Image and Vision Computing

!'_ Projection

Instructor: Chen Yisong
HCI & Multimedia Lab, Peking University



!'_ Projective Geometry



i Homogeneous Coordinates

= Multiply the coordinates by a non-zero scalar
and add an extra coordinate equal to that
scalar. For example,

(X,y) > (x-z,y-2,z) z#0
(X, ¥,2) > (X-w,y-w,z-w,w) wW=0

- NOTE: If the scalar is 1, there is no need
for the multiplication

(2,3) = (2,31) ~ (4,6,2) ~ (—4,-6,-2)..

Example:
(3-1,2) - (3,-1,2,1) ~ (6,-2,4,2) ~ (=6,2,—4,-2)...



i Back to Cartesian Coordinates:

» Divide by the last coordinate and eliminate it. For
example,

(X,y,2) z#0—>(x/z,y/2)
(X, ¥,Z,w) w=0—>(x/w,y/w,z/w)
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Example of Application
~ I .

1 m Robot going down the road

m [arge squares painted on the road to make it easier
m Find road shape without perspective distortion from image

— Use corners of squares: coordinates of 4 points allow us to
compute matrix H

— Then use matrix H to compute 3D road shape
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Projective Geometry I




i Perspective Distortion

Q: Where do parallel lines meet?

A: Parallel lines meet at the horizon (“vanishing line”)



iLine Perspective

Pencil of rays




‘L Plane Perspective




i Ideal points

Projective transformation can map << to a real point



Coordinates In Euclidean

(@ N

Not in space




Coordinates in Projective Line

oints on a line P! are represented as rays from origin in 2D,
Origin is excluded from space

“Ideal point”
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Coordinates In Projective

'-.‘_-k(O,l,l) k(1,1,1)
: ; “Ideal point”

k(0,0,1)




1D Projective Geometry

R1
= Euclidean 1D vector space: O O *—©
P4 P2 Pz Py

= Geometric Primitives: points
= Representation: 1D vector: p = (X)

= ransformations:

Py P2 P3 P4 X

= Translation: p‘ = (x+t) ® ® *—o—
P’y P’ Ps P4 X

= Scaling: p* = (s*X) o *—0—o >
P’y P’ Ps Py X

= Translation and Scaling: p' = (s*x+t)




ilD Projective Geometry  Ppt

= 1D Projective space:

Representation: 1D vector: p‘ = (x* w')T, where p = (X) = (x'/w")
eg.p'=(21)"=(42)"=(10,5)T are all equivalent to p = (2)
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i 1D Projective Geometry

= 1D Projective space:
= Geometric Primitives: points

= Representation: 1D vector: p = (x w)T

= Transformations:
« Translation: p* =T * p,

« Scaling: p* =S * p,

= Translation and Scaling: p* =M * p,

= Projective Mapping: p‘' = P * p,

1DOF

1DOF

2DOF

3DOF



1D Projective Geometry

= [ranslation

W=1




1D Projective Geometry

= Scaling:
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1D Projective Geometry

W

= Projective Mapping: o= )
" /I . ds 1

=1

v

Analogy to central projective camera!



ilD Projective Geometry

= |nvariants:

» transformations form a hierarchy, some geometric
features remain unchanged under the transformations

= Translation (isometry)
= Length, overall scale

= Translation and Scaling (similarity)
= Ratio of lengths (d12 : d23)
= Projective Mapping (projectivity)
= Cross ratio (ratio of ratios):
d12*d34/d13*d24




‘L Projective 2D Geometry

s Points, lines & conics @
s [ransformations & invariants

the Cross-ratio A

3



i Homogeneous coordinates

Homogeneous representation of lines
ax+by+c=0  (ahbc)
(ka)x+(kb)y+kc=0,vk =0  (ab,c) ~k(ahb,c)
equivalence class of vectors, any vector is representative

Set of all equivalence classes in R3—(0,0,0)T forms P2

Homogeneous representation of points
=(x,y) onl=(ab,c)" ifand only if ax+by+c=0
(xylNa,b,c) =(xyD)I=0 (x,y,1) ~k(x,y1)", vk =0

The point x lies on the line | if and only if xTI=I"x=0

Homogeneous coordinates (X11X21X3)T but only 2DOF
Inhomogeneous coordinates (X, y)T



