About Assignments and

i Projects

= Any work related to image and vision
computing Is acceptable

= Presentation at the end of the semester
= Pre-submission of demos, codes, and documents
= PPT and DEMO at presentation
= Each student has around 30 minutes

= Good work win exemption of final exam




Image and Vision Computing

!'_ Image registration

Instructor: Chen Yisong
HCI & Multimedia Lab, Peking University






Features In computer vision

= Compositing

This is your test image set



!'_ Linear Algebra Review



atrices

a, a, -
21 22 2m C — + B
=la, a, - a, nxm Anxm nxm
_anl an2 anm_
A and B must have the same
dimensions
Example:

HHEHEEAN



#atrices

Examples:

T

A and B must have
compatible dimensions

Anxn ann > ann Anxn

6 2][2 5] [18 32
1 5(3 1| |17 10

|



%\atrices

Transpose:
men = AT nxm (A-I- B)T = AT + BT
Cj = (AB)' =B"A'
If A=A A is symmetric
Examples: L

HEEHH 12 5 o

w = O
IOO(J'II\)




atrices

Determinant: A must be square

d; Qp | |y A
det{ = =y d,, —aAyay,
Ay, Ay Ay, Ay
d; dp a3
det . Ay, Ay Ay,
€lla, a, ay|=da; —ap,
Ay, Agg ds,
_331 ds, a33_

2 5
. det =2-15=-13
Example: {3 J

a23

a33

+ay,

a21
a‘31

a22

a32




atrices

Inverse: A must be square

Anxn A_lnxn — A_lnxn Anxn — |
|:a11 ., }1 _ 1 { Ay, _a12}
dy; Ay Ay;8y, —ay8;, | —ay Ay
| 6 2] 1[5 -2
Example: L sl To8ll1 e
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i 2D Vector

P
X2 | .
V:(Xl’XZ) v

Magnitude: || v||= \/xlz + X22

If |[v|=1, V IsaUNIT vector

v X, X,
— —( L j Is a unit vector
Iv) Ulvi vl

S X,
Orientation: ¢ =tan l[x j
1



i Vector Addition

V+ W= (X11 X2)+ (y11 y2) — (Xl + yl’ X2 + yZ)



i Vector Subtraction

V—W = (X]_; X2) _(y11 y2) — (Xl o yl’ X2 o y2)

o

Note that: wW+(v—-w)=v



i Scaling (Product with a scalar)

av = a(x,, X,) = (ax;,ax,)

av



i Inner (dot/scalar) Product

V/ «
% v.W:(xl,xz).(yl,yz):x1y1+x2.y2

The inner product is a SCALAR!

VW= (X, %) (Y, Y2) =V W =w'v = V|- w]| cos

vw=0<V.lw

The inner product measures the similarity of two vectors




& Orthonormal Basis (bnfE 1EAZ L)

P
5 . .« . 1
X h ; l—(l,O) 1 —1 l‘j:O
J 6 . JI(O,].) .] =1
' x1
v=(X,X,) V=Xd+X,.]

vi = (X i+ X,.j)i=X.1+X,.0=X,
v.j=(Xd+%X.})j=%.0+x,.1=X,



i Outer (cross/vector) Product

w& U=VXW
The cross product is a VECTOR!

Magnitude: || U |[=]||v.w]|=[| V]| wW]|sIna

ulv=u-v=(vxw)-v=0
Orientation:

