ×=x x'

Example

1=x

1=y



Ideal points and the line at 
infinity

( )T0,,l'l ab −=×

Intersections of parallel lines 

( ) ( )TT and ',,l'  ,,l cbacba ==

Example

1=x 2=x

Ideal points ( )T0,, 21 xx
Line at infinity ( )T1,0,0l =∞

∞∪= l22 RP

tangent vector
normal direction

( )ab −,
( )ba,

Note that in P2 there is no distinction 
between ideal points and others



Practice

All ideal points are on l∞:    
Proof:  (0,0,1)•(x1,x2,0)T = 0

Any line l intersects with l∞ line at an ideal point
Proof:  (a,b,c)x(0,0,1) =(b,-a,0)

Two parallel lines l and l’ always meet at an ideal 
point

Proof: Let  l = (a,b,c)T and l’ = (a,b,c’)T

……



2D Projective Geometry: Basics

A point:

A line:

we denote a line with a 3-vector

Points and lines are dual: p is on l if

Intersection of two lines:

A line through two points:
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A model for the projective plane

exactly one line through two points
exaclty one point at intersection of two lines



Duality
x l

0xl =T0lx =T

l'lx ×= x'xl ×=

Duality principle:
To any theorem of 2-dimensional projective geometry 
there corresponds a dual theorem, which may be 
derived by interchanging the role of points and lines in 
the original theorem



Conics
Curve described by 2nd-degree equation in the plane
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Five points define a conic
For each point the conic passes through

022 =+++++ feydxcyybxax iiiiii

or
( ) 0,,,,, 22 =cfyxyyxx iiiiii ( )Tfedcba ,,,,,=c
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stacking constraints yields



Tangent lines to conics
The line l tangent to C at point x on C is given by l=Cx

l
x

C



Dual conics
0ll * =CTA line tangent to the conic C satisfies 

Dual conics = line conics = conic envelopes

1* −= CCIn general (C full rank):



Degenerate conics
A conic is degenerate if matrix C is not of full rank

TT mllm +=C

e.g. two lines (rank 2)

e.g. repeated line (rank 1)

Tll=C

l
m

l

Degenerate line conics: 2 points (rank 2), double point (rank1)

( ) CC ≠
**Note that for degenerate conics 



Projective transformations
A projectivity is an invertible mapping h from P2 to itself 
such that three points x1,x2,x3 lie on the same line if and 
only if h(x1),h(x2),h(x3) do.

Definition:

A mapping h:P2→P2 is a projectivity if and only if there 
exist a non-singular 3x3 matrix H such that for any point 
in P2 reprented by a vector x it is true that h(x)=Hx

Theorem:

Definition: Projective transformation
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Mapping between planes

central projection may be expressed by x’=Hx
(application of theorem)



Removing projective distortion

333231

131211
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( ) 131211333231' hyhxhhyhxhx ++=++
( ) 232221333231' hyhxhhyhxhy ++=++

select four points in a plane with know coordinates

(linear in hij)

(2 constraints/point, 8DOF ⇒ 4 points needed)

Remark: no calibration at all necessary, 
better ways to compute (see later)



More examples 



Transformation of lines and 
conics

Transformation for lines

ll' -TH=

Transformation for conics
-1-TCHHC ='

Transformation for dual conics
THHCC **' =

xx' H=
For a point transformation



A hierarchy of transformations
Euclidean group (upper left 2x2 orthogonal)

Similarity groun (scaled Euclidean)
Affine group (last row (0,0,1))

Projective linear group (general)

Can be described algebraically 
characterized by invertible 3x3 matrices
or in terms of invariants

Similarity Affine Perspective



Class I: Isometries (iso=same, metric=measure)
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special cases: pure rotation, pure translation
3DOF (1 rotation, 2 translation) 

Invariants: length, angle, area



Class II: Similarities(isometry + scale)
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also know as equi-form (shape preserving)
metric structure = structure up to similarity (in literature)

4DOF (1 scale, 1 rotation, 2 translation) 

Invariants: ratios of length, angle, ratios of areas, 
parallel lines



Class III: Affine transformations
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non-isotropic scaling! (2DOF: scale ratio and orientation)
6DOF (2 scale, 2 rotation, 2 translation) 

Invariants: parallel lines, ratios of parallel lengths,
ratios of areas
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Class VI: Projective 
transformations
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v
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vP T

tA
H

Action non-homogeneous over the plane
8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity) 

Invariants: cross-ratio of four points on a line
(ratio of ratio)