Points and lines

The point p(x,y,1)" lies on the line I(a,b,c)" if and only if pTI=I"p=0
l.e. ax+by+c=0
The line | pass through two points p,(x,,y,,1) and p,(X,,y,,1) IS
homogeneously defined by I=pl1xp2
Note that (p,xp,)"p,=0, (p,xp,)"P,=0

The intersection point p of two lines |,(a,,b;,c,) and |,(a,,b,,c,) Is
homogeneously defined by p=I,xl,

p, =(011) We verify:
p,-,=11+0-1+1.-1=0
, =(1,00) |, =(11,-1) p,xp,=(0-1-1-11-0-1.11.1-0-0)

—(-1-11) o (LL-1) =1,
p; =(0.0) \pl =(101)] 1, x1,=(0-0-0-10-0-1.01-1-0-0)

, =(010) =(0,01) = p,




i Ideal points

It is independent of the third coordinate c
It is solely dependent on the ratio a/b XO

Q: How many ideal points are there in P??
A: 1 degree of freedom family — the line at infinity



|deal

Points

All parallel lines uniquely

determine one ideal point

P =(0,10)

~e [P=(@10)
! Iv = (1’0’ a) \\‘, ’ \“
t Ai=ezo] /

I, =(0,1,b)

) §R = (100)

We validate:
'P, =0
.'P. =0
I.'P. =0



i Line at infinity

- )
Parallel lines

= All ideal points of a 2D plane form an ideal line,
which is called the line at infinity of this 2D plane.



i Plane at infinity

\

Parallel lines

Parallel planes —---..

= All ideal points of a 3D space form an ideal plane,
which is called the plane at infinity of this 3D space.



Points from lines and vice-versa

Intersections of lines

The intersection of two lines | and I'is X = Ix]'

Line joining two points
The line through two points Xand X'is |=XxxX'

Example




Ildeal points and the line at
INfinity

Intersections of parallel lines

1=(a,b,c)" andI'=(a,b,c')’ IxI'=(b,—-a,0)"

Example
(b,—a) tangent vector

(a, b) normal direction

X=1x=2
Ideal points (%, %,,0)"
Line at infinity 1 =(0,0,1)'

P2 =R? | Note that in P2 there is no distinction
between ideal points and others



i Practice

= All ideal points are on |_:
= Proof: (0,0,1)¢(x,,x,,0)T =0

= Any line | intersects with | line at an ideal point
= Proof: (a,b,c)x(0,0,1) =(b,-a,0)

= Two parallel lines | and I' always meet at an ideal
point
= Proof: Let | = (a,b,c)T and I’ = (a,b,c")T’



2D Projective Geometry: Basics

i- point: (x,y,2) eP* < (?,%)T el]*?

= A line: ax+by+cz=0 < a(§)+b(l)+c:0
' Z Z

we denote a line with a 3-vector  (&,b,¢)’

= Points and lines are dual: pis on /if I"p=0

- : | x|
s Intersection of two lines: 17720

= A line through two points: CRAY



‘L A model for the projective plane
Ax,

ideal

point

X

exactly one line through two points
exaclty one point at intersection of two lines



i Duality
X e

I"x =0

x1=0 «—

X=Ix]" «—— |=xxX

Duality principle:

To any theorem of 2-dimensional projective geometry
there corresponds a dual theorem, which may be
derived by interchanging the role of points and lines in
the original theorem



Conics

Curve described by 2nd-degree equation in the plane

ax” +bxy+cy’ +dx+ey+ f =0

: X X
or homogenized x— /)(3 Y /)(3
ax,” +bX,X, +CX,” + dX, X, + eX,X, + X2 =0

or in matrix form T4 b/2 d/2]

XxTCx=0 with C=|b/2 ¢ e/2
_d/2 e/2 f

5DOF: {a:b:c:d:e:f}



Five points define a conic

For each point the conic passes through

ax’ +bx.y. +cy’ +dx +ey, + f =0

or
(X2, %y, Y2, %, ¥, fJe =0 c=(a,b,c,d,e, f)

stacking constraints yields

XX %Y, Yr Xy 1
X, %Y, Yo X Y, 1
X; X¥s Y3 X Ys 1le=0
Xs XYa Ya X Y4 1
X6 XsYs Vs X5 Y5 1]




i Tangent lines to conics

The line | tangent to C at point X on C is given by I=Cx

éc



Dual conics

A line tangent to the conic C satisfies |' C" | =0

In general (C full rank): C =C*

Dual conics = line conics = conic envelopes

o — ——

>




Degenerate conics

A conic is degenerate if matrix C is not of full rank
m

e.g. two lines (rank 2) ><|

C=Im"+ml’

e.g. repeated line (rank 1)

c=II" T

Degenerate line conics: 2 points (rank 2), double point (rank1)