Uulw=u-w=(vxw)-w=0



i Vector Product Computation

i=(10,0) ill=1
j=(0,10) jll=1 i-j=0,i-k=0,j-k=0
k =(0,01) k|=1

u=vxw= (X, X%, X)X (Y1, Y5, Ys5)

i j Kk
u=[Xx, X, X, Wa
Yi Y2 Y3

— (Xz Y; — X3y2)i T (X3Y1 - les)j T (lez — X, yl)k




‘L Cross Product

/X1\ /Xz\ KY122_21Y2\
Yi [ X Yo [T 4X — X4,
\21) Kzzj \lez_ylxzj

Every entry is a determinant of the two other entries

W=0xV = wu=w'v=0
Magnitude: || U ||=]||v.wW||=]| V]| W]|sIn &

HWH — Area of parallelogram bounded by u and v



!'_ 2D Geometrical Transformations



i 2D Translation




‘L 2D Translation Equation

Y t=(t,.t,)

ty P P=(x,y)

P'=(Xx+t,y+t,) =P+t



i 2D Translation using Matrices

P’ _
I — —— P=(x,Y)
_____________ ! t:(tx1ty)
Y
X Tx ~ L _LT__’/_P
X+t 1 0 ¢t
P20yt Tlo 1 ])Y
e




Homogeneous Coordinates

i (G5 IR AR )

= Mu
aing

tiply the coordinates by a non-zero scalar
add an extra coordinate equal to that

SCa

ar. For example,

(X,y) > (x-z,y-2,z) z#0

(X,y

Z) > (X-w,y-w,z-w,w) w=0

- NOTE: If the scalar is 1, there is no need
for the multiplication

Example:

(2,3) = (2,31) ~ (4,6,2) ~ (—4,-6,-2)..

(3,-1,2) —> (3,-1,2,1) ~ (6,-2,4,2) ~ (-6,2,—4,-2)...



i Back to Cartesian Coordinates:

» Divide by the last coordinate and eliminate it. For
example,

(X,¥,2) z20—>(x/z,y/2)
(X, ¥,Z,w) w=0—>(x/w,y/w,z/w)
O

Question: What if z=07? g??¥

Q



2D Translation using
iHomogeneous Coordinates

P P=(xy)—> Xyl

Ty P _tZ(tX_,ty)_—) (tx’%_P
Y 5 X-I—tx 1 0 tx X
x  t  Poly+t [=[0 1 t/}y
1 | |0 0 1|1

T






iScaIing Equation

Sy.y froes P
, 0 P y) >y
Y P'=(s x,s,y) = (s,%X,S,V,1)
« Sx x sx| [s, 0O O]]x]
P—>{sy|l=l0 s, O}y
1/ /0 0 1}|1

P'=S-P S



:LScaIing & Translating

/

P'=TP

# P*=T.P'=T.(S.P)=(T.5).P



i Scaling & Translating

'=T.P'=T.(S.P)=(T.S).P  Matrix product is associative

. [|S, O O] X
t

X

st 0 s, Ofy|=

1{/o0 0 1|1

S X+t

P'=T-S-P=

|
o = O

syy+ty

1
0
0
X
y
1 1




Translating & Scaling
i # Scaling & Translating

S(T.P) A(T.S)P Matrix product is NOT commutative
s, 0 0f1 0 t [x
P'=8S-T-P=0 s, 00 1 t |y|=

0 0 10 0 1|1

s, 0 st |[x] [sx+st,
0 s, st ||y|=]S,Y+S,
0 0 1|1 1







i Rotation Equations

Counter-clockwise rotation by an angle 6

' coSd

sing

Ko Y2

sin @
0

—sin @ || x
cosé ||y

—sind 0
cosd O]
0 1




i Degrees of Freedom

X'| [cos@® —sin@] x
y'| [sin@ cos@ |y
R is 2x2 — 4 elements

BUT! There is only 1 degree of freedom: 0
The 4 elements must satisfy the following constraints:

R-R"=R"-R=1
det(R) =1



Scaling, Translating &

i Rotating
‘ Order matters!
o,

P'=SP
P*=TP'=(T.S).P
P“=R P"=R (T.S).P=(R.T.S)P

e |

RT.S#RS.T=TSR..



sformation

* Affine Tran

O

O

o 5




D Rotation of Points

otation around the coordinate axes, counter-clockwise:

1 0 0
R(x)=|0 cosa -sina
0 sina cosa |

| P {:% ' cosf 0 sing
[y Qlr R(H=| 0 1 0

N ______ | P —sing 0 cosp
X X cosy —siny O

R,(¥)=|siny cosy O
0 0 1




:ED Translation of Points

Translate by a vector t=(t,,1,,1,)":

1 0 0 t |
P T — O 1 0 ty
\ 4 0 0 1t
y xox 000 1
Z



i Fuclidean Geometry

= Answers the question what objects
have the same shape (= congruent)

/

Same shapes are related by rotation and translation




Euclidean Transformations (Isometries)

g=Rp+t
Rotation:
cosd -—sind .
= . , R'R=1, detR=1
sinéd cosd

b a

Translation: ;

b
R:(a ] 2>+’ =1, ReSO(2)

t

y



Projective Transformations in

i a Plane (M} 52 A8 #/i7 #1 AL i)

= Projectivity (EL4})
= Mapping from points in plane to points in plane
= 3 aligned points are mapped to 3 aligned points

s Also called
= Collineation (L4, E ANk
= Homography (¥ 14)
O O O

Same shapes are related by a projective transformation



i Projective Geometry

= Answers the question what appearances
(projections) represent the same shape

N

Same shapes are related by a projective transformation




Hierarchy of Transformations

= Isometry (Euclidean), (E tlj

sR t a -b
« Similarity, | ¢ 1] "7y a
. At .
= Affine, (o J, AeGL(2)  general linear

= Projective, HeGL3): ag=Hp, a=#0



Special Projectivities
_-- HEEERNN

Invariants

Projective Geometry



=]

‘L Invariants(/f 25 &
Length Angle Parallelism | Collinearity
Area Shape Area ratio | Cross-ratio




Example of Application
~ I .

1 m Robot going down the road

m [arge squares painted on the road to make it easier
m Find road shape without perspective distortion from image

— Use corners of squares: coordinates of 4 points allow us to
compute matrix H

— Then use matrix H to compute 3D road shape

=)

e &

Projective Geometry I




Image Alignment and

!'_ Stitching

[Szeliski & Shum, SIGGRAPH'97]
[Szeliski, MSR-TR-2004-92]



i Wide-angle Imaging

= How do you increase the field of view?



Wide-angle Imaging
Fisheye cameras




Wide-angle Imaging
Catadioptric sensor

Remote Reality



i Contents

= Image alignment and stitching

= motion models

= direct alignment

= point-based alignment

= complete mosaics (global alignment)
= ghost and parallax removal

= compositing and blending



i Readings

Szeliski & Shum, SIGGRAPH'97

Szeliski, Image Alignment and Stitching, MSR-TR-
2004-92

Bergen et a/, Hierarchical model-based motion
estimation, ECCV’92

Shi & Tomasi, Good Features to Track, CVPR'94
Recognizing Panoramas, Brown & Lowe, ICCV’2003

Multi-image matching using multi-scale oriented
patches, Brown, Szeliski, and Winder, CVPR'2005



‘L Example

= Compositing

This is your test image set



Example

= Composite
= Need not be rectangular
= Masking and Blending




*I\/Iosaics for Video Coding

= Convert masked images into a background
sprite for content-based coding




* Mosaic Examples

"y
. i‘ .I T o . -~ et #:.
o r a-*r s - ‘_-1-,__: *
h‘.ﬂ-h

= http://www.panoramas.dk/



!'_ pixel-based image alignment




i Establishing correspondences

1. Direct method:

= Use generalization of affine motion model
[Szeliski & Shum '97]

. Feature-based method

= Use Shi-Tomasi tracker after initial rough
alignment
[Lowe ICCV’99; Schmid ICCV’98,
Brown&Lowe ICCV’'2003]

= Compute R from correspondences
(absolute orientation)



* Feature irregularities

= Distribute points evenly over the image




Descriptor Vector(SIFT)

= Orientation = blurred gradient

= Similarity Invariant Frame
= Scale-space position (X, y, s) + orientation (0)
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RANSAC motion model




del

O
=
-
©

RANSAC mot




RANSAC motion model
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!'_ How well does this work?