( )T
21,v vv=



Action of affinities and projectivities
on line at infinity
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Line at infinity stays at infinity, 
but points move along line

Line at infinity becomes finite, 
allows to observe vanishing points, horizon,



Decomposition of projective 
transformations
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Overview transformations
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Projective
8dof

Affine
6dof

Similarity
4dof

Euclidean
3dof

Concurrency, collinearity, 
order of contact (intersection, 
tangency, inflection, etc.), 
cross ratio

Parallellism, ratio of areas, 
ratio of lengths on parallel 
lines (e.g midpoints), linear 
combinations of vectors 
(centroids). 
The line at infinity l∞

Ratios of lengths, angles.
The circular points I,J

lengths, areas.



Number of invariants?
The number of functional invariants is equal to, or greater than, the 
number of degrees of freedom of the configuration less the number of 
degrees of freedom of the transformation

e.g. configuration of 4 points in general position has 8 dof (2/pt)
and so 4 similarity, 2 affinity and zero projective invariants



CAMERA PRINCIPLES 



Brief History of Imaging

Camera Obscura,  Gemma Frisius, 1544

1544

Camera = Latin for “room”
Obscura = Latin for “dark”

Slide courtesy of Shree Nayar



http://www.acmi.net.au/AIC/CAMERA_OBSCURA.html (Russell Naughton)

Camera Obscura

"When images of illuminated objects ... penetrate through a small hole into 
a very dark room ... you will see [on the opposite wall] these objects in their 
proper form and color, reduced in size ... in a reversed position, owing to the 
intersection of the rays".

Da Vinci

http://www.acmi.net.au/AIC/CAMERA_OBSCURA.html


http://brightbytes.com/cosite/collection2.html (Jack and Beverly Wilgus)

Jetty at Margate England, 1898.

'Famous Camera Obscura at Santa Monica, Calif'. c.1900

http://brightbytes.com/cosite/collection2.html


Brief History of Imaging

Lens Based Camera Obscura, 1558
• Used to observe eclipses (eg., Bacon, 1214‐1294)
• By artists (eg., Vermeer).

1544
1558

"The Girl with the Red Hat” c. 1665 



Brief History of Imaging

View from the Window at Le Gras, 
Joseph Nicéphore Niépce, 1827

1544

1827

1558



Still Life, Louis Jaques Mande Daguerre, 1839

1544

1839

1558

1827

Brief History of Imaging

Slide courtesy of Shree Nayar



Silicon Image Detector,  
Fairchild Semiconductor and Texas Instrument, 1973

1544

1839

1558

1973

Brief History of Imaging

1827

Slide courtesy of Shree Nayar



1544

1839

1558

1973
1994Digital Cameras

Brief History of Imaging

1827

Slide courtesy of Shree Nayar



Pin-hole Camera

The first camera: Known to Aristotle
You can make it with a can
How does the pin-hole (aperture) size affect the image?



Shrinking the aperture

Why not make the aperture 
as small as possible?

Less light gets through
Diffraction effects...



Image formation

Let’s design a camera
Idea 1:  put a piece of film in front of an object
Do we get a reasonable image?

object film



Pinhole camera

Add a barrier to block off most of the rays
This reduces blurring
The opening known as the aperture(光圈)
How does this transform the image?

object filmbarrier



Exposure 4 seconds Exposure 96 minutes
Images copyright © 2000 Zero Image Co.

Pin-hole Images



Limits of Pin-hole Camera

Aperture has to be small
The smaller the aperture

Less light thus darker images
Diffraction（衍射）

λ'2 fd =

'f

d Best diameter is 

mm50' =f nm600=λ mm36.0=dFor example, 

'f : effective focal length



The reason for lenses

(Forsyth & Ponce)



Adding a lens

A lens focuses light onto the film
There is a specific distance at which objects are “in focus”
other points project to a “circle of confusion” in the image
Changing the shape of the lens changes this distance

object filmlens

“circle of 
confusion”



Lenses

A lens focuses parallel rays onto a single focal point
focal point at a distance f beyond the plane of the lens

f is a function of the shape and index of refraction of the lens
Aperture of diameter D restricts the range of rays

aperture may be on either side of the lens
Lenses are typically spherical (easier to produce)

focal point

F

optical center
(Center Of Projection)



Thin lenses

Thin lens equation:

Any object point satisfying this equation is in focus
What is the shape of the focus region?
How can we change the focus region?