Note that for degenerate conics (C* )* =+ (C



Projective transformations

Definition:

A projectivity is an invertible mapping h from P2 to itself
such that three points X;,X,,X; lie on the same line if and
only if h(x,),h(x,),h(X,) do.

Theorem:

A mapping h:P>—P? is a projectivity if and only if there
exist a non-singular 3x3 matrix H such that for any point
in P2 reprented by a vector X it is true that h(x)=HX

Definition: Projective transformation
Xll hll h12 h13 Xl
Xy |=1hy Dy hy |l X, or X=HX

Xls _h31 h32 h33_ X3 8DOF
projectivity=collineation=projective transformation=homography




i Mapping between planes

A

Op—t---- _II'I. ......... '.
) | |
; T T
¥ l.r ||
|II i
L

central projection may be expressed by x’=Hx
(application of theorem)



P
ﬂﬁhu,ﬂﬁﬂu

select four points in a plane with know coordinates
Xy _ hyx+hyy+hg . Xy _ hyX+hy,y+hy,

XI: = = =
X'y Dy X+hy,y+hg X'y hyX+hy,y+hg

X' (h31X + h32 y + h33) = hllx + h12 y + h13

' linear in h;;
y (h31X + h32y + h33) = h21X + h22y + h23 ( J)

(2 constraints/point, 8DOF = 4 points needed)

Remark: no calibration at all necessary,
better ways to compute (see later)






Transformation of lines and

CONICS
For a point transformation
X'=HX

Transformation for lines

'=H |

Transformation for conics

C=H'CH"

Transformation for dual conics

C '=HCH'



A hierarchy of transformations

Euclidean group (upper left 2x2 orthogonal)
Similarity groun (scaled Euclidean)
Affine group (last row (0,0,1))

Projective linear group (general)

m Can be described algebraically
= characterized by invertible 3x3 matrices
= Orin terms of invariants




CIaSS I : Isometrles (iso=same, metric=measure)

X\ |[ecos@® -—sind t | x
y'|=|&sing cos@ t |y c==+1
1)1 0 0 11

orientation preserving: g =1
orientation reversing: ¢ =-1

1

3DOF (1 rotation, 2 translation)
special cases: pure rotation, pure translation

, R t
X'=H; X = o' X R'R=1

Invariants: length, angle, area



Class Il: SImilaritieS, .., .«

scos® —ssind t |x

X
y'|=|ssind scosd t |y
1

0 0 1(\1

SR t
X=H X= N 1x R™R =1

ADOF (1 scale, 1 rotation, 2 translation)

also know as equi-form (shape preserving)
metric structure = structure up to similarity (in literature)

Invariants: ratios of length, angle, ratios of areas,
parallel lines



Class I11: Affine transformations

X all a12 1:x X
Y |=|ax ay ty y
1

i 0 0 1_ 1 /
. {A t} 7 fog
X=H,Xx= X aton

0" 1

deformation

A=R(O)R(-¢)DR(p) D= { 0 A

6DOF (2 scale, 2 rotation, 2 translation)
non-isotropic scaling! (2DOF: scale ratio and orientation)

Invariants: parallel lines, ratios of parallel lengths,
ratios of areas



Class VI: Projective
transformations

(v, v,)'

=
Il
-
)
X
|
—
>
—~t+
L=
X
<
Il

8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity)
Action non-homogeneous over the plane

Invariants: cross-ratio of four points on a line
(ratio of ratio)



Action of affinities and projectivities
on line at infinity

: )

Line at infinity stays at infinity,
but points move along line

X
A t] " A()(lj
viov |7 X2
0 ) \vx +V,x,

Line at infinity becomes finite,
allows to observe vanishing points, horizon,



Decomposition of projective
transformations

sR t|K O I O At
A== e o 2w o7V v

A =SRK +tv'

decomposition unique (if chosen s>0) K ianaular. det K = 1
upper-triangular, =

Example:
(1,707 0.586 1.0]