Test on 100s of examples...

...Still too many failures (5-10%)
for consumer application




Matching Mistakes: False Positive




* Matching Mistakes: False Positive




‘-ﬁ/latching Mistake: False Negative

= Moving objects: large areas of disagreement




i Matching Mistakes

= Accidental alignment
= repeated / similar regions-

= Failed alignments
= moving objects / paralle
= low overlap

« “feature-less” regions
(more variety?)

= 100% reliable algorithm?




i How can we fix these?

une t
‘une t
une t

ne feature detector (reliable feature)
ne feature matcher (reliable match)

ne RANSAC stage (motion model)

= Use “higher-level” knowledge

= €.0.

, typical camera motions

= — Sounds like a big “learning” problem

= Need a large training/test data set (panoramas)



i Global motion

= Common motion observed in the frame
= Motion of all points in the scene
= Motion of most of the points in the scene
= Reasons
= Motion of sensor (Ego Motion)
= Motion of a rigid scene
= Parametric flow describes optical flow for each pixel
= Affine
= Projective
= Global motion can be used to
= Visual mosaics
= Image registration
= Removing camera jitter
= Object tracking
= Video segmentation



Aligning images

A
=

= How to account for warping?
= Translations are not enough to align the images



!'_ Motion models



Motion models

= What happens when we take two
Images with a camera and try to align
them?

= translation?
= rotation?

= scale?

= affine?

= perspective?




;L Motion models

vh — T P 1|:|_er:m_?— —
/ - um]ant‘- L Pre]
/ au&lmcn T-—-"’"fﬂ'-.l 7
I A ¥ ___----"'I )
Euclidean '— Tffine -
S _______-—-“' ¥
Name Matrix # D.OF. | Preserves: [con
translation [ I | t ]213 2 orentation 4+ - - - I:l
rigid (Euclidean) | | B[t | 3 lengths + - - - <>
. . - -'_}'{.'\.\
similarity [ 5R| t ]2 X 4 angles 4 - - - P
:q‘_ "
affine { A L \ 6 parallelism + - - - g
=
projective { H ]3 \ 5 straight lines [__l
" il




* Motion models

tramn

slation
—F

Translation

Perspective

2 unknowns

6 unknowns

8 unknowns

3D rotation

3 unknowns



Affine Motion

image at time t image at time t+1

Affine motion:

U(X,y) =aX+a,y+h,
v(X,y)=a,x+a,y+b,

ai’a'Z’bl’a'S’a4’b2

Affine motion
parameters



i Global Affine Motion

U(X,y) =ax+a,y+b,
V(X,y)=a,Xx+a,y+hb,

U
V

a

s

d,
d,

X
y




iSoIving for affine transformation

X

m{an a, als}y
y' dy 8y Ag 1

Ay
Ay,

{Xi y, 1 }aﬂg _m
X, Y 1] ay y'

a‘22
B a32

= This is a general linear equation set
= How many point correspondences are necessary?



i Spatial Transformations

= Transformations in image space

translation rotation

Rigid (rotation and translation)

shear



iAffine transform based Algorithm

= Initialize affine parameters (local match)

= Compute affine parameters iteratively
= Compute new affine parameters (global match)

= At each iteration update the global affine
solution based on matching error

= Stop when affine parameters do not update
(global minimum achieved)

= If motion In between frames is high,
construct pyramid representation.



i Using Pyramids

u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image H Gaussian pyramid of image I



