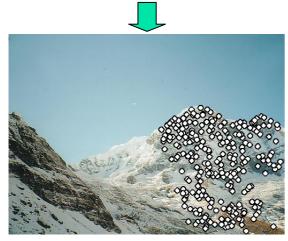
About Assignments and Projects

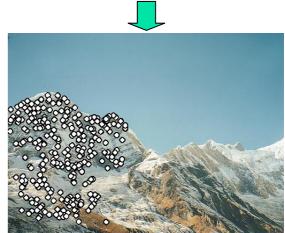
- Any work related to image and vision computing is acceptable
- Presentation at the end of the semester
 - Pre-submission of demos, codes, and documents
 - PPT and DEMO at presentation
 - Each student has around 30 minutes
- Good work win exemption of final exam

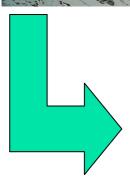
Image and Vision Computing Image registration

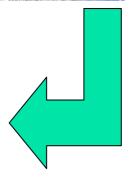
Instructor: Chen Yisong HCI & Multimedia Lab, Peking University

Image 1 Image 2

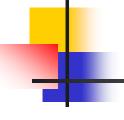




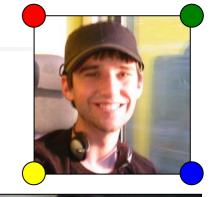




Features in computer vision



Compositing



This is your test image set

Linear Algebra Review

$$A_{n \times m} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ a_{31} & a_{32} & \cdots & a_{3m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$$

Sum:
$$C_{n\times m} = A_{n\times m} + B_{n\times m}$$

$$c_{ij} = a_{ij} + b_{ij}$$

A and B must have the same dimensions

Example:

$$\begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 6 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 8 & 7 \\ 4 & 6 \end{bmatrix}$$

Product:

$$C_{n\times p} = A_{n\times m} B_{m\times p}$$

A and B must have compatible dimensions

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

$$A_{n\times n}B_{n\times n}\neq B_{n\times n}A_{n\times n}$$

Examples:

$$\begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 6 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 17 & 29 \\ 19 & 11 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 18 & 32 \\ 17 & 10 \end{bmatrix}$$

Transpose:

$$C_{m \times n} = A^{T}_{n \times m} \qquad (A+B)^{T} = A^{T} + B^{T}$$

$$c_{ij} = a_{ji} \qquad (AB)^{T} = B^{T} A^{T}$$

If
$$A^T = A$$
 A is symmetric

Examples:

$$\begin{bmatrix} 6 & 2 \\ 1 & 5 \end{bmatrix}^T = \begin{bmatrix} 6 & 1 \\ 2 & 5 \end{bmatrix} \qquad \begin{bmatrix} 6 & 2 \\ 1 & 5 \\ 3 & 8 \end{bmatrix}^T = \begin{bmatrix} 6 & 1 & 3 \\ 2 & 5 & 8 \end{bmatrix}$$

Determinant: A must be square

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

$$\det\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Example:
$$\det \begin{bmatrix} 2 & 5 \\ 3 & 1 \end{bmatrix} = 2 - 15 = -13$$

Inverse:

A must be square

$$A_{n\times n}A^{-1}{}_{n\times n}=A^{-1}{}_{n\times n}A_{n\times n}=I$$

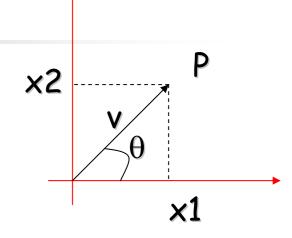
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{21}a_{12}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Example:
$$\begin{bmatrix} 6 & 2 \\ 1 & 5 \end{bmatrix}^{-1} = \frac{1}{28} \begin{bmatrix} 5 & -2 \\ -1 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 2 \\ 1 & 5 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 6 & 2 \\ 1 & 5 \end{bmatrix} = \frac{1}{28} \begin{bmatrix} 5 & -2 \\ -1 & 6 \end{bmatrix} \cdot \begin{bmatrix} 6 & 2 \\ 1 & 5 \end{bmatrix} = \frac{1}{28} \begin{bmatrix} 28 & 0 \\ 0 & 28 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2D Vector

$$\mathbf{v} = (x_1, x_2)$$



Magnitude:
$$|| \mathbf{v} || = \sqrt{x_1^2 + x_2^2}$$

If $\|\mathbf{v}\|=1$, \mathbf{V} Is a UNIT vector

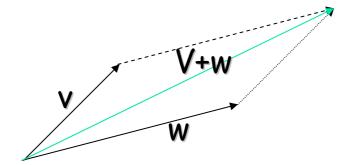
$$\frac{\mathbf{v}}{\|\mathbf{v}\|} = \left(\frac{x_1}{\|\mathbf{v}\|}, \frac{x_2}{\|\mathbf{v}\|}\right)$$
 Is a unit vector

Orientation:
$$\theta = \tan^{-1} \left(\frac{x_2}{x_1} \right)$$

Vecto

Vector Addition

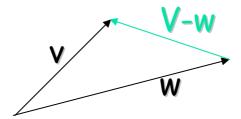
$$\mathbf{v} + \mathbf{w} = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$



4

Vector Subtraction

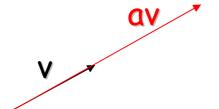
$$\mathbf{v} - \mathbf{w} = (x_1, x_2) - (y_1, y_2) = (x_1 - y_1, x_2 - y_2)$$



Note that:
$$\mathbf{w} + (\mathbf{v} - \mathbf{w}) = \mathbf{v}$$

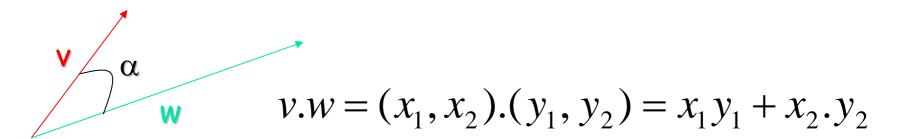
Scaling (Product with a scalar)

$$a\mathbf{v} = a(x_1, x_2) = (ax_1, ax_2)$$



4

Inner (dot/scalar) Product



The inner product is a SCALAR!

$$v.w = (x_1, x_2).(y_1, y_2) = v^T w = w^T v = ||v|| \cdot ||w|| \cos \alpha$$

$$v.w = 0 \Leftrightarrow v \perp w$$

The inner product measures the similarity of two vectors

Orthonormal Basis (标准正交基)

$$\mathbf{i} = (1,0) \qquad ||\mathbf{i}|| = 1$$

$$\mathbf{j} = (0,1) \qquad ||\mathbf{j}|| = 1$$

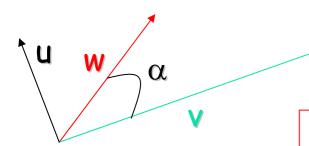
$$\mathbf{i} \cdot \mathbf{j} = 0$$

$$\mathbf{v} = (x_1, x_2)$$
 $\mathbf{v} = x_1.\mathbf{i} + x_2.\mathbf{j}$

$$\mathbf{v}.\mathbf{i} = (x_1.\mathbf{i} + x_2.\mathbf{j}).\mathbf{i} = x_1.1 + x_2.0 = x_1$$

 $\mathbf{v}.\mathbf{j} = (x_1.\mathbf{i} + x_2.\mathbf{j}).\mathbf{j} = x_1.0 + x_2.1 = x_2$

Outer (cross/vector) Product



$$u = v \times w$$

The cross product is a VECTOR!

Magnitude: $|| u || = || v.w || = || v || || w || \sin \alpha$

Orientation:

$$u \perp v \Rightarrow u \cdot v = (v \times w) \cdot v = 0$$

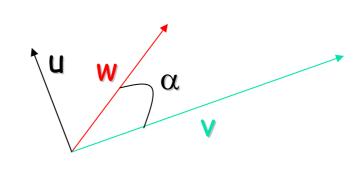
$$u \perp w \Rightarrow u \cdot w = (v \times w) \cdot w = 0$$

Vector Product Computation

$$i = (1,0,0)$$
 || $i || = 1$
 $j = (0,1,0)$ || $j || = 1$ || $i \cdot j = 0, i \cdot k = 0, j \cdot k = 0$
 $k = (0,0,1)$ || $k || = 1$

$$\mathbf{u} = \mathbf{v} \times \mathbf{w} = (x_1, x_2, x_3) \times (y_1, y_2, y_3)$$

$$\mathbf{u} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$



=
$$(x_2y_3 - x_3y_2)\mathbf{i} + (x_3y_1 - x_1y_3)\mathbf{j} + (x_1y_2 - x_2y_1)\mathbf{k}$$

Cross Product

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \times \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} y_1 z_2 - z_1 y_2 \\ z_1 x_2 - x_1 z_2 \\ x_1 y_2 - y_1 x_2 \end{pmatrix}$$

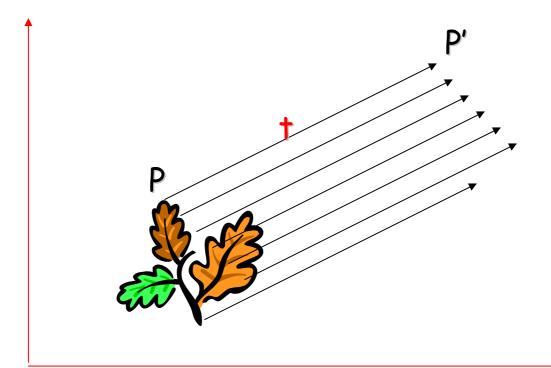
Every entry is a determinant of the two other entries

$$\vec{w} = \vec{u} \times \vec{v} \implies w^T u = w^T v = 0$$

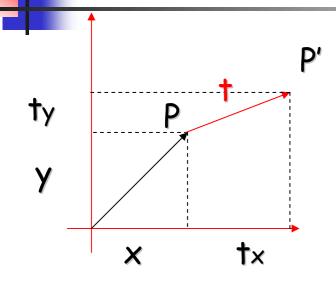
Magnitude:
$$||\mathbf{u}|| = ||v.w|| = ||v|||w|| \sin \alpha$$

 $\|\vec{w}\|$ = Area of parallelogram bounded by u and v

2D Geometrical Transformations



2D Translation Equation

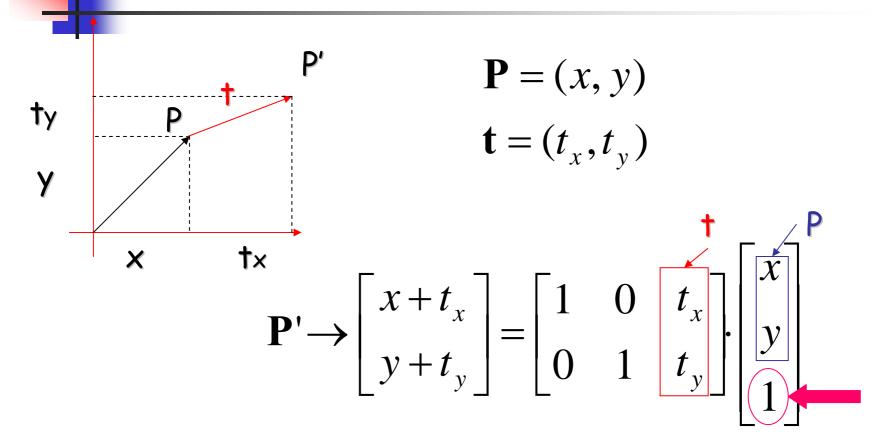


$$\mathbf{P} = (x, y)$$

$$\mathbf{t} = (t_x, t_y)$$

$$P' = (x + t_x, y + t_y) = P + t$$

2D Translation using Matrices



Homogeneous Coordinates

(齐次坐标)

Multiply the coordinates by a non-zero scalar and add an extra coordinate equal to that scalar. For example,

$$(x, y) \rightarrow (x \cdot z, y \cdot z, z) \quad z \neq 0$$

 $(x, y, z) \rightarrow (x \cdot w, y \cdot w, z \cdot w, w) \quad w \neq 0$

 NOTE: If the scalar is 1, there is no need for the multiplication!