H=|2707 8242 20
10 20 10|

[2c0s45° —2sin45 1.0[0.5
H=|2sin45" 2cos45" 20| O
0 0 1] 0

o N B
, O O




Overview transformations

Projective
8dof

Affine
o6dof

Similarity
4dof

Euclidean
3dof

hy,

h21

| 131

h12
22

32

¢

Concurrency, collinearity,
order of contact (intersection,
tangency, inflection, etc.),
cross ratio

Parallellism, ratio of areas,
ratio of lengths on parallel
lines (e.g midpoints), linear
combinations of vectors
(centroids).

The line at infinity |

Ratios of lengths, angles.
The circular points I,J

lengths, areas.



i Number of invariants?

The number of functional invariants is equal to, or greater than, the
number of degrees of freedom of the configuration less the number of
degrees of freedom of the transformation

e.g. configuration of 4 points in general position has 8 dof (2/pt)
and so 4 similarity, 2 affinity and zero projective invariants



!'- CAMERA PRINCIPLES



Brief History of Imaging

Solis deligninm Ao Cﬁrisélﬂgg

Die 24 grammary  Lonanij»

e T

ﬂ .- _":1-’/"“* e
2R i~

Camera Obscura, Gemma Frisius, 1544

Camera = Latin for “room”
, Obscura = Latin for “dark”
Slide courtesy of Shree Nayar

* 1544




Camera Obscura

illum 1n tabula per radios Solis, quiam in ceelo contin-
git: hoc eft,fi in ccelo fuperior pars deliquiii pariatur,in
radiis apparebir inferior deficere,vt rario exigiroprica.

5&4&( N — —

H-d-ul'--"'Ih!-’t—-#- w:}r T T

_.._fmuuy '-..I_T_... = ==

Sic nos exaété Anno . 1544 . Louanii eclipfim Solis
obferuauimus , inuenimusg; deficere pauld plus § dex-

"When images of illuminated objects ... penetrate through a small hole into
a very dark room ... you will see [on the opposite wall] these objects in their
proper form and color, reduced In size ... in a reversed position, owing to the
Intersection of the rays".

Da Vinci
http://www.acmi.net.au/AIC/CAMERA_OBSCURA.html (Russell Naughton)



http://www.acmi.net.au/AIC/CAMERA_OBSCURA.html

Tha Jeily, Margite

ﬂI:I-":I'q'.l'- .;I'

LT ELT

e
hrw

'Kel -.'_-‘:l:

'Famous Camera Obscura at Santa I\/Tohica, alif'. c.1900

http://brightbytes.com/cosite/collection2.html! (Jack and Beverly Wilgus)



http://brightbytes.com/cosite/collection2.html

| 1544

Brief History of Imaging  §1sss

"The Girl with the Red Hat” c. 1665

Lens Based Camera Obscura, 1558
e Used to observe eclipses (eg., Bacon, 1214-1294)
* By artists (eg., Vermeer).




|
Brief History of Imaging 1 1oe,

- -. 5. -‘. . e o Tei ! g o -« Lt .-“
i 2 LD p il b =h A L.

View from the Window at Le Gras,
Joseph Nicéphore Niépce, 1827 |




1544

i Brief History of Imaging | ™

Still Life, Louis Jaques Mande Daguerre, 1839

Slide courtesy of Shree Nayar




1544

i Brief History of Imaging |

| 1827
1839

Silicon Image Detector,
Fairchild Semiconductor and Texas Instrument, 1973

® 1973

Slide courtesy of Shree Nayar



1544

‘L Brief History of Imaging | **®

| 1827
1839

1973
Digital Cameras ® 1994

Slide courtesy of Shree Nayar



i Pin-hole Camera

s The first camera: Known to Aristotle
= You can make it with a can
= How does the pin-hole (aperture) size affect the image?



Shrinking the aperture

. 6mm 0.35 mm

Why not make the aperture

as small as possible? LUz
sLess light gets through

OFTICA
s Diffraction effects... roroanss a

o

0.15 mm .07 mm



‘_L Image formation

;\\
L

= Let’s design a camera
= Idea 1: put a piece of film in front of an object
= DO we get a reasonable image?



i Pinhole camera

object barrier film

I
—

L

= Add a barrier to block off most of the rays
= This reduces blurring
= The opening known as the aperture(Gt
= How does this transform the image?

i
—



Pin-hole Images

Exposure 4 seconds Exposure 96 minutes

Images copyright © 2000 Zero Image Co.