Using Pyramids

Compute Flow Iteratively AN
’ [N — —— 'I’ vl

l warp & upsample
Compute Flow Iteratlvely

-

/ \
) \
\
T \
' ! \ \
1 ! \ \
1 \ ~
,I 1 \ \
] ! \ N
’ 1 \ \
! \
! \
[ \
1 \
N \
1
1,
] 1 \
] 1 \
1 \

Gaussian pyramid of image H Gaussian pyramid of image I



An Example

s Mosaic
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i From affine to perspective

= 8-parameter generalization of affine motion
« Wworks for pure rotation or planar surfaces

= Limitations:
= |local minima
= Slow convergence
« difficult to control interactively




Special Projectivities
_-- HEEERNN

Invariants

Projectivity
8 dof

Affine transform
6 dof

Similarity
4 dof

Euclidean transform
3 dof

Projective Geometry



i Image Reprojection

: \ mosaic projection plane
= The mosaic has a natural interpretation in 3D

= The images are reprojected onto a common plane
= The mosaic Is formed on this plane



‘L Image Reprojection

FEH
T
. r|ri|
l [JI1I

= Rather than thinking of this as a 3D reprojection}think of it as
a 2D image warp from one image to another
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i Example

s Rectification




i Stitching demo







i Ingredients

= Take good images
= Specify correspondences (manual)
= Compute homography
= Solve with eigen decomposition
= Apply homography
= Warping
= Interpolation

= Masking
= Blending




i How to do it?

s Basic Procedure

= Take a sequence of images from the same
position
« Rotate the camera about its optical center

= Compute transformation between the
second image and the first

= Shift the second image to overlap with the
first

= Blend the two together to create a mosaic
= If there are more images, repeat



Homography

= Homography is a singular case of the
Fundamental Matrix (3£ 4<% [4)

= Two views of coplanar points

= TWO views that share the same center of
projection

& -

<>

o8 B




Homographies

= Perspective projection of a plane
« Lots of names for this:
= homography, collineation, planar projective map
= Modeled as a 2D warp using homogeneous coordinates

To apply a homography H
e Compute p’=Hp  (regular matrix multiplication)
e Convert p” from homogeneous to image coordinates
— divide by w (third) coordinate



Solving for homographies

) hoo ho1 ho2 T;
y: | £ | hig h11 hio || i
1 hoo h21 hoo 1
o = hoow; + ho1y; + ho2
hoox; + ho1y; + hoo
Y = hioz; + h11y; + hi2

hoox; + ho1y; + hoo
i (hoox; + ho1yi + hoo) = hooxi + ho1yi + ho2
yi(hoow; + ho1y; + hoo) = hioz; + h11y; + hio

hoo
ho1
hoo

z; ¥y 1 0 0 0 —azla; —aly, —af 2’12 _ |0
0 00 =z v 1 —vyx; —vy; —y' his 0
hoo
ho1
hoo




Solving for homographies

[ hoo
] _ | ho1 o
zr1 y1 1 0 O O —:B:1x1 —:I::Iyl —:13:1 hoo 0
O 0 0 21 v1 1 —yy21 —viy1 —V¥3 hio 0
i hll = H
Tn yn 1 0 O O —zxn —xhyn —x), hio 0
[ 0 0 0 zn yn 1 —ypan —Yn¥n —Yn | | hoo | 0
ho1
_h22_
2n X 9 9 2n

= Defines a least squares problem: minimize ||Ah — 0|
= Since h is only defined up to scale, solve for unit vector h
= Solution: h = eigenvector of ATA with smallest eigenvalue
= Works with 4 or more points



i Radial distortion

= Correct for “bending” in wide field of view lenses

= 2 — 32442
= 7 = Z/(1+ k7% + kof)
7 = §/(1+ k17 + rof?)
- r = fz'/zZ4+ xc
y = f7'/2+ ye




= Glven a coordinate transform (x,)) = A(x,))
and a source image A x,)), how do we
compute a transformed image g(x,)) =

(x,)))?