Example:
$$(2,3) \to (2,3,1) \sim (4,6,2) \sim (-4,-6,-2)...$$

$$(3,-1,2) \to (3,-1,2,1) \sim (6,-2,4,2) \sim (-6,2,-4,-2)...$$

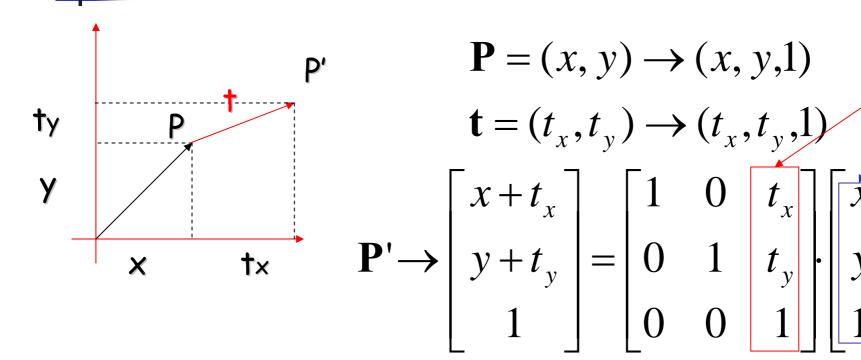
Back to Cartesian Coordinates:

Divide by the last coordinate and eliminate it. For example,

$$(x, y, z) \quad z \neq 0 \rightarrow (x/z, y/z)$$
$$(x, y, z, w) \quad w \neq 0 \rightarrow (x/w, y/w, z/w)$$

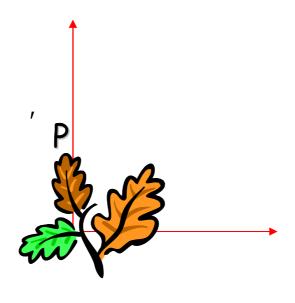
Question: What if z=0?

2D Translation using Homogeneous Coordinates

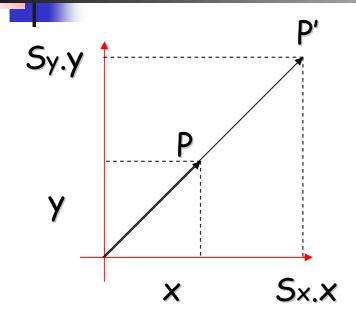


$$P' = T \cdot P$$

Scaling



Scaling Equation



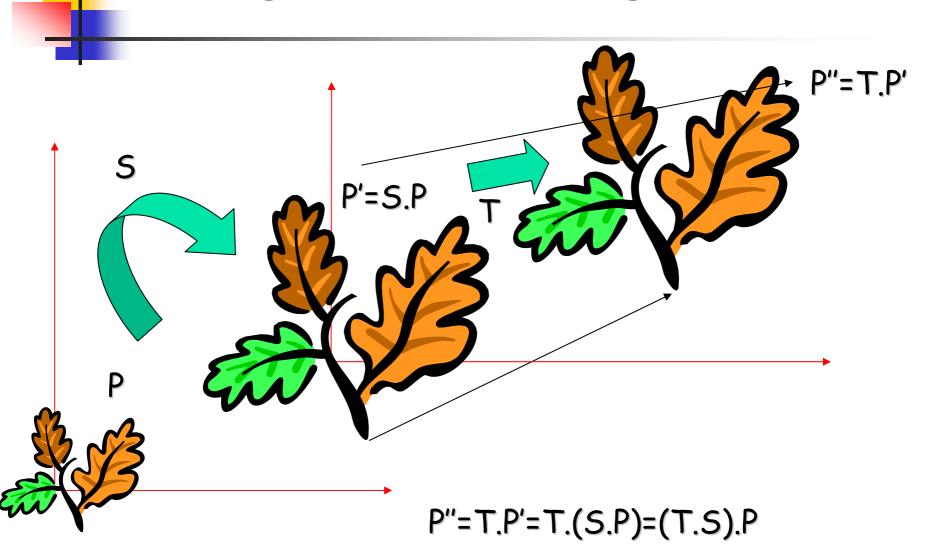
$$\mathbf{P} = (x, y) \to (x, y, 1)$$

$$\mathbf{P}' = (s_x x, s_y y) \to (s_x x, s_y y, 1)$$

$$\mathbf{S}_{\mathbf{x},\mathbf{x}} \qquad \mathbf{P'} \rightarrow \begin{bmatrix} s_{x}x\\ s_{y}y\\ 1 \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & 0\\ 0 & s_{y} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ 1 \end{bmatrix}$$

$$P' = S \cdot P$$

Scaling & Translating



Scaling & Translating

P"=T.P'=T.(S.P)=(T.S).P Matrix product is associative

$$\mathbf{P''} = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =$$

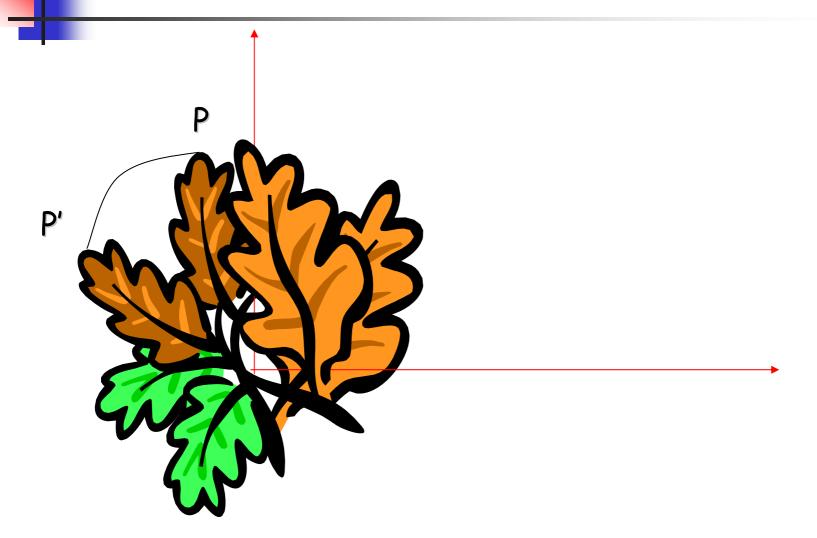
$$= \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix}$$

Translating & Scaling ≠ Scaling & Translating

 $S.(T.P) \neq (T.S).P$ Matrix product is NOT commutative

$$\mathbf{P''} = \mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} s_{x} & 0 & s_{x}t_{x} \\ 0 & s_{y} & s_{y}t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x}x + s_{x}t_{x} \\ s_{y}y + s_{y}t_{y} \\ 1 \end{bmatrix}$$



Rotation Equations

Counter-clockwise rotation by an angle θ

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{P'} \rightarrow \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{R} \cdot \mathbf{P}$$

Degrees of Freedom

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

R is $2x2 \longrightarrow 4$ elements

BUT! There is only 1 degree of freedom: θ

The 4 elements must satisfy the following constraints:

$$\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}} = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{R} = \mathbf{I}$$
$$\det(\mathbf{R}) = 1$$

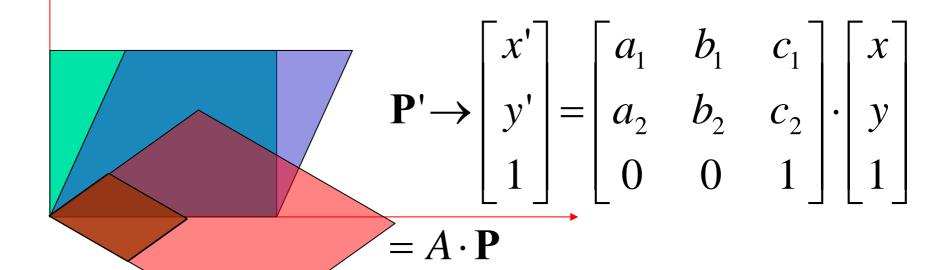
Scaling, Translating & Rotating

Order matters!

 $R.T.S \neq R.S.T \neq T.S.R...$

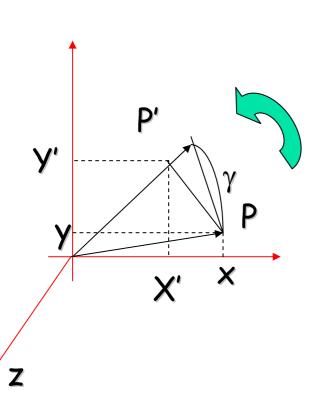
Affine Transformation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$



BD Rotation of Points

Rotation around the coordinate axes, counter-clockwise:



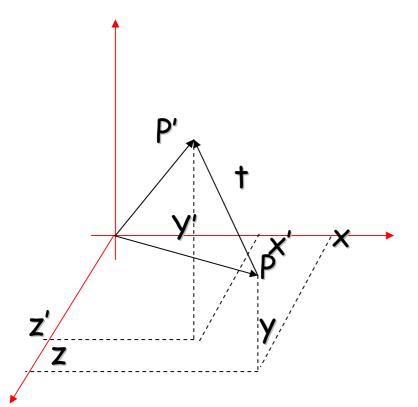
$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

BD Translation of Points

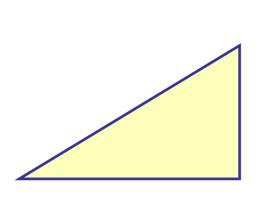
Translate by a vector $t=(t_x,t_y,t_x)^T$:

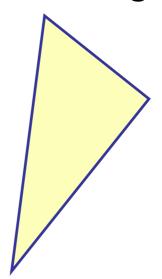


$$T = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Euclidean Geometry

 Answers the question what objects have the same shape (= congruent)