Depth of field

Changing the aperture size affects depth of field
A smaller aperture increases the range in which the object is 
approximately in focus



The eye

The human eye is a camera
Iris - colored annulus with radial muscles
Pupil - the hole (aperture) whose size is controlled by the iris
What’s the “film”?

photoreceptor cells (rods and cones) in the retina



Digital camera

A digital camera replaces film with a sensor array
Each cell in the array is light-sensitive diode（光敏二极管）
that converts photons to electrons
Two common types

Charge Coupled Device (CCD) （电荷耦合元件）

CMOS
http://electronics.howstuffworks.com/digital-camera.htm

http://electronics.howstuffworks.com/digital-camera.htm


Snell’s Law

Snell’s law

n1 sin α1 = n2 sin α2



Thin Lens: Definition

optical axis focus

f

Spherical lense surface: Parallel rays are refracted to single point



Thin Lens: Projection

optical axis

z

Spherical lense surface: Parallel rays are refracted to single point
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Thin Lens: Projection

optical axis

z

Symmetry: Rays passed the focal point are refracted to parallel rays
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Lens

Ideal lens realizes the same projection 
as a pinhole but gathers much more 
light!



Thin Lens: Properties

1. Any ray entering a thin lens parallel to 
the optical axis must go through the 
focus on other side

2. Any ray entering through the focus on 
one side will be parallel to the optical 
axis on the other side

3. Any ray passing through the optical 
center does not change its direction



Thin-lens Law (Gaussian Lens 
Formula)

P

'P

i o

f

F

f : focal length

foi
111

=+

mm50=f mm300=o mm60=iFor example, 

optical axis

center of 
projection

'F



Thin Lens: Model
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The Thin Lens Law
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Limits of the Thin Lens Model

3 assumptions :

1. all rays from a point are focused onto 1 image point
• Remember thin lens small angle assumption

2. all image points in a single plane

3. magnification                is constant 

Deviations from this ideal are aberrations
0

'
z
fm =



Aperture and F/stop

P

'P

F d

aperture

F/stop: for instance,  f/1.0  f/1.4  f/2.0  f/2.8  f/4  f/5.6  f/8  f/11

less light
aperture areas is halved at each stop

f/stop =   f/1.4      f/2.0     f/2.8      f/4      f/5.6     f/8    f/11
= 1/1000    1/500   1/250   1/125    1/60    1/30  1/15shutter 

speed

iris diaphragm



Defocus

f
F

d

aperture

b

blur circle
(circle of confusion)

'
1

'
1

'
1,111

foifoi
=+=+

i o

'i 'o

fo
foi

fo
ofi

−
=

−
=

'
'',

( ) ( ) ( ) ( )'
'

' oo
fo

f
fo

fii −
−−

=− ii
i
db −= '
'

⇒

⇒ and



Depth of Field

f
F

d

aperture

b

blur circle
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Range of object distance over which image is sufficiently well focused
i.e. Range (o‐o’) for which b is less than a pixel of the imaging sensor



Depth of Field

f/11 1/30sec f/2.8 1/500sec

Changing focal length

Changing aperture

tele‐photo lens (long f)wide‐angle lens (short f)



Assumptions for thin lens 
equation

Lens surfaces are spherical
Incoming light rays make a small angle 
with the optical axis
The lens thickness is small compared to 
the radii of curvature
The refractive index is the same for the 
media on both sides of the lens



Camera with Lens



m1 =
x '
x

=
i1
o1
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By moving the lenses back and forth, we can 
zoom without moving the object or the image planes.



Distortion

Radiometric
Vignetting(渐晕)
Chromatic aberration(光行差)

Geometric 
Radial（径向畸变）

Tangential（切向畸变）



Vignetting



Vignetting

B

A

L3 L1L2

More light passes through lens L3 for scene point A than scene point B.
Results in spatially non‐uniform brightness (in the periphery of the image)

Optical Vignetting - Aperture dependency
At wider aperture, on the edge of the field, the entrance pupil can be partially shielded by the 
lens body. This is why optical vignetting increases with aperture.



Vignetting

Effect: Darkens pixels near the image boundary

Natural Vignetting - Lens Dependency
•Natural vignetting is inherent to lens design, regardless of aperture. 
•With a zoom lens, it  generally increases as the focal length decreases.