i Forward Warping

X ixy) < gixy)
= Send each pixel Ax,)) to its corresponding
location

(X,) )= h(x,)) in the second image

Q: what if pixel lands “between” two pixels?



i Forward Warping

_# h(X,y) 5
i vt
() gy

= Send each pixel Ax,)) to its corresponding location
(X,V)= h(x,)) In the second image

Q: what if pixel lands “between” two pixels?
A: distribute color among neighboring pixels (x’,y’)

— Known as “splatting”



o0—O0—0—0—0—0—0
I —C O—=C
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\C
I) c\

D C C C
I I:l I:z C
/) <

> Q @) O Q




= Get each pixel g(x,)) from its corresponding location
= (x,)) = (X,)) in the first image

Q: what if pixel comes from “between” two pixels?



i Inverse Warping

5 o
) ©gy)
= Get each pixel g(x,)) from its
corresponding location (x,)) = A%(X,)) In
the first image

Q: what if pixel comes from “between” two pixels?
A: resample color value



I O—0—
C C
/ " C

——C
O—O0—=C C
r—(C

o—=C

A
A
A
y

O —C
o } E\ ¢

Reference image Extended region Target image




i Forward vs. Inverse Warping
= Q: which is better?

= A: usually inverse—eliminates holes

= however, it requires an invertible warp function—not
always possible...



i Bilinear Interpolation

= A simple method for resampling images

(i,7+1) (i+1,74+1)
(z,y)
a
b
(%, 7) (14 1,5)
flx,y) = (1 —=a)(1=0) f[i,j]
+a(1-0)  fli+1,5]
+ab fli+1,5+1]

+(1 —=a)  fli, 5+ 1]




iPostprocessing

0 Planar_ Mosalic

TR . - B .

-










* Effect of Window Size

1L



i Effect of Window Size




Good Window Size

but not ghosted
=« Doesn’t always work...




= Create a Laplacian pyramid, blend each level

Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image
mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236.



http://www-bcs.mit.edu/people/adelson/publications/abstracts/spline83.html
http://www-bcs.mit.edu/people/adelson/publications/abstracts/spline83.html
http://www-bcs.mit.edu/people/adelson/publications/abstracts/spline83.html

i Alpha Blending

Encoding blend weights: I(x,y) = (aR, oG, aB, o) g

(a1R1, a1G1, a1 B1) + (asRo, axGo, asxBs) + (a3R3, azG3, azB3)

color atp = a1 T on - o

Implement this in two steps:
1. accumulate: add up the (a premultiplied) RGBa values at each pixel

2. normalize: divide each pixel’s accumulated RGB by its a value




Example

s For more info: Perez et al, SIGGRAPH 2003

n  http://research.microsoft.com/vision/cambridge/papers/perez siggraph03.pdf



http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

i Global alignment

= Register a// pairwise overlapping images

= Use Optical center rotation model (one R per
iImage)

= Use direct alignment (patch centers) or
feature based

= /nfer overlaps based on previous matches
(incremental)

= Optionally discover which images overlap
other images using feature selection (RANSAC)



i Local alignment (deghosting)

= Use local optic flow to compensate for
small motions [Shum & Szeliski,
ICCV’98]

Figure 3: Deghosting a mosaic with motion parallax: (a)
with parallax; (b) after single deghosting step (patch size
32); (c) multiple steps (s1zes 32, 16 and 8).



i Local alignment (deghosting)

= Use local optic flow to compensate for
radial distortion [Shum & Szeliski,
ICCV’'98]

Figure 4: Deghosting a mosaic with optical distortion: (a)
with distortion; (b) after multiple steps.



i Image feathering

= Weight each image proportional to Its
distance from the edge (distance map)

= Cut out the appropriate region from
each image and then blend together

= Problem: non-static background



i Region-based de-ghosting

= Select only one image in reg/ons-of-
difference using weighted vertex cover
[Uyttendaele et a/., CVPR’01]

(A) (B)

Figure 5 — (A) Ghosted mosaic. (B) Result of de-ghosting algorithm.