Same shapes are related by rotation and translation

Euclidean Transformations (Isometries)

$$q = Rp + t$$

Rotation:

$$R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad R^T R = I, \quad \det R = 1$$

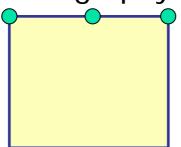
$$R = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}, \quad a^2 + b^2 = 1, \quad R \in SO(2)$$

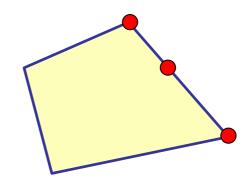
Translation:

$$\vec{t} = \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

Projective Transformations in a Plane (射影变换/透视变换)

- Projectivity (直射)
 - Mapping from points in plane to points in plane
 - 3 aligned points are mapped to 3 aligned points
- Also called
 - Collineation (共线,直射变换)
 - Homography (单应性)

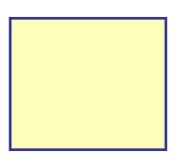


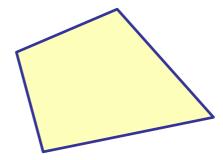


Same shapes are related by a projective transformation

Projective Geometry

 Answers the question what appearances (projections) represent the same shape





Same shapes are related by a projective transformation

Hierarchy of Transformations

- Isometry (Euclidean), $\begin{pmatrix} R & \vec{t} \\ 0 & 1 \end{pmatrix}$
- Similarity, $\begin{pmatrix} sR & \vec{t} \\ 0 & 1 \end{pmatrix}$, $sR = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$
- Affine, $\begin{pmatrix} A & \vec{t} \\ 0 & 1 \end{pmatrix}$, $A \in GL(2)$ general linear
- Projective, $H \in GL(3)$: $\alpha q = Hp$, $\alpha \neq 0$

Special Projectivities

Invariants

Invariants(不变量)

	Length	Angle	Parallelism	Collinearity
	Area	Angle Shape	Area ratio	Cross-ratio
отте				
mil				
ATTI				
pjec:				

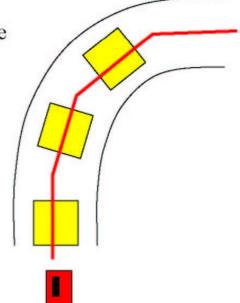
Example of Application

- Robot going down the road
- Large squares painted on the road to make it easier
- Find road shape without perspective distortion from image

 Use corners of squares: coordinates of 4 points allow us to compute matrix H

- Then use matrix **H** to compute 3D road shape





[Szeliski & Shum, SIGGRAPH'97] [Szeliski, MSR-TR-2004-92]

Wide-angle Imaging

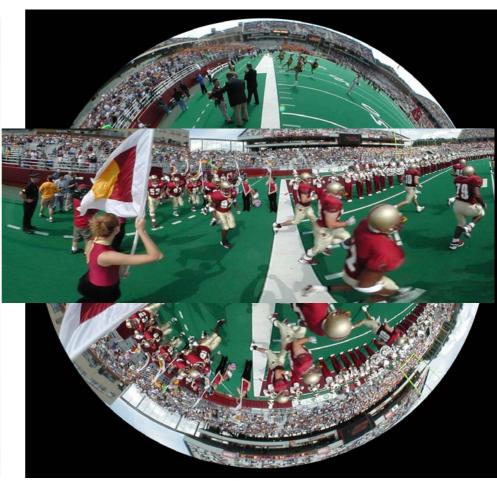
How do you increase the field of view?

Wide-angle Imaging Fisheye cameras

f=18mm

f=10mm

Wide-angle Imaging Catadioptric sensor



Remote Reality

Contents

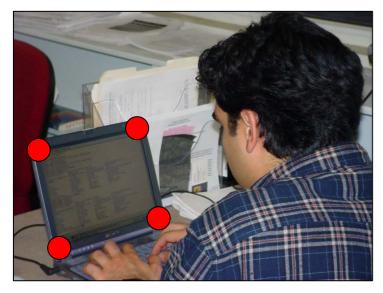
- Image alignment and stitching
- motion models
- direct alignment
- point-based alignment
- complete mosaics (global alignment)
- ghost and parallax removal
- compositing and blending

Readings

- Szeliski & Shum, SIGGRAPH'97
- Szeliski, Image Alignment and Stitching, MSR-TR-2004-92
- Bergen et al, Hierarchical model-based motion estimation, ECCV'92
- Shi & Tomasi, Good Features to Track, CVPR'94
- Recognizing Panoramas, Brown & Lowe, ICCV'2003
- Multi-image matching using multi-scale oriented patches, Brown, Szeliski, and Winder, CVPR'2005

Example

Compositing



This is your test image set

Example

- Composite
 - Need not be rectangular
 - Masking and Blending

Mosaics for Video Coding

 Convert masked images into a background sprite for content-based coding

Mosaic Examples

http://www.panoramas.dk/

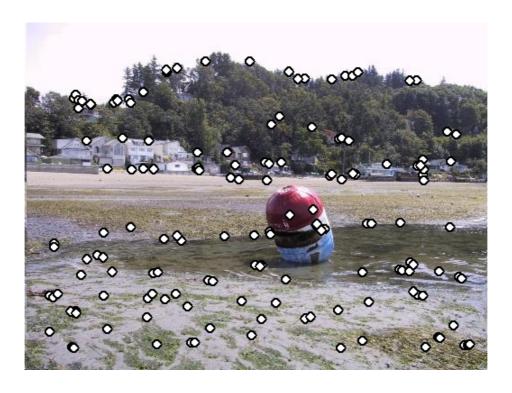
pixel-based image alignment

Establishing correspondences

- 1. Direct method:
 - Use generalization of affine motion model [Szeliski & Shum '97]
- Feature-based method
 - Use Shi-Tomasi tracker after initial rough alignment [Lowe ICCV'99; Schmid ICCV'98, Brown&Lowe ICCV'2003]
 - Compute *R* from correspondences (absolute orientation)

Feature irregularities

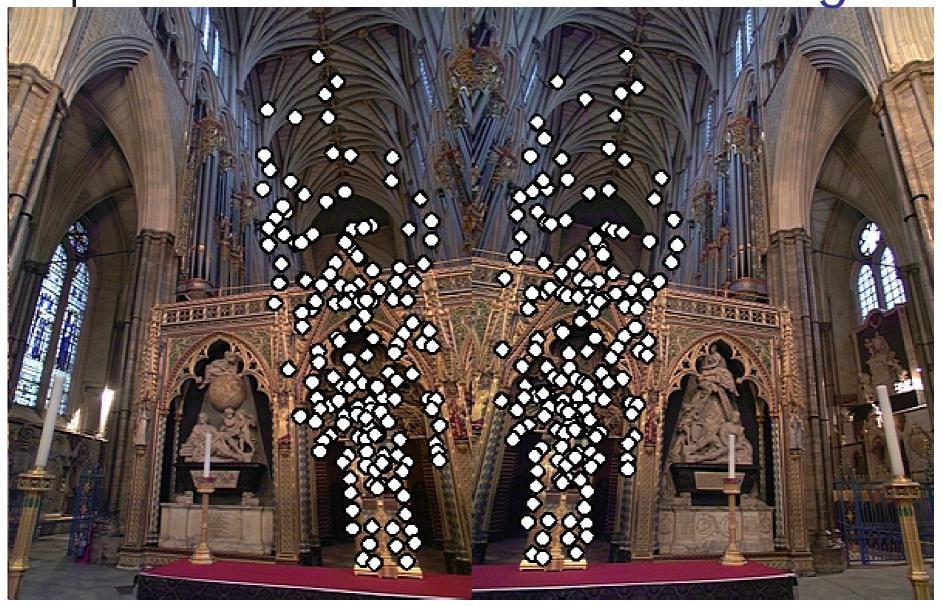
Distribute points evenly over the image



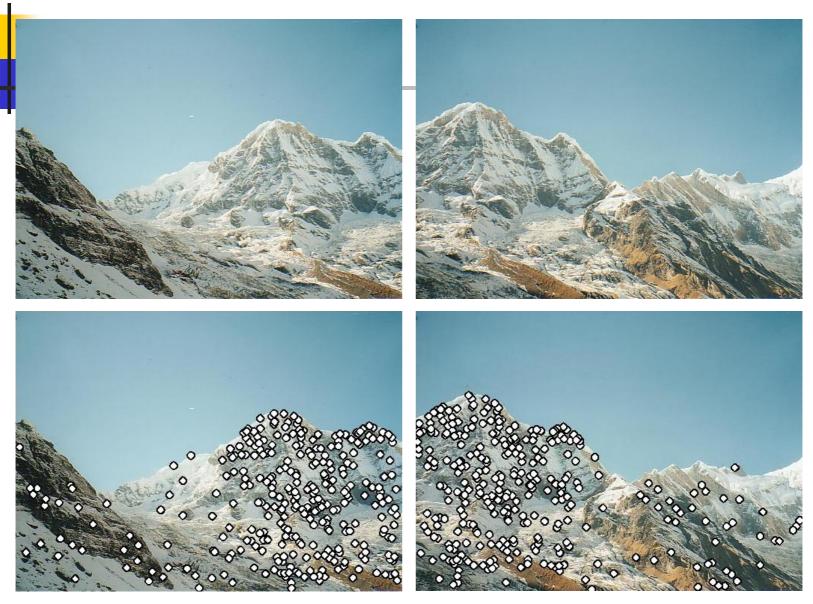
Descriptor Vector(SIFT)

- Orientation = blurred gradient
 - Similarity Invariant Frame
 - Scale-space position $(x, y, s) + orientation (\theta)$