Limits of Pin-hole Camera

= Aperture has to be small

= The smaller the aperture

= Less light thus darker images
= Diffraction (f74)

7
N — %f%/@

? / \d Best diameteris d =24/ f 1

f : effective focal length
For example, f =50mm A=6000m —— d=0.36mm

N




The reason for lenses

A/

(L1 2 2

(Forsyth & Ponce)




i Adding a lens

object lens film

= |

i \‘

= A lens focuses light onto the film

—_“circle of
confusion”

= There is a specific distance at which objects are “in focus”
= other points project to a “circle of confusion” in the image
= Changing the shape of the lens changes this distance



Lenses

aperture

optical axis__ (

focal point
optical center
(Center Of Projection)

A lens focuses parallel rays onto a single focal point
= focal point at a distance fbeyond the plane of the lens

» fis a function of the shape and index of refraction of the lens

= Aperture of diameter D restricts the range of rays

= aperture may be on either side of the lens
Lenses are typically spherical (easier to produce)



i Thin lenses

b e

Lens

il )

= Thin lens equation:

= Any object point satisfying this equation is in focus
= What is the shape of the focus region?
= How can we change the focus region?



i Depth of field

image

= Changing the aperture size affects depth of field

= A smaller aperture increases the range in which the object is
approximately in focus



The eye

onjunctiva .
Conj Vitreous humor

Iris
Cornea

Aqueous

Choroid

Sclera

= Iris - colored annulus with radial muscles
= Pupil - the hole (aperture) whose size is controlled by the iris

= What’s the “film”?
= photoreceptor cells (rods and cones) in the retina



= A digital camera replaces film with a sensor array

= Each cell in the array is light-sensitive diode OGf —H%)
that converts photons to electrons

= Two common types
= Charge Coupled Device (CCD) (HiLfafki& o)
= CMOS

= http://electronics.howstuffworks.com/digital-camera.htm



http://electronics.howstuffworks.com/digital-camera.htm

Snell’s law

n, sinay, =n, Sin o,




i Thin Lens: Definition

optical axis

Y 2N

&

Spherical lense surface: Parallel rays are refracted to single point



i Thin Lens: Projection

/s

optical axis

Image plane

Spherical lense surface: Parallel rays are refracted to single point



Thin Lens: Projection

AN

ok/\

Image plane

Symmetry: Rays passed the focal point are refracted to parallel rays



i Lens

= |ldeal lens realizes the same projection
as a pinhole but gathers much more
light!




i Thin Lens: Properties

1. Any ray entering a thin lens parallel to
the optical axis must go through the
focus on other side

2. Any ray entering through the focus on
one side will be parallel to the optical
axis on the other side

3. Any ray passing through the optical
center does not change its direction




Thin-lens Law (Gaussian Lens

N

A\ 4

f
center of
projection
______________________ |: SIS IETEIE IR
< : >[< 5 >
f : focal length
1 1 1
“+to=—
I o f

For example,

f =50mm o0=300mm

optical axis

| =60mm



iThin Lens: Model

P




i The Thin Lens Law

VA

Q..

N\

P.

N>

N>

N N

+ o+
—h —h



i Limits of the Thin Lens Model

3 assumptions :

1. all rays from a point are focused onto 1 image point
e Remember thin lens small angle assumption

2. all Image points in a single plane

. f'
3. magnification m = — is constant
ZO

Deviations from this ideal are aberrations



i Aperture and F/stop

iris dlaphragm

F/stop: forinstance, £/1.0 /1.4 £/2.0 £/2.8 /4 {/5.6 £/8 f/11

»
»

less light
aperture areas is halved at each stop

filstop= /1.4 20 f28 4 f56 8 f11
oed"=1/1000 1/500 1/250 1/125 1/60 1/30 1/15



‘_L Defocus

blur circle
(circle of confusion)

bi e e

A

aperture

d




Depth of Field

N\

blur circle

b1 o

aperture

d

d| f f

=i one-n© )