Region-based de-ghosting

e W

= Select Only one . : ,, !
iImage in regions-ofr-
difference using
weighted vertex
cover
[Uyttendaele et a/.,
CVPR'01]

L]
P = 2

Figure 6 — (A) Ghosted mosaic. (B) Result of de-ghosting algorithm.



Cutout-based de ghostlng

= Select only one
Image per output
pixel, using spatial
continuity

= Blend across seams
using gradient
continuity (“Poisson
blending”)
[Agarwala er al.,
SG'2004]




Which module is most difficult ?

MultiView/Extraction/matching/tracking/morphing/optimization
/blending/inpainting/editing/...



RANSAC motion model
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RANSAC motion model




Matlab Demo
(Break)

base = Ifread(‘westconcordorthophoto.png’);
unregistered = imread(‘westconcordaerial.png’);
iptsetpref(‘'lmshowAxesVisible','on’) ‘
figure;imshow(base); 0
figure;imshow(unregistered);
load westconcordpoints;
tform = cp2tform(input_points, base_points, 'projective’); ..
registered = imtransform(unregistered, tform,'FillValues’, 253)8s& :
figure; imshow(registered);hold on ¢ Loy
h = imshow(base, gray(256));
set(h, 'AlphaData’, 0.6); ;
%appear misregistered 9 W B a2 W W o
registered1l = imtransform(unregistered,tform,'FillValues’, 255,'XData’, [1 size(base,2)],
figure; imshow(registered1);hold on be SNEE e o L6

h = imshow(base, gray(256));
set(h, 'AlphaData’, 0.6)
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150 4

2009

figure; imshow(registered2, 'XData', xdata, 'YData', ydata);hold
h = imshow(base, gray(256));
set(h, 'AlphaData’, 0.6); ;;f' e
ylim = get(gca, 'YLIm"); =
set(gca, 'YLim', [0.5 ylim(2)]);
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300 4

350

400 4




* Wide-angle Imaging

s Goal

= Stitch together several images into a
seamless composite




i Panoramas

= What if you want a 360° field of view?

N mosaic Projection Cylinder



Radial Distortion

= Wide-angle view input Is better
s Suffers from radial distortion

X, Y ). ideal image coordinates
o (in normalized coordinates; focal length=1)
(X , Y ) . distorted image coordinates

X'= X(1+ K+,
y'= y(1+ K2+ K2r4)

I,2:)(2_|_y2

Get the radial distortion parameters as well as the focal length
through camera calibration

* Optical center is not necessarily the image center, too!




:LCyllndrlcal Projection

Va (X,Y,2)
— = Map 3D point (X,Y,Z) onto cylinder
Ty
ﬂ (z, y,z)—m(XYZ)
=K = Convert to cylindrical coordinates
\ / (sinb, h, cos(?) :.(ﬁ,fj., Z)
unit cylinder = Convert to cylindrical image
coordinates (%, %) = (s0, sh) + (Zc, Je)
\ = S defines size of the final image
often convenient to set s = camera
h focal length
(e, 50) O \
unwrapped ~
cylinder y[

—~

x cylindrical image



Cylindrical Reprojection

e Normalize the image coordinates

. W . H
R, > R
%x [ * Forward warping
e T \ N
N~ - (x,y,z):m(x,y,l)
side view =(sin&,h,cos0) = (%N

e [Inverse warping

Derive (X.¥)=(%9.2)=(xy)

Inverse warping + interpolation!