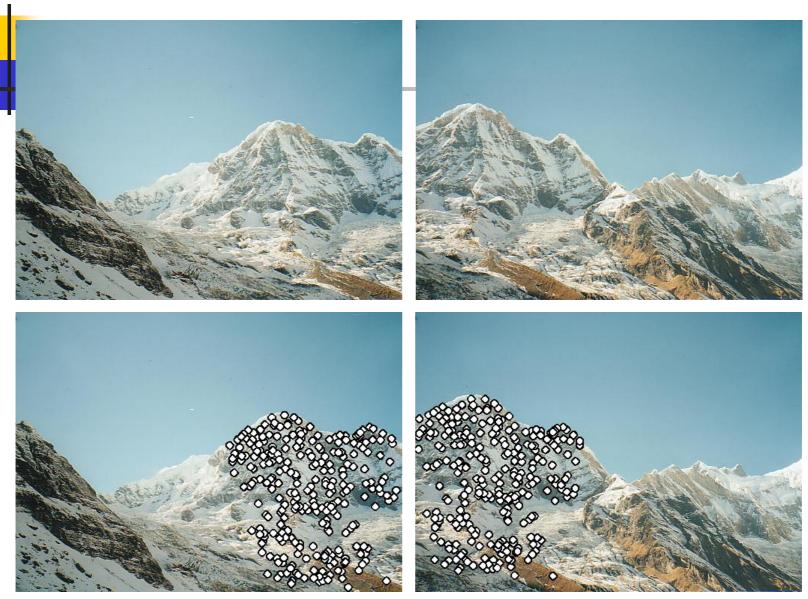
Probabilistic Feature Matching



RANSAC motion model

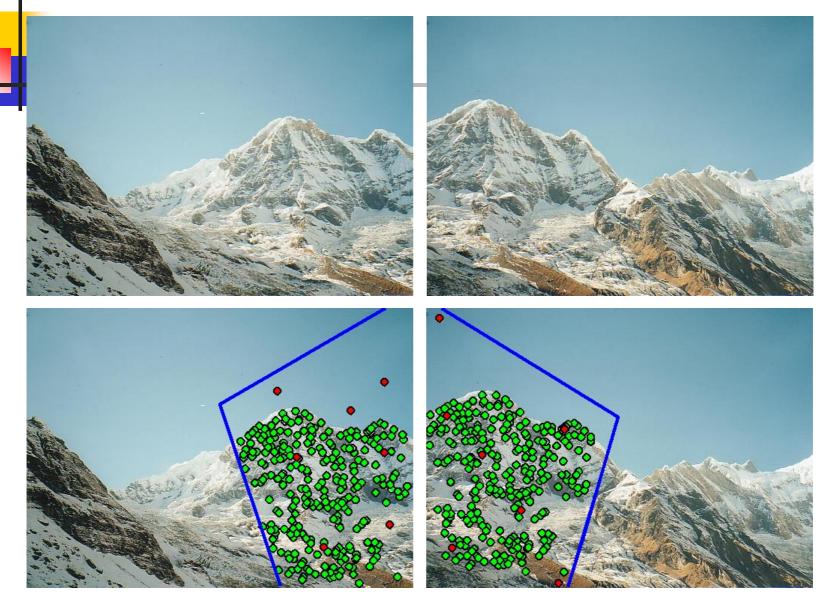


RANSAC motion model



RANSAC motion model

Probabilistic model for verification



How well does this work?

Test on 100s of examples...

...still too many failures (5-10%) for consumer application

Matching Mistakes: False Positive

Matching Mistakes: False Positive

Matching Mistake: False Negative

Moving objects: large areas of disagreement

Matching Mistakes

- Accidental alignment
 - repeated / similar regions
- Failed alignments
 - moving objects / parallax
 - low overlap
 - "feature-less" regions (more variety?)
- 100% reliable algorithm?

How can we fix these?

- Tune the feature detector (reliable feature)
- Tune the feature matcher (reliable match)
- Tune the RANSAC stage (motion model)
- Use "higher-level" knowledge
 - e.g., typical camera motions
- Sounds like a big "learning" problem
 - Need a large training/test data set (panoramas)

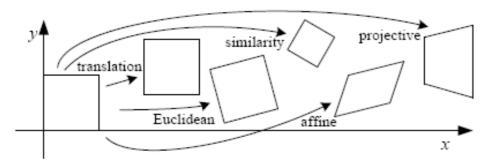
Global motion

- Common motion observed in the frame
 - Motion of all points in the scene
 - Motion of most of the points in the scene
- Reasons
 - Motion of sensor (Ego Motion)
 - Motion of a rigid scene
- Parametric flow describes optical flow for each pixel
 - Affine
 - Projective
- Global motion can be used to
 - Visual mosaics
 - Image registration
 - Removing camera jitter
 - Object tracking
 - Video segmentation

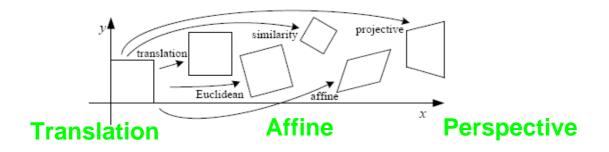
Aligning images

- How to account for warping?
 - Translations are not enough to align the images

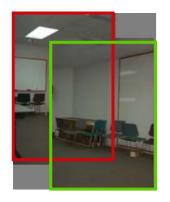
- What happens when we take two images with a camera and try to align them?
- translation?
- rotation?
- scale?
- affine?
- perspective?



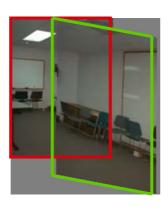
Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$\left[egin{array}{c c}I&t\end{array} ight]_{2 imes3}$	2	orientation + · · ·	
rigid (Euclidean)	$\left[egin{array}{c c} R & t\end{array} ight]_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 \times 3}$	4	angles +···	\Diamond
affine	$\left[egin{array}{c}A\end{array} ight]_{2 imes 3}$	6	parallelism +···	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	\Box



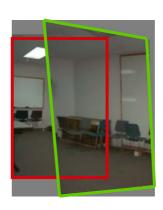
3D rotation



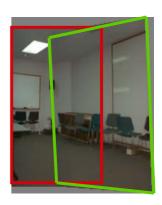
2 unknowns



6 unknowns

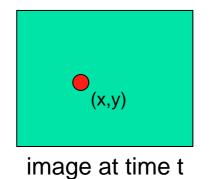


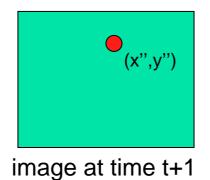
8 unknowns

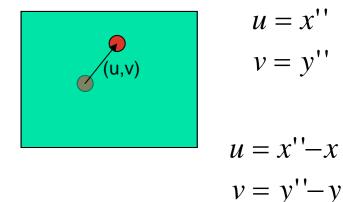


3 unknowns

Affine Motion







Affine motion:

$$u(x, y) = a_1 x + a_2 y + b_1$$
$$v(x, y) = a_3 x + a_4 y + b_2$$

$$[a_1, a_2, b_1, a_3, a_4, b_2]$$

Affine motion parameters

Global Affine Motion

$$u(x, y) = a_1 x + a_2 y + b_1$$
$$v(x, y) = a_3 x + a_4 y + b_2$$

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Solving for affine transformation

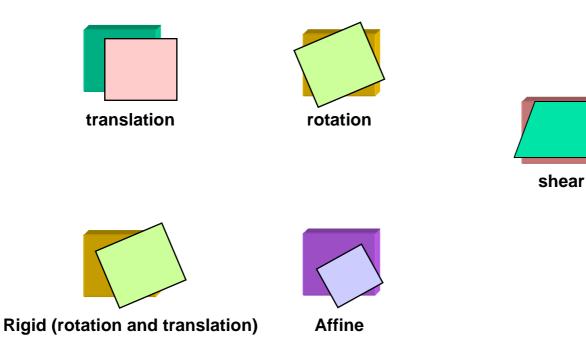
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_{11} \\ a_{12} \\ a_{21} \\ a_{22} \\ a_{32} \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

- This is a general linear equation set
 - How many point correspondences are necessary?

Spatial Transformations

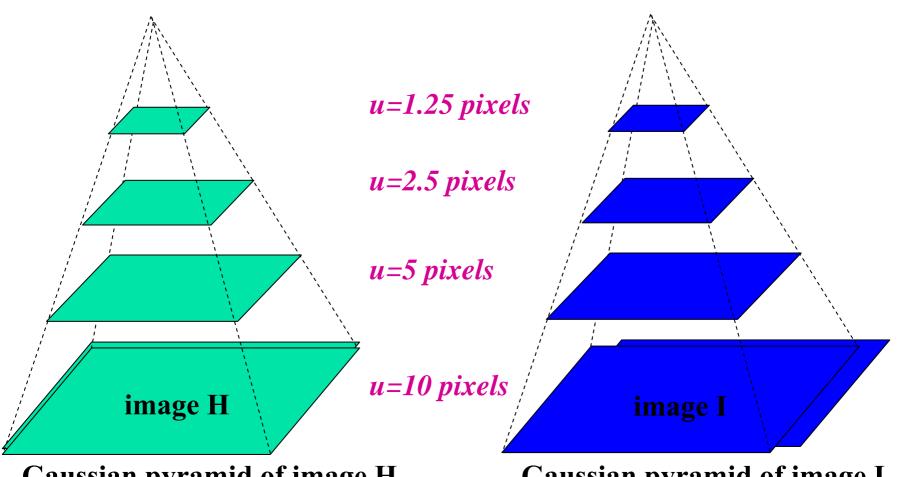
Transformations in image space



Affine transform based Algorithm

- Initialize affine parameters (local match)
- Compute affine parameters iteratively
 - Compute new affine parameters (global match)
 - At each iteration update the global affine solution based on matching error
- Stop when affine parameters do not update (global minimum achieved)
- If motion in between frames is high, construct pyramid representation.

Using Pyramids



Gaussian pyramid of image H

Gaussian pyramid of image I

Using Pyramids



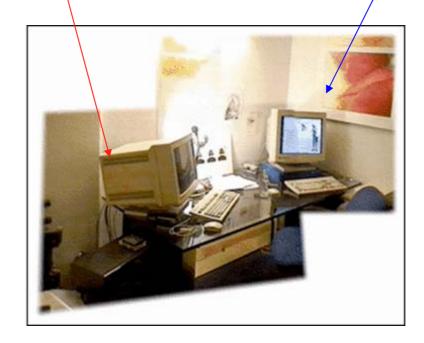
Gaussian pyramid of image H

Gaussian pyramid of image I

An Example

Mosaic

Examples



Examples

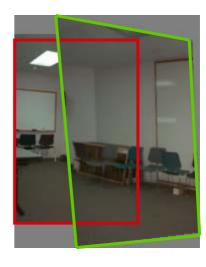
DIME. DIME. DIME.

DIME.