Range of object distance over which image is sufficiently well focused
i.e. Range (0-0’) for which b is less than a pixel of the imaging sensor



Depth of Field

hanging aperture

wide-angle lens (short f) tele-photo lens (long f)



Assumptions for thin lens

i equation

= Lens surfaces are spherical

= Incoming light rays make a small angle
with the optical axis

= The lens thickness is small compared to
the radii of curvature

s | he refractive index Is the same for the
media on both sides of the lens




Camera with Lens




Two Lenses

Magnification m=

By moving the lenses back and forth, we can
zoom without moving the object or the image planes.



i Distortion

= Radiometric

= Vignetting(#71%)

= Chromatic aberration(5t47 %)
= Geometric

= Radial (42 [n) B4R )

= Tangential (][] B2







Vignetting

Optical Vignetting - Aperture dependency

At wider aperture, on the edge of the field, the entrance pupil can be partially shielded by the
lens body. This is why optical vignetting increases with aperture.

B

L2 L1

L3

More light passes through lens L3 for scene point A than scene point B.
Results in spatially non-uniform brightness (in the periphery of the image)



Vignetting

Natural Vignetting - Lens Dependency
*Natural vignetting is inherent to lens design, regardless of aperture.
*With a zoom lens, it generally increases as the focal length decreases.

|

Effect. Darkens pixels near the image boundary



photo by Robert Johnes



i Vignetting Correction




i Spherical Aberration

Rays parallel to the axis do not converge

Outer portions of the lens yield smaller focal lengths




Chromatic Aberration

rays of different wavelengths focused
In different planes

—A
Y

Fig.1
&7 al chromatic aderration

o 0 A0
Elue Red - I \Ull Blue Red

Figz
grnification chromatic aderration

cannot be removed completely ‘:‘

E"
w——

The irnage 15 blurred and
appears colored at the fringe.



‘L Chromatic Aberration

longitudinal chromatic aberration transverse chromatic aberration
(axial) (lateral)



‘L Chromatic Aberration

longitudinal chromatic aberration transverse chromatic aberration
(axial) (lateral)

Chromatic aberration is visible as color fringing around contrasty edges and occurs more frequently
around the edges of the image frame in wide angle shots.



Chromatic Aberration

oublet for Chromatic Aberration

The use of a strong positive lens made from a low dispersion
glass like crown glass coupled with a weaker high dispersion
glass like flint glass can correct the chromatic aberration for
two colors, e.g., red and blue.



http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/dispersion.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/glass.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/glass.html#c1

* Astigmatism ({4 %)

Different focal length for inclined rays
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Astigmatism

Different focal length for inclined rays

Sagittal Plane
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Geometric Distortion
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Tangential distortion

Photo by Helmut Dersch
Both due to lens imperfection. Rectity with geometric camera calibration



Distortion

magnification/focal length different for different angles of inclination

~ pincushion
- (tele-photo) .

! barrel
(wide-angle)

L —

Marc Pollefeys



i Geometrical Aberrations

 spherical aberration
 astigmatism
] distortion

J coma

aberrations are reduced by combining lenses




Lens systems

* A good camera lens
may contain 15 elements
and cost a thousand
dollars

* The best modern lenses
may contain aspherical
elements




i Interaction of light with matter

= Absorption
= Scattering
= Refraction
= Reflection

s Other effects:

= Diffraction: deviation of straight propagation in the
presence of obstacles

= Fluorescence: absorbtion of light of a given
wavelength by a fluorescent molecule causes
reemission at another wavelength



i CCD vs. CMOS

Mature technology Recent technology
Specific technology Standard IC technology
High production cost Cheap

High power consumption Low power

Less sensitive
Per pixel amplification
Random pixel access

Higher fill rate
Blooming
Sequential readout

Marc Pollefeys



i Camera Geometry (A BREAK)



i Topics

= Pinhole Camera

= Orthographic Projection

= Perspective Camera Model

= Weak-Perspective Camera Model



Pinhole cameras

s PIinhole cameras
work in practice

s Abstract camera
model - box with a
small hole In It
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Distant objects are smaller

+




* Parallel lines meet

mon to draw film plane
In front of the focal point.
Moving the film plane merely
scales the image.




i Vanishing points

 Each set of parallel lines meets at a different
point
— The vanishing point for this direction

o Sets of parallel lines on the same plane lead to
collinear vanishing points.