top-down view . . :
P s=f minimizes the scaling near the center of image



i Cylindrical Reprojection

Jp——
-

side view

(% y,2=1)
()2’ S\l’ @
X
Z

top-down view v



i Cylindrical Panoramas

= Map image to cylindrical or spherical
coordinates

= Nneed krnown focal length

Image 384x300  f =180 (pixels) f =280 f =380



* Image Stitching

1. Align and paste the images on a cylinder
2. Blend the images together




i Assembling the Panorama

= Stitch pairs together, blend, then crop



i Problem: Drift

s Error accumulation
= small errors accumulate over time



i Problem: Drift

(X1,Y1)

(Xn:¥n)

.
= Solution copy of first
= add another copy of first image at the end Image

» this gives a constraint: y, =y,

= there are a bunch of ways to solve this problem
« add displacement (y, — vy, )/(n -1) to each image after the first
« compute a global warp: y =y + ax

= run a big optimization problem, incorporating this constraint
best solution, but more complicated (bundle adjustment)




Full-view Panorama




‘-LDifferent Projections are Possible




i Cylindrical warping

= Given focal length O
and image center h

(Cccyl —xc)/ f
(Yeyt — Ye) /[

(X Vo) / e Z = siné
=
%i Z = cos#
< > r = fT/z+4 xc
y = Jy/Z4 ye




!'_ Recognizing Panoramas

Matthew Brown & David Lowe
ICCV’'2003



Recogni

zing Panoramas
1] e

\‘..l
&
P
#

[Brown & Lowe,
ICCV'03]



Finding the panoramas




FInding the panoramas

g }l:'__




FInding the panoramas




panoramas




System components

= Feature detection and description
= more uniform point density

= Fast matching (hash table)

= RANSAC filtering of matches

= Intensity-based verification

= Incremental bundle adjustment

= [M. Brown, R. Szeliski, and S. Winder. Multi-image
matching using multi-scale oriented patches,
CVPR'2005]



i Multi-Scale Oriented Patches

= Interest points
= Multi-scale Harris corners
= Orientation from blurred gradient
=« Geometrically invariant to similarity transforms

= Descriptor vector

= Bias/gain normalized sampling of local patch
(8x8)

= Photometrically invariant to affine changes in
Intensity



i Cutout-based compositing

= Photomontage [Agarwala er a/.,
SG'2004]

= Interactively blend aifferent images:
group portraits

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling
and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we
wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).



Cutout-based compositing

= Photomontage [Agarwala et a/., SG’2004]

= Interactively blend adifferent images:
focus settings

Figure 2 A set of macro phetographs of an ant (three of eleven used shown on the lefl) taken at different focal lengths. We use a global maximum contrast
image objective to compute the graph-cut composite automatically (top left, with an inset to show detail, and the labeling shown directly below). A small
number of remaining artifacts disappear after gradient-domain fusion (top, middle). For comparison we show composites made by Auto-Montage (top, right),
by Haeberli's method (bottom, middle), and by Laplacian pyramids (bottom, right). All of these other approaches have artifacts; Haeberli’s method creates
excessive noise, Auto-Montage fails to attach some hairs to the body, and Laplacian pyramids create halos around some of the hairs.



Cutout-based compositing

Photomontage [Agarwala ef a/., SG’2004]

Interactively blend adifferent images:
people’s faces

Figure 6 We use a set of portraits (first row) to mix and match facial features, to either improve a portrait, or create entirely new people. The faces are first
hand-aligned, for example, to place all the noses in the same location. In the first two images in the second row, we replace the closed eyes of a portrait with the
open eyes of another. The user paints strokes with the designaied source objective to specify desired features. Next, we create a fictional person by combining
three source portraits. Gradient-domain fusion is used to smooth out skin tone differences. Finally, we show two additional mixed portraits.



Final thought

Tracking a subject
Repeated (best) shots
Multiple exposures

“Infer” what photographer wants?



Optional Assignments:
i Image registration

s Goal:
= affine registration
= Perspective registration
=« Panorama creation

= Technigues:
= Feature selection and matching (Ransac)

= Solving and making transformation
» Post processing (Blending...)
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