Examples

From affine to perspective

- 8-parameter generalization of affine motion
 - works for pure rotation or planar surfaces
- Limitations:
 - local minima
 - slow convergence
 - difficult to control interactively



Special Projectivities

Invariants

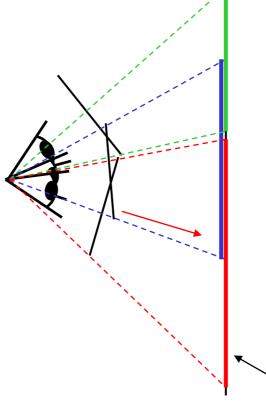
Projectivity 8 dof

Affine transform 6 dof

Similarity 4 dof

Euclidean transform 3 dof

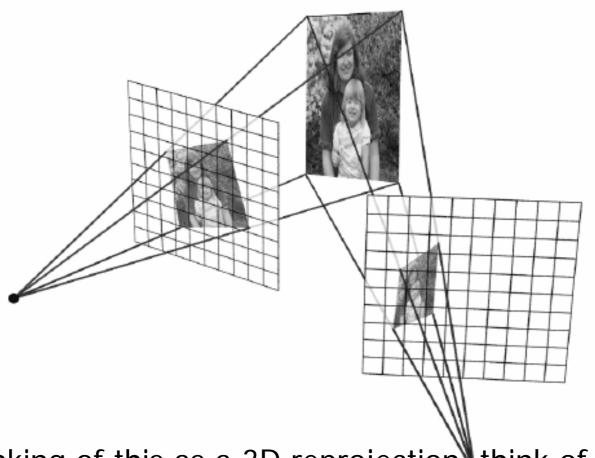
Projective Geometry



mosaic projection plane
 The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane

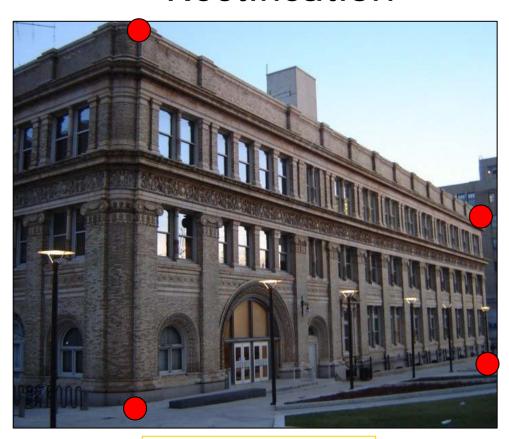
Image Reprojection

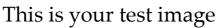


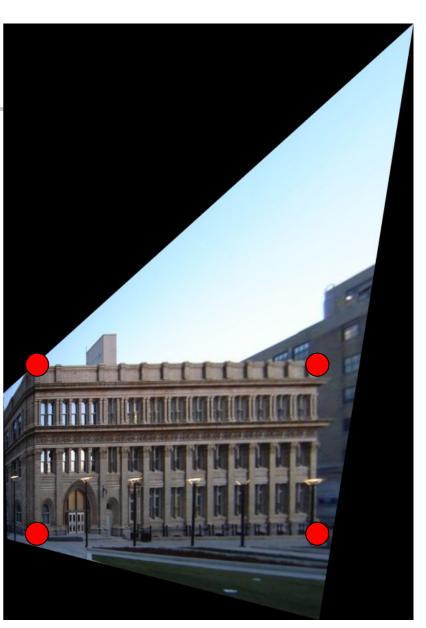
Rather than thinking of this as a 3D reprojection think of it as a 2D image warp from one image to another

Example

Rectification

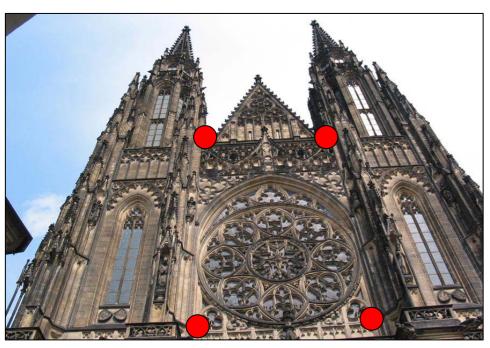


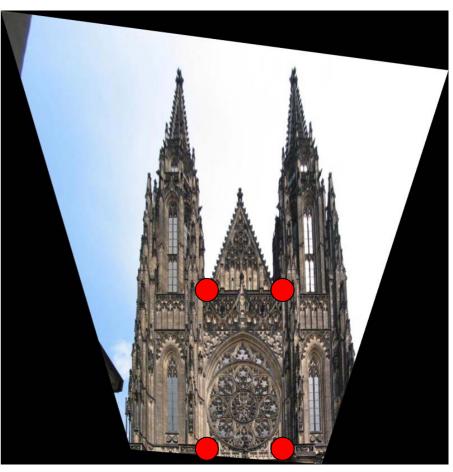




Example

Rectification





Stitching demo

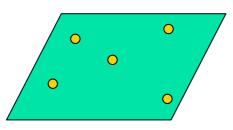
Ingredients

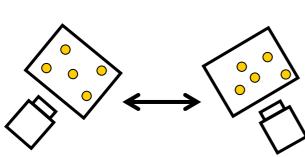
- Take good images
- Specify correspondences (manual)
- Compute homography
 - Solve with eigen decomposition
- Apply homography
 - Warping
 - Interpolation
 - Masking
 - Blending

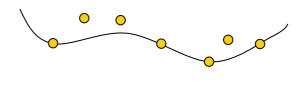
How to do it?

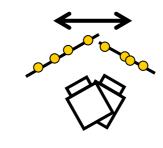
- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation between the second image and the first
 - Shift the second image to overlap with the first
 - Blend the two together to create a mosaic
 - If there are more images, repeat

- Homography is a singular case of the Fundamental Matrix(基本矩阵)
 - Two views of coplanar points
 - Two views that share the same center of projection









Homographies

- Perspective projection of a plane
 - Lots of names for this:
 - homography, collineation, planar projective map
 - Modeled as a 2D warp using homogeneous coordinates

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$

$$\mathbf{p}^{\bullet} \qquad \mathbf{H} \qquad \mathbf{p}$$

To apply a homography **H**

- Compute p' = Hp (regular matrix multiplication)
- Convert p' from homogeneous to image coordinates
 - divide by *w* (third) coordinate

Solving for homographies

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

$$y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

$$x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

$$y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x_i'x_i & -x_i'y_i & -x_i' \\ 0 & 0 & 0 & x_i & y_i & 1 & -y_i'x_i & -y_i'y_i & -y_i' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving for homographies

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 & -x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 & -y'_1 \\ \vdots & & & & \vdots & & & & \\ x_n & y_n & 1 & 0 & 0 & 0 & -x'_nx_n & -x'_ny_n & -x'_n \\ 0 & 0 & 0 & x_n & y_n & 1 & -y'_nx_n & -y'_ny_n & -y'_n \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$A$$

$$2n \times 9$$

$$h_{00}$$

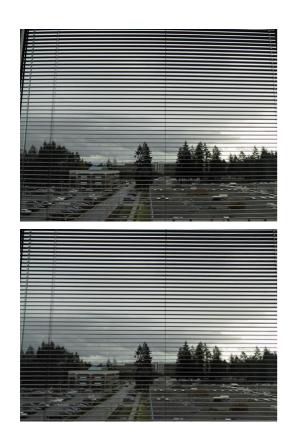
$$h_{01}$$

$$h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix}$$

- Defines a least squares problem: minimize $\|\mathbf{A}\mathbf{h} \mathbf{0}\|^2$
 - Since h is only defined up to scale, solve for unit vector ĥ
 - Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T\mathbf{A}$ with smallest eigenvalue
 - Works with 4 or more points

Radial distortion

Correct for "bending" in wide field of view lenses



$$\hat{r}^2 = \hat{x}^2 + \hat{y}^2$$

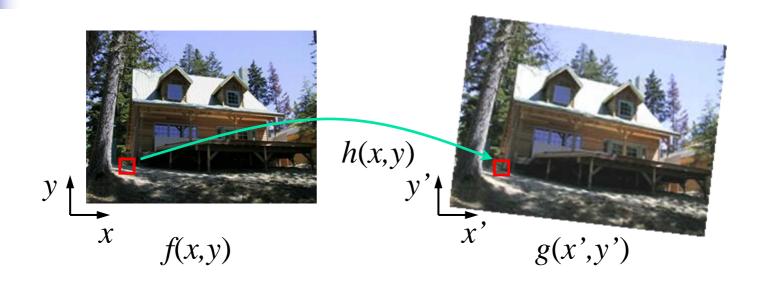
$$\hat{x}' = \hat{x}/(1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4)$$

$$\hat{y}' = \hat{y}/(1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4)$$

$$x = f\hat{x}'/\hat{z} + x_c$$

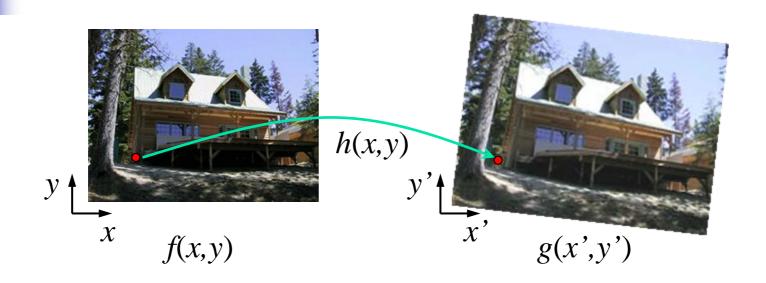
$$y = f\hat{y}'/\hat{z} + y_c$$

Image Warping



• Given a coordinate transform (x',y') = h(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(h(x,y))?

Forward Warping



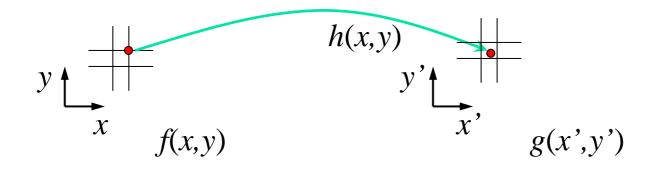
 Send each pixel f(x,y) to its corresponding location

(x',y') = h(x,y) in the second image

Q: what if pixel lands "between" two pixels?

4

Forward Warping



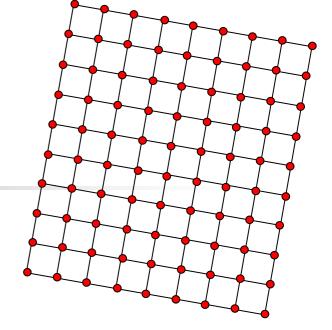
Send each pixel f(x, y) to its corresponding location (x', y') = h(x, y) in the second image

Q: what if pixel lands "between" two pixels?