Vignetting

photo by Robert Johnes



Vignetting Correction



Spherical Aberration

Rays parallel to the axis do not converge

Outer portions of  the lens yield smaller focal lengths



Chromatic Aberration
rays of different wavelengths focused 
in different planes

cannot be removed completely



Chromatic Aberration

longitudinal chromatic aberration  transverse chromatic aberration 
(axial) (lateral)



Chromatic Aberration

longitudinal chromatic aberration  transverse chromatic aberration 
(axial) (lateral)

Chromatic aberration is visible as color fringing around contrasty edges and occurs more frequently 

around the edges of the image frame in wide angle shots.



Chromatic Aberration
Doublet for Chromatic Aberration
The use of a strong positive lens made from a low dispersion
glass like crown glass coupled with a weaker high dispersion 
glass like flint glass can correct the chromatic aberration for 
two colors, e.g., red and blue. 

http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/dispersion.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/glass.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/glass.html#c1


Astigmatism(像散)

Different focal length for inclined rays



Astigmatism

Different focal length for inclined rays



Geometric Distortion

Radial distortion Tangential distortion

Both due to lens imperfection. Rectify with geometric camera calibration
Photo by Helmut Dersch



Distortion

Can be corrected! (if parameters are know)

pincushion
(tele-photo)

barrel
(wide-angle)

magnification/focal length different for different angles of inclination

Marc Pollefeys



Geometrical Aberrations
spherical aberration

astigmatism

distortion

coma

aberrations are reduced by combining lenses



Lens systems

Marc Pollefeys



Interaction of light with matter

Absorption
Scattering
Refraction
Reflection
Other effects:

Diffraction: deviation of straight propagation in the 
presence of obstacles
Fluorescence: absorbtion of light of a given 
wavelength by a fluorescent molecule causes 
reemission at another wavelength



CCD vs. CMOS
Mature technology
Specific technology
High production cost
High power consumption
Higher fill rate
Blooming
Sequential readout

Recent technology
Standard IC technology
Cheap
Low power
Less sensitive
Per pixel amplification
Random pixel access

Marc Pollefeys



Camera Geometry (A BREAK)



Topics

Pinhole Camera
Orthographic Projection
Perspective Camera Model
Weak-Perspective Camera Model



Pinhole cameras

Abstract camera 
model - box with a 
small hole in it

Pinhole cameras 
work in practice



Distant objects are smaller



Parallel lines meet
Common to draw film plane
in front of the focal point.
Moving the film plane merely
scales the image.



Vanishing points

• Each set of parallel lines meets at a different 
point
– The vanishing point for this direction

• Sets of parallel lines on the same plane lead to 
collinear vanishing points.   
– The line is called the horizon (or vanishing line) for 

that plane



Perspective Projection

A “similar triangle’s” approach to vision.  

Marc Pollefeys



Perspective Projection

x

fZ Z
fXx −=

X O -x

f



Properties of Projection
Points project to points
Lines project to lines
Planes project to the whole image or a half image 
Angles are not preserved
Degenerate cases

Line through focal point projects to a point.
Plane through focal point projects to line



Consequences: Parallel lines meet
There exist vanishing points



The Effect of Perspective



Vanishing points

VPL VPRH

VP1
VP2

VP3

Different directions correspond 
to different vanishing points Marc Pollefeys



Implications For Perception*

* A Cartoon Epistemology: http://cns-alumni.bu.edu/~slehar/cartoonepist/cartoonepist.html

Same size things get smaller, we hardly notice…

Parallel lines meet at a point…



Take out paper and pencil and rubber 

Try it yourself



http://www.sanford-artedventures.com/create/tech_1pt_perspective.html



Assignment/Project

Any work related to image and vision 
computing is acceptable
Presentation at the end of the semester

Pre-submission of demos, codes, and documents
PPT and DEMO at presentation
Each student has around 30 minutes

Good work win exemption of final exam



Assignment/Project presentation

June 3rd, Tuesday, 16:50-18:40
Presentation: powerpoint slides, 30 minutes
Presubmission (By June 1st, 23:59): 

Codes (concise) with comments (Detailed)
Distinct your work from open sources (if any) 

Result demos (Mandatory)
Documents (Emphasis on your own work)

The sooner, the better.