— The line Is called the horizon (or vanishing line) for
that plane



‘L Perspective Projection

0
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4
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A “similar triangle’s” approach to vision.

Marc Pollefeys



i Perspective Projection




i Properties of Projection

Points project to points

= Lines project to lines

= Planes project to the whole image or a half image
= Angles are not preserved

O Degenerate cases
= Line through focal point projects to a point.
= Plane through focal point projects to line




i Conseqguences: Parallel lines meet

= There exist vanishing points

\ \<




i The Effect of Perspective




H VPL

Different directions correspond
to different vanishing points

VPR

Marc Pollefeys



_ Parallel lines meet at a point... _ _
* A Cartoon Epistemology: http://cns-alumni.bu.edu/~slehar/cartoonepist/cartoonepist.html

%
(B



i Try it yourself

Take out paper and pencil and rubber



Add windows and doors.

NO0C li

http://www.sanford-artedventures.com/create/tech_1pt_perspective.html



iAssignment/Project

= Any work related to image and vision
computing Is acceptable

= Presentation at the end of the semester
= Pre-submission of demos, codes, and documents
= PPT and DEMO at presentation
= Each student has around 30 minutes

= Good work win exemption of final exam



iAssignment/Project presentation

= June 3rd, Tuesday, 16:50-18:40
= Presentation: powerpoint slides, 30 minutes

= Presubmission (By June 1st, 23:59):

= Codes (concise) with comments (Detailed)
= Distinct your work from open sources (if any)

» Result demos (Mandatory)
= Documents (Emphasis on your own work)

= The sooner, the better.



i Perspective Projection

= Objects farther appear
smaller

= Points go to Points

= Lines go to Lines

= Polygons go to Polygons
= Parallel lines meet







Perspective Projection

i (Origin at lens center)
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Perspective Projection

i (Origin at image center)
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i The equation of projection

(Forsyth & Ponce)



The equation of projection

Cartesian coordinates:
— We have, by similar triangles, that

X'= f

Ii, yI: f
Z

Yy
VA

(xyz)—>(f—f Y

— Ignore the third coordlnate, and get

(x,y,2) > (f2, 1Y)
Z Z



i Perspective Projection




i Homogenous coordinates

= Add an extra coordinate = Basic notion
and use an equivalence = Possible to represent
relation points “at infinity”

= for 2D = Where parallel lines
= equivalence relation intersect
k*(X,Y,Z) Is the = Where parallel planes
same as (X,Y,2) intersect
= for 3D = Possible to write the
= equivalence relation action of a
k*(X,Y,Z,T) Is the perspective camera

same as (X,Y,Z,T) as a matrix



i Homogenous Coordinates

cartesian world homogenous world
coordinates corrdinates
N\ N\

(X,Y,Z) = (kX,KkY,kZ,k)

cartesian world
homogenous world coordlnates

corrdmates

C C C,
c,C,C,C,)=>
(C,,C,.C.C,) (C C. C)




Homogeneous camera matrix

= Turn previous expression into HC’s
= HC’s for 3D point are (X,Y,Z,T)
= HC’s for point in image are (U,V,W)

-X

(U)
V

W)

x:X% ) X=%=X

/

L
Z




‘L Orthographic projection

I’ J




The projection matrix for
i orthographic projection

(X\
Y
/

\T )

‘U) (1 0 0 0)
Vi =0 1 0 0
W) o 0 0 1)




1?‘:"‘

(roughly constant) distance

{X — When the camera is at a
from the scene, take m=1.

Marc Pollefeys



Weak perspective (scaled
‘_L orthographic projection)

e |SSUe

— perspective effects, |
but not over the ﬂ . A
’ L FP

scale of individual

objects 1 ° 5 /
— collect points into a 4 I. 0
group at about the

same depth, then
divide each point by
the depth of its group

(Forsyth & Ponce)



erspective Projection

i Weak P

VA




iThe Equation of Weak Perspective

(X,¥,2) = s(X,y)

e S is constant for all points.

 Parallel lines no longer converge, they remain
parallel.



i Homogeneous representation

(X\
‘U)Y (1 0 0 0)

Orthographic: VIi=|0 1 0 0 Y
Z
W) \0 0 0 1,
\T
X )
U s 0 0 0) v
Weak Perspective Vi=|0 s 00)
W O 0 0 1 T




i Pictorial Comparison

Weak perspective Perspective

Marc Pollefeys



1.