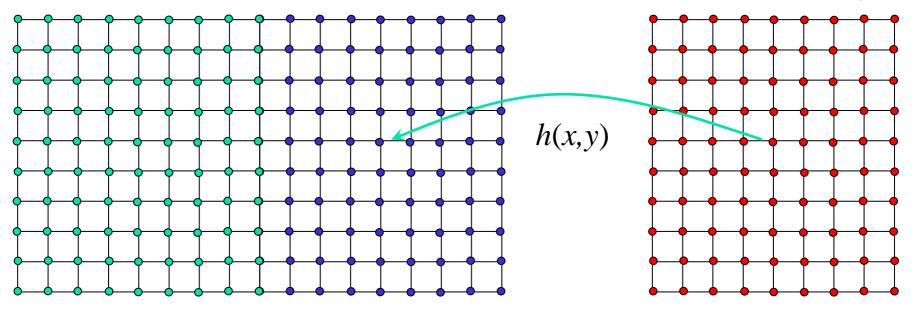
A: distribute color among neighboring pixels (x',y')

Known as "splatting"

Forward Warping



Forward warped image

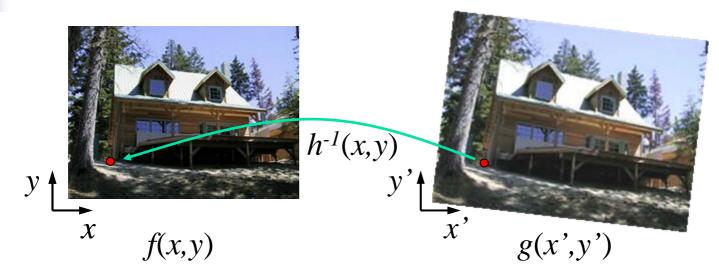


Reference image

Extended region

Target image

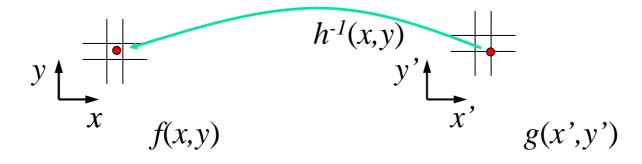
Inverse Warping



- Get each pixel g(x',y') from its corresponding location
- $(x,y) = h^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

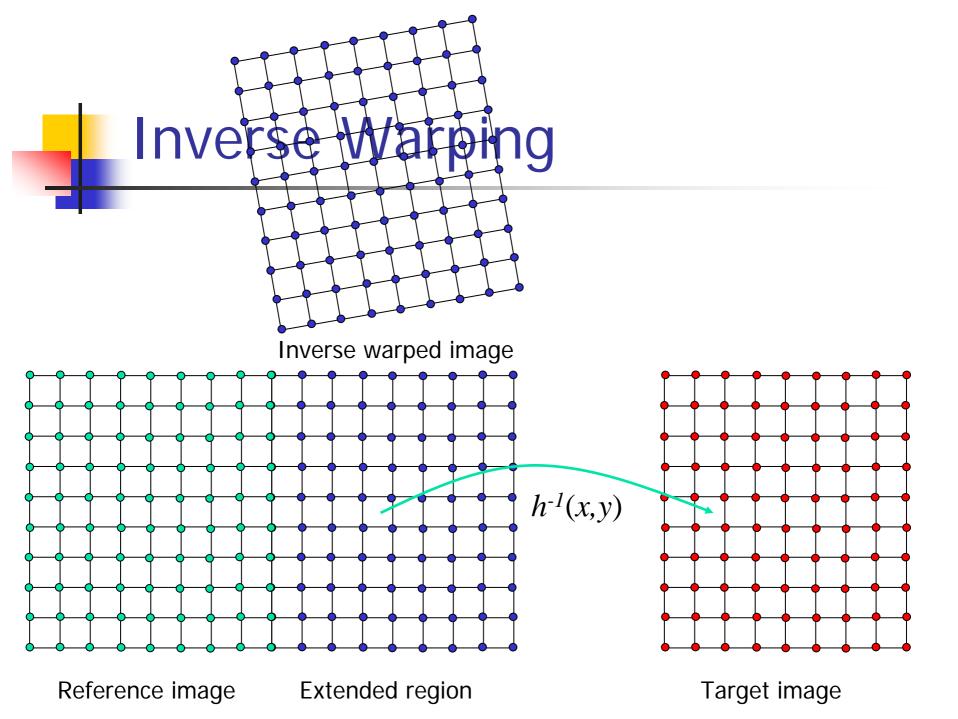
Inverse Warping



• Get each pixel g(x', y') from its corresponding location $(x, y) = h^{-1}(x', y')$ in the first image

Q: what if pixel comes from "between" two pixels?

A: resample color value



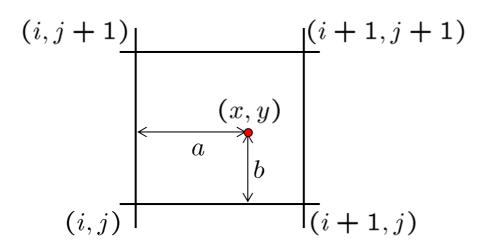
Forward vs. Inverse Warping

Q: which is better?

- A: usually inverse—eliminates holes
 - however, it requires an invertible warp function—not always possible...

Bilinear Interpolation

A simple method for resampling images



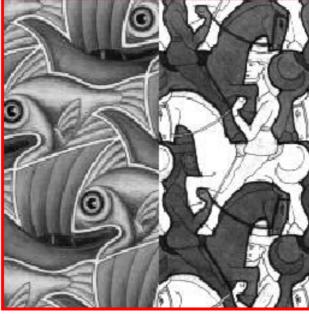
$$f(x,y) = (1-a)(1-b) f[i,j] + a(1-b) f[i+1,j] + ab f[i+1,j+1] + (1-a)b f[i,j+1]$$

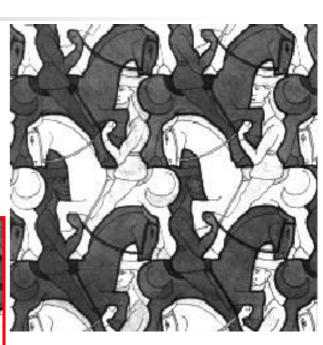
Postprocessing

Planar Mosaic

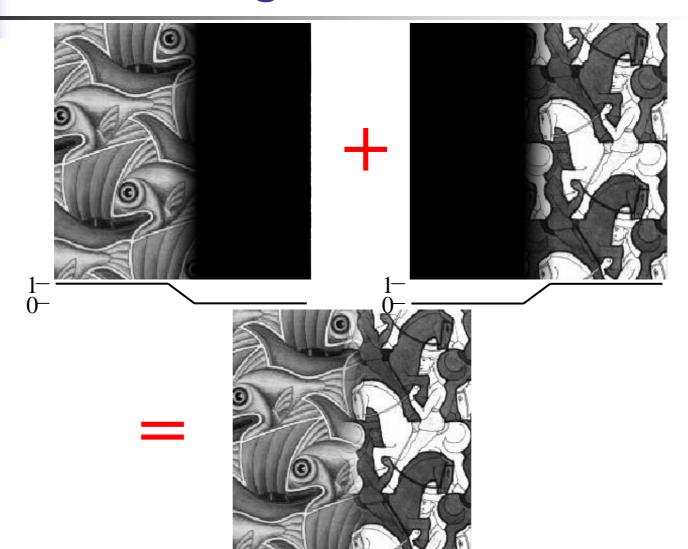
Note that the COP is the same

Image Blending

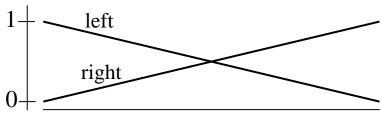




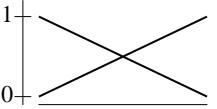
Feathering



Effect of Window Size







Effect of Window Size

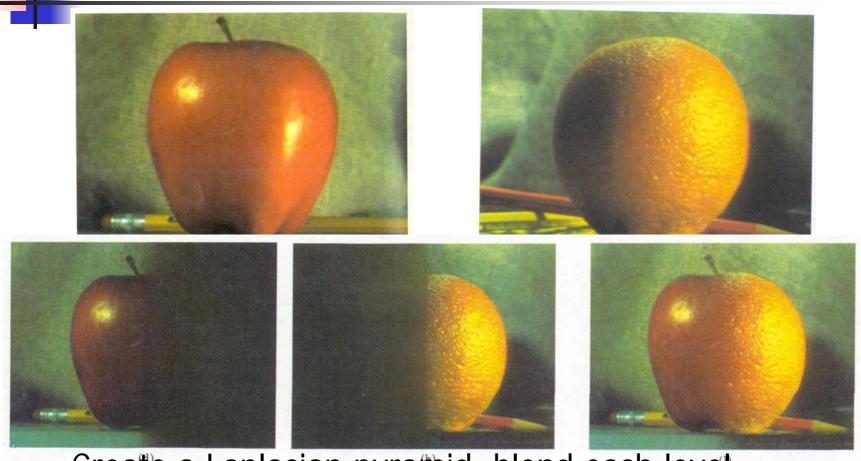


Good Window Size

- "Optimal" window: smooth but not ghosted
 - Doesn't always work...

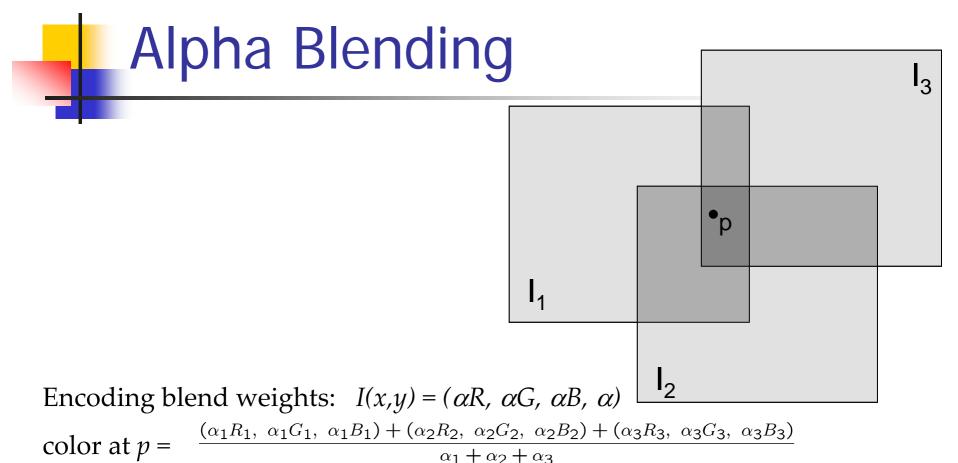


Pyramid Blending



Create a Laplacian pyramid, blend each level

Burt, P. J. and Adelson, E. H., <u>A multiresolution spline with applications to image mosaics</u>, ACM Transactions on Graphics, 42(4), October 1983, 217-236.



Implement this in two steps:

color at p =

- 1. accumulate: add up the (α premultiplied) RGB α values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Example

- For more info: Perez et al, SIGGRAPH 2003
 - http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Global alignment

- Register all pairwise overlapping images
- Use Optical center rotation model (one R per image)
- Use direct alignment (patch centers) or feature based
- Infer overlaps based on previous matches (incremental)
- Optionally discover which images overlap other images using feature selection (RANSAC)

Local alignment (deghosting)

 Use local optic flow to compensate for small motions [Shum & Szeliski, ICCV'98]

Figure 3: Deghosting a mosaic with motion parallax: (a) with parallax; (b) after single deghosting step (patch size 32); (c) multiple steps (sizes 32, 16 and 8).

Local alignment (deghosting)

 Use local optic flow to compensate for radial distortion [Shum & Szeliski, ICCV'98]

Figure 4: Deghosting a mosaic with optical distortion: (a) with distortion; (b) after multiple steps.