Horiz
on

Perspective Projection

Objects farther appear 
smaller
Points go to Points
Lines go to Lines
Polygons go to Polygons
Parallel lines meet



Appendix



Perspective Projection
(Origin at lens center)

Z
Y

f
y

=
−

Z
Xfx −=

Z
Yfy −=

Im
age plane

3D world

Pin hole cam
era

Z

f

(X,Y,Z)

y

)
(

O



Perspective Projection
(Origin at image center)

Im
age plane

3D world

Pin hole cam
era
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The equation of projection

(Forsyth & Ponce)



The equation of projection
• Cartesian coordinates:

– We have, by similar triangles, that  

– Ignore the third coordinate, and get

)','(),,(
z
yf

z
xfzyx →
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Perspective Projection

fZ Z
fXx =

X O -x



Homogenous coordinates

Add an extra coordinate 
and use an equivalence 
relation
for 2D

equivalence relation
k*(X,Y,Z) is the 
same as (X,Y,Z) 

for 3D
equivalence relation
k*(X,Y,Z,T) is the 
same as  (X,Y,Z,T)

Basic notion
Possible to represent 
points “at infinity”

Where parallel lines 
intersect
Where parallel planes 
intersect

Possible to write the 
action of a 
perspective camera 
as a matrix



Homogenous Coordinates

44 844 7648476 scorrdinate
 worldhomogenous

scoordinate
worldcartesian 

),,,(),,( kkZkYkXZYX ⇒
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Homogeneous camera matrix
Turn previous expression into HC’s

HC’s for 3D point are (X,Y,Z,T)
HC’s for point in image are (U,V,W)

U
V
W
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Orthographic projection
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The  projection matrix for 
orthographic projection

U
V
W
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Generalization of Orthographic Projection

⎩
⎨
⎧

=
=

yY
xX When the camera is at a

(roughly constant) distance
from the scene, take m=1.

Marc Pollefeys



Weak perspective (scaled 
orthographic projection)

• Issue
– perspective effects, 

but not over the 
scale of individual 
objects

– collect points into a 
group at about the 
same depth, then 
divide each point by 
the depth of its group

(Forsyth & Ponce)



Weak Perspective Projection
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The Equation of Weak Perspective

),(),,( yxszyx →
• s is constant for all points.

• Parallel lines no longer converge, they remain 
parallel.



Homogeneous representation
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Pictorial Comparison

Weak perspective Perspective

Marc Pollefeys



camera  theoflength  focal
depth

scoordinate world,,
scoordinate image,

=
=
=
=

f
Z
ZYX
yx

Summary: Perspective Laws

1. Perspective

2. Weak perspective

3. Orthographic

YconstyXconstx == ,
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Pros and Cons of These 
Models

Weak perspective much simpler math.
Accurate when object is small and distant.
Most useful for recognition.

Pinhole perspective much more 
accurate for scenes.

Used in structure from motion.
When accuracy really matters, must 
model real cameras.



Camera Parameters

Image coordinates (ximage, yimage)
Image center (ox, oy)
Camera coordinates (xcamera, ycamera)
Real world coordinates (X, Y, Z)
Focal length f
Effective size of pixel (kx, ky)



Camera Parameters

ycamerayimage

xcameraximage

oyky

oxkx

+=

+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100
0

0

1
camera

camera

yy

xx

image

image

y
x

ok
ok

y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

S
V
U

ok
ok

S
V
U

camera

camera

yy

xx

image

image

100
0

0 fX−

fY−

Z
Z
fYy

Z
fXx ==



Camera Parameters
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Camera Parameters
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Intrinsic Camera Parameters

fx

fy

ox

oy

Intrinsic parameters do not depend on 
camera position in real world.



Extrinsic Camera Parameters

Defined by orientation of camera in real 
world

Translation (3x1 vector)
Rotation (3x3 matrix)



Translation

(tx, ty, tz) Translation vector
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Translation

Inverse translation
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Rotation

Around Z-axis

Y

Z
X

(X,Y,Z)
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Rotation

Around Z-axis

θθ sincos YXX −=′

θθ cossin YXY +=′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
′
′

Z
Y
X

Z
Y
X

100
0cossin
0sincos

θθ
θθ

Y

Z
X

(X,Y,Z)
))

(X’,Y’,Z’)

φθ
R

R



Rotation

Around X-axis
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Rotation

Inverse rotation
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Rotation matrices are orthonormal!!
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Euler Angles

Let γ, β, α be rotation angles around X, 
Y, Z axis respectively.

γβα
XYZ RRRR =



Projection equation

• The projection matrix models the cumulative effect of all parameters
• Useful to decompose into a series of operations
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Camera parameters
A camera is described by several parameters

• Translation T of the optical center from the origin of world coords
• Rotation R of the image plane
• focal length f, principle point (x’c, y’c), pixel size (sx, sy)
• blue parameters are called “extrinsics,” red are “intrinsics”

• The definitions of these parameters are not completely standardized
– especially intrinsics—varies from one book to another
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