2.

3.

Perspective

X

Weak perspective X

Orthographic

X

Summary: Perspective Laws

f f
X — =Y —
z Z

const X,y =const Y



Pros and Cons of These

i Models

= Weak perspective much simpler math.
= Accurate when object is small and distant.
= Most useful for recognition.

= Pinhole perspective much more
accurate for scenes.
= Used In structure from motion.

= When accuracy really matters, must
model real cameras.




i Camera Parameters

= Image coordinates (Ximage» Yimage)
= Image center (0 O,)

= Camera coordinates  (X.merar Yeamera)
= Real world coordinates (X, Y, Z2)

= Focal length f

= Effective size of pixel (k,, k)



Camera Parameters

X =Kk X

image x “*camera

+0,

yimage = ky ycamera + 0y

o

X

camera

ycamera

1

camera

V

camera

EH

- fX

— ]

— fY

S




<

o

<

o

U
V

camera

camera

— O O

i Camera Parameters

o O O

~ N < X




i Camera Parameters




i Intrinsic Camera Parameters

. f,
-fy
IOX
lOy

= Intrinsic parameters do not depend on
camera position in real world.



i Extrinsic Camera Parameters

= Defined by orientation of camera in real
world

= Translation (3x1 vector)
= Rotation (3x3 matrix)



i Translation

= (1, L, t,) Translation vector

X

camera

Y

camera

VA

| Camera _|

>

world

<

world

| “world ]

X
Y

camera

camera

Z

X

Y

camera

1

camera

camera

Z

camera

1

o o o B+

o — O

0

o »r O O

-~
Translation Matrix

X
Y
VA

world

world

world

1




i Translation

s Inverse translation

0 0 1t

0 0 0 1

1

0O 00 10 0 O




i Rotation

s Around Z-axis

v 4 X =RcC0s¢
(X*Y’,2")
/ Y =Rsing
R
0 7, (XY.2) X Y
> — ——
X X' =Rcos(p+6)= Rcos@cos & — Rsin gsin @
Z

X Y
— —

Y'=Rsin(¢+6)=Rcos@sin 8+ Rsin ¢cosé



i Rotation

s Around Z-axis

YA : ; , -
/(X,Y,Z) X'=Xcos@d-Ysind
R Y'=Xsin6é+Y cosd
6’ ¢ (X,Y,2)
X RVAE B I ]
X cosd -—-sind O
Y'|=|sin@ cos@ O

Z 0 0 1




i Rotation

= Around X-axis 10 0]
R*=|0 cos® -sing
|0 sing cosd
= Around Y-axis c0s6 0 —sing)
R'=| 0 1 0
'sind 0 cosd
- cos@ —sin@ 0]
= Around Z-axis ~ _, |&*0 "0
0 0 1
. (1 0 0
= NO rotation R=|0 1 0
0 0 1




i Rotation

s Inverse rotation

R? (R?) =1

(cosd —sind O] cosd® sind 0
sind cos@ O} —-sin@d cos@d 0|=
0 0 1 0 0 1

s Rotation matrices are orthonormal!!

RTR = =
" 110 otherwise

o O B+
o — O
R O O




i Euler Angles

= Let y, B, o be rotation angles around X,
Y, Z axis respectively.

R =RYR’R]



Camera parameters

A camera is described by several parameters
« Translation T of the optical center from the origin of world coords
* Rotation R of the image plane
- focal length f, principle point (X', y'.), pixel size (s, s,)
* Dblue parameters are called “extrinsics,” red are “intrinsics”

Projection equation - Y /
X
SX * * * *
Y / A
X-|sy|-|« = = +|| ¥ |-TIX ”‘J[ (ol 41
S * * * * 1 x/

« The projection matrix models the cumulative effect of all parameters

» Useful to decompose into a series of operations _ _ _
identity matrix

-fs, 0 Xx.|[1 000 '/
II=| o -f, y [0 1 00 R.. 0| L, T
S 0 1|0 1
0 0 110 0 1 0Oft "vs 3
intrinsics projection rotation translation
* The definitions of these parameters are not completely standardized
— especially intrinsics—varies from one book to another
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