Image feathering

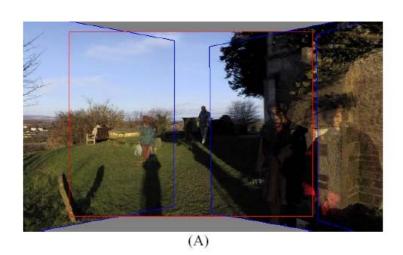
 Weight each image proportional to its distance from the edge (distance map)

 Cut out the appropriate region from each image and then blend together

Problem: non-static background

Region-based de-ghosting

 Select only one image in regions-ofdifference using weighted vertex cover [Uyttendaele et al., CVPR'01]



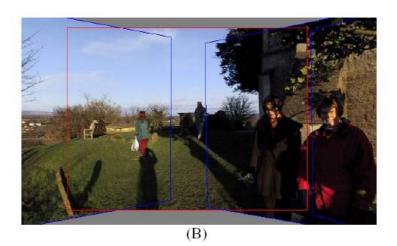


Figure 5 – (A) Ghosted mosaic. (B) Result of de-ghosting algorithm.

Region-based de-ghosting

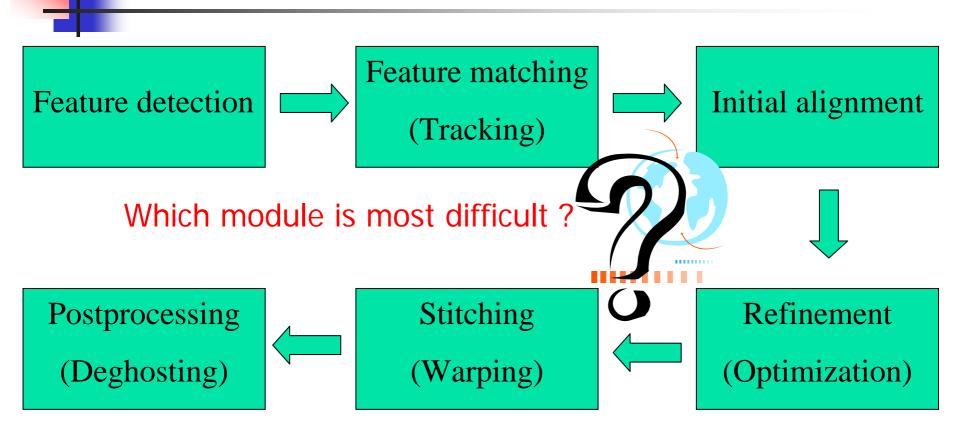
Select only one image in regions-of-difference using weighted vertex cover
 [Uyttendaele et al., CVPR'01]

Figure 6 - (A) Ghosted mosaic. (B) Result of de-ghosting algorithm.

Cutout-based de-ghosting

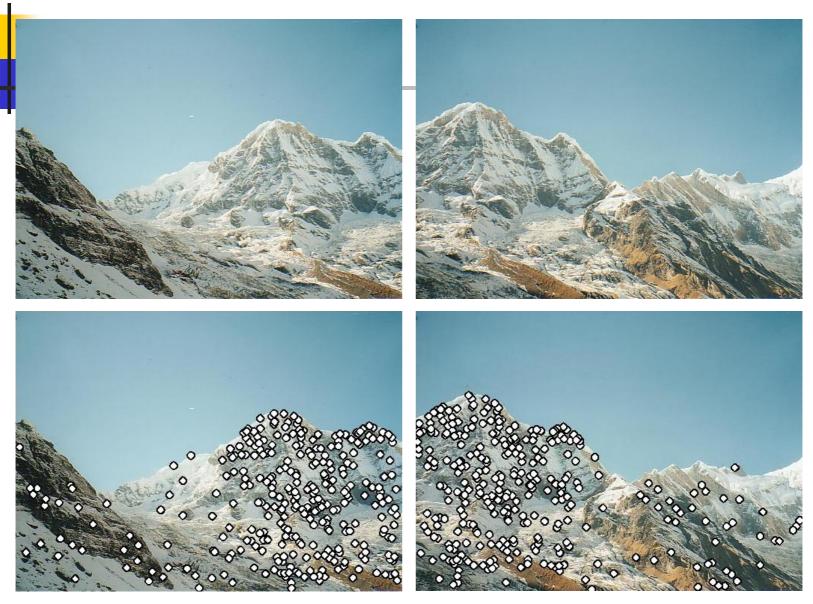
- Select only one image per output pixel, using spatial continuity
- Blend across seams using gradient continuity ("Poisson blending")
 [Agarwala et al., SG'2004]

A general pipeline

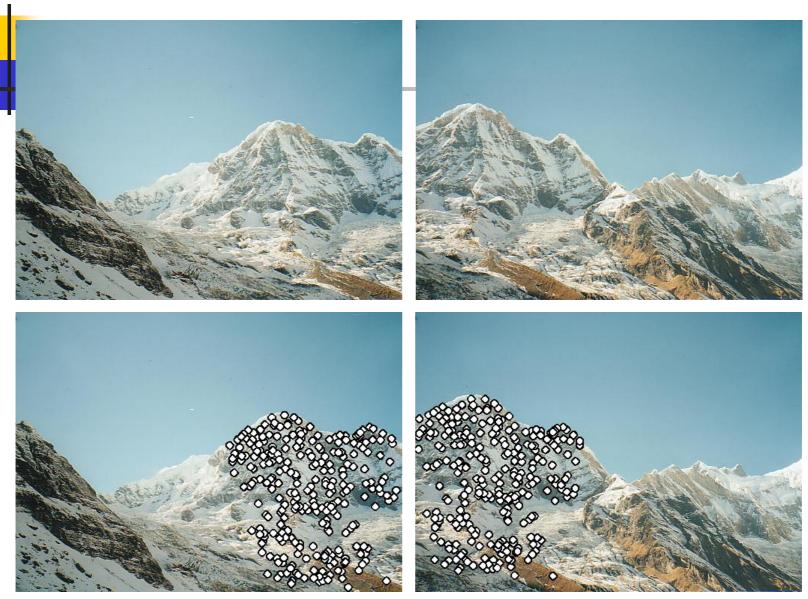


MultiView/Extraction/matching/tracking/morphing/optimization/blending/inpainting/editing/...

RANSAC motion model



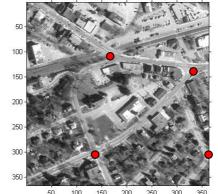
RANSAC motion model

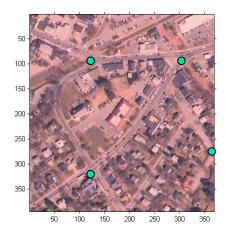


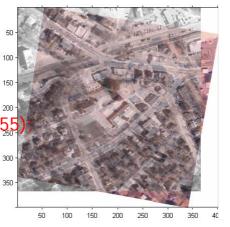
RANSAC motion model

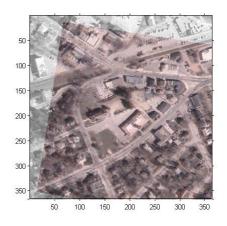
Matlab Demo (Break)

```
base = Imread('westconcordorthophoto.png');
unregistered = imread('westconcordaerial.png');
iptsetpref('ImshowAxesVisible','on')
figure;imshow(base);
figure;imshow(unregistered);
load westconcordpoints;
tform = cp2tform(input_points, base_points, 'projective');
registered = imtransform(unregistered, tform,'FillValues', 25;
figure; imshow(registered);hold on
h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6);
%appear misregistered
registered1 = imtransform(unregistered,tform,'FillValues', 25;
figure; imshow(registered1);hold on
```





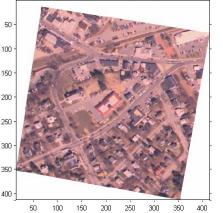




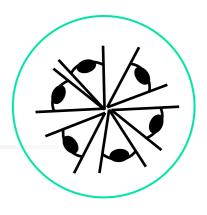
registered1 = imtransform(unregistered,tform,'FillValues', 255,'XData', [1 size(base,2)], 'YData', [1 size(base,1)]); figure; imshow(registered1);hold on b = imshow(base, gray(256));

h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6)

[registered2 xdata ydata] = imtransform(unregistered, tform 'FillValue)
figure; imshow(registered2, 'XData', xdata, 'YData', ydata);
h = imshow(base, gray(256));
set(h, 'AlphaData', 0.6);
ylim = get(gca, 'YLim');
set(gca, 'YLim', [0.5 ylim(2)]);



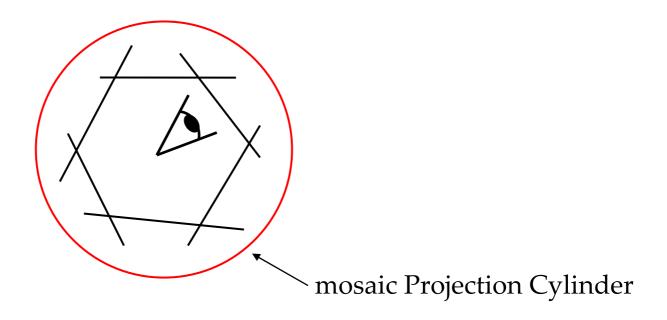
Wide-angle Imaging



- Goal
 - Stitch together several images into a seamless composite

Panoramas

What if you want a 360° field of view?



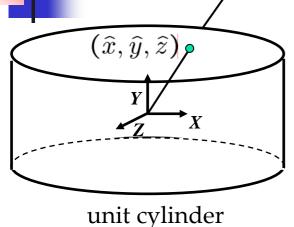
- Wide-angle view input is better
- Suffers from radial distortion

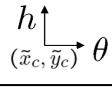
$$(x, y)$$
: ideal image coordinates (in normalized coordinates; focal length=1) (x', y') : distorted image coordinates $x' = x \left(1 + \kappa_1 r^2 + \kappa_2 r^4\right)$ $y' = y \left(1 + \kappa_1 r^2 + \kappa_2 r^4\right)$ $r^2 = x^2 + y^2$

Get the radial distortion parameters as well as the focal length through camera calibration

^{*} Optical center is not necessarily the image center, too!

Cylindrical Projection

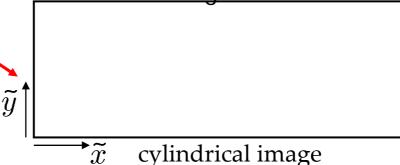




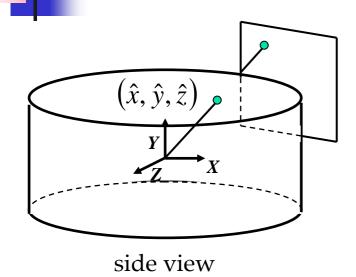
unwrapped cylinder Map 3D point (X,Y,Z) onto cylinder

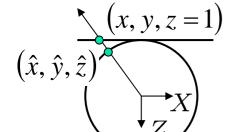
$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Z^2}} (X, Y, Z)$$

- Convert to cylindrical coordinates $(sin\theta, h, cos\theta) = (\hat{x}, \hat{y}, \hat{z})$
- Convert to cylindrical image coordinates $(\tilde{x}, \tilde{y}) = (s\theta, sh) + (\tilde{x}_c, \tilde{y}_c)$
 - *s* defines size of the final image
 - often convenient to set s = camera focal length



Cylindrical Reprojection





top-down view

Normalize the image coordinates

$$x = \frac{x' - \frac{W}{2}}{f'}, \quad y = \frac{y' - \frac{H}{2}}{f'}, \quad z = f = \frac{f'}{f'} = 1$$

• Forward warping

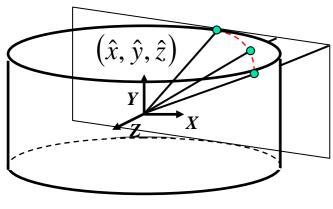
$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{x^2 + 1^2}} (x, y, 1)$$
$$= (\sin \theta, h, \cos \theta) \Rightarrow (2/6)$$

• Inverse warping

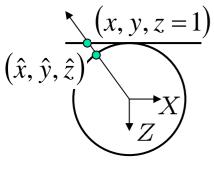
Derive
$$(\tilde{x}, \tilde{y}) \Rightarrow (\hat{x}, \hat{y}, \hat{z}) \Rightarrow (x, y)$$

Inverse warping + interpolation! *s*=*f* minimizes the scaling near the center of image

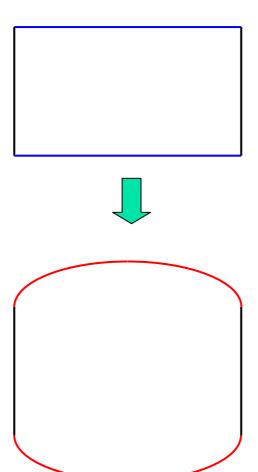
Cylindrical Reprojection



side view



top-down view



Cylindrical Panoramas

- Map image to cylindrical or spherical coordinates
 - need known focal length

Image 384x300

f = 180 (pixels)

f = 280

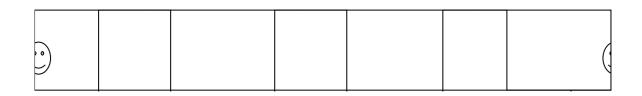
f = 380

Image Stitching

- Align and paste the images on a cylinder
- Blend the images together

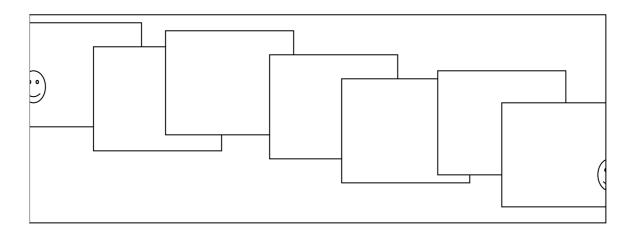
As

Assembling the Panorama



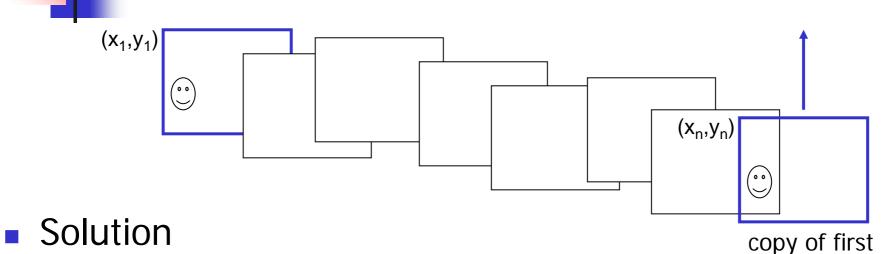
Stitch pairs together, blend, then crop

Problem: Drift



- Error accumulation
 - small errors accumulate over time

Problem: Drift



- add another copy of first image at the end
- this gives a constraint: $y_n = y_1$
- there are a bunch of ways to solve this problem
 - add displacement $(y_1 y_n)/(n-1)$ to each image after the first

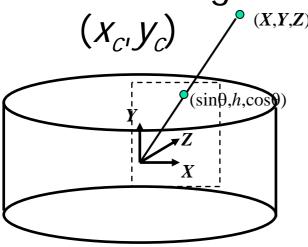
image

- compute a global warp: y' = y + ax
- run a big optimization problem, incorporating this constraint
 - best solution, but more complicated (bundle adjustment)

Full-view Panorama

Different Projections are Possible

Cylindrical warping

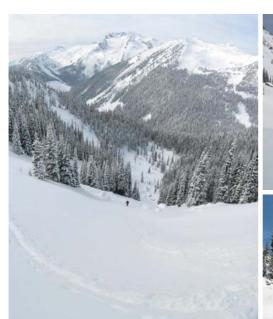


Given focal length
$$f^{\theta} = (x_{cyl} - x_c)/f$$
 and image center $h = (y_{cyl} - y_c)/f$ $\widehat{x} = \sin \theta$ $\widehat{y} = h$ $\widehat{z} = \cos \theta$ $x = f\widehat{x}/\widehat{z} + x_c$ $y = f\widehat{y}/\widehat{z} + y_c$

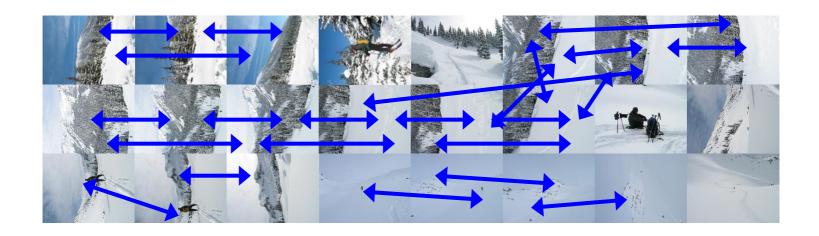
Recognizing Panoramas

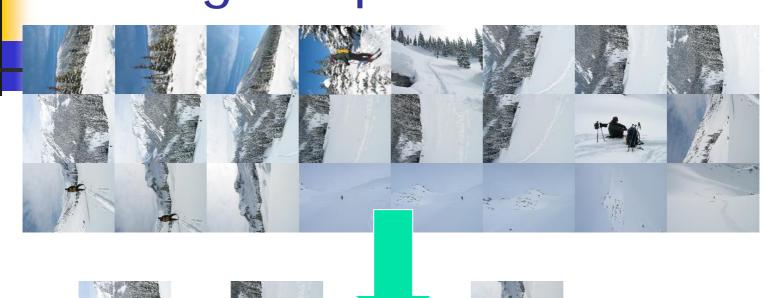
Matthew Brown & David Lowe ICCV'2003

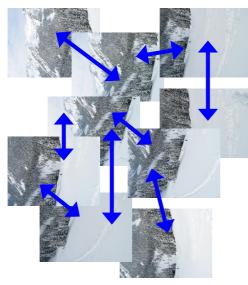
Recognizing Panoramas

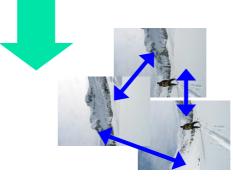


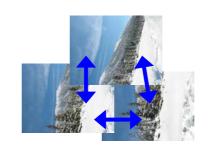
[Brown & Lowe, ICCV'03]

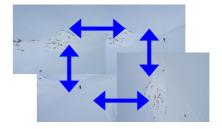


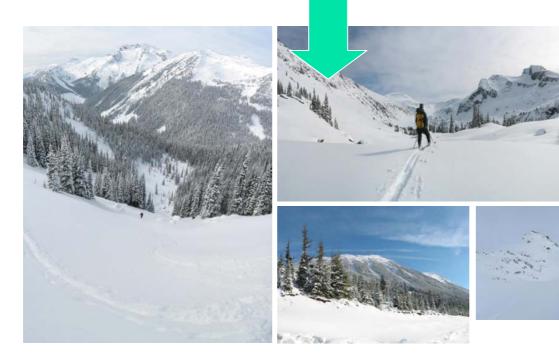












System components

- Feature detection and description
 - more uniform point density
 - Fast matching (hash table)
 - RANSAC filtering of matches
 - Intensity-based verification
 - Incremental bundle adjustment
 - [M. Brown, R. Szeliski, and S. Winder. Multi-image matching using multi-scale oriented patches, CVPR'2005]

Multi-Scale Oriented Patches

- Interest points
 - Multi-scale Harris corners
 - Orientation from blurred gradient
 - Geometrically invariant to similarity transforms
- Descriptor vector
 - Bias/gain normalized sampling of local patch (8x8)
 - Photometrically invariant to affine changes in intensity

Cutout-based compositing

- Photomontage [Agarwala et al., SG'2004]
- Interactively blend different images: group portraits

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the *designated source* image objective over the people we wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Cutout-based compositing

- Photomontage [Agarwala et al., SG'2004]
- Interactively blend different images: focus settings

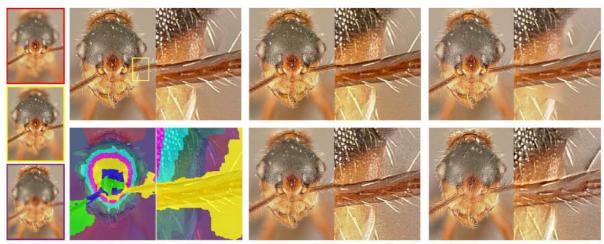


Figure 2 A set of macro photographs of an ant (three of eleven used shown on the left) taken at different focal lengths. We use a global maximum contrast image objective to compute the graph-cut composite automatically (top left, with an inset to show detail, and the labeling shown directly below). A small number of remaining artifacts disappear after gradient-domain fusion (top, middle). For comparison we show composites made by Auto-Montage (top, right), by Haeberli's method (bottom, middle), and by Laplacian pyramids (bottom, right). All of these other approaches have artifacts; Haeberli's method creates excessive noise, Auto-Montage fails to attach some hairs to the body, and Laplacian pyramids create halos around some of the hairs.

Cutout-based compositing

- Photomontage [Agarwala et al., SG'2004]
 - Interactively blend different images: people's faces

Figure 6 We use a set of portraits (first row) to mix and match facial features, to either improve a portrait, or create entirely new people. The faces are first hand-aligned, for example, to place all the noses in the same location. In the first two images in the second row, we replace the closed eyes of a portrait with the open eyes of another. The user paints strokes with the *designated source* objective to specify desired features. Next, we create a fictional person by combining three source portraits. Gradient-domain fusion is used to smooth out skin tone differences. Finally, we show two additional mixed portraits.

Final thought: What is a "panorama"?

Tracking a subject

Repeated (best) shots

Multiple exposures

Optional Assignments: Image registration

Goal:

- affine registration
- Perspective registration
- Panorama creation
- Techniques:
 - Feature selection and matching (Ransac)
 - Solving and making transformation
 - Post processing (Blending...)
 -