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Segmentation Challenges
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Segmentation by Graph Cuts





Why do these tokens belong together?

When the 3D nature of grouping 
is apparent:



For humans at least, Gestalt psychology identifies several properties that result
In grouping/segmentation:





Groupings by Invisible Completions

* Images from Steve Lehar’s Gestalt papers: http://cns-alumni.bu.edu/pub/slehar/Lehar.html

Stressing the invisible groupings:



Groupings by Invisible Completions

* Images from Steve Lehar’s Gestalt papers: http://cns-alumni.bu.edu/pub/slehar/Lehar.html











Segmentation and Grouping

Motivation: 
for recognition
for compression

Obtain a compact representation from an 
static or dynamic sequence/set of tokens
Always for a goal or application
Broad theory is absent at present

Segmentation breaks an image into groups over space and/or time



Segmentation and Grouping

Tokens are
The things that are grouped (pixels, points, surface elements, 
etc., etc.)

top down segmentation
tokens grouped because they lie on the same object

bottom up segmentation
tokens belong together because of some local affinity 
measure
Bottom up/Top Down need not be mutually exclusive



Segmentation and Grouping

Gestalt Psychology(完形心理学) 
elements in a collection of elements can have 
properties that result from relationships (Muller-
Lyer effect)
A series of factors affect whether elements 
should be grouped together

Edge extraction: grouping and completion
Image segmentation



Why do these tokens belong together?

Here, the 3D nature of grouping is apparent:

Corners and creases in 3D, length is interpreted differently:

In

Out

The (in) line at the far
end of corridor must
be longer than the (out)
near line if they measure
to be the same size



General Ideas

Grouping (or clustering)
collect together tokens that “belong together”

Fitting
associate a model with tokens
issues

which model?
which token goes to which element?
how many elements in the model?



Kanizsa Triangle













The image of this cube contradicts the optical image



Perceptual Organization

Atomism, reductionism:
Perception is a process of decomposing an 
image into its parts.
The whole is equal to the sum of its parts.

Gestalt (Wertheimer, Köhler, Koffka 1912)
The whole is larger than the sum of its parts.



Mona Lisa



Mona Lisa



Gestalt Principles (格斯塔原理) 

Proximity



Gestalt Principles

Proximity
Similarity



Gestalt Principles

Proximity
Similarity
Continuity



Proximity
Similarity
Continuity

Gestalt Principles

Closure



Gestalt Principles

Proximity
Similarity
Continuity

Closure
Common Fate



Gestalt Principles

Proximity
Similarity
Continuity

Closure
Common Fate
Simplicity



Smooth Completion

Isotropic
Smoothness
Minimal curvature
Extensibility



Parametric methods: RANSAC



RANSAC

RANdom SAmple Concensus
Complexity:

Need to go over all pairs: O(n2)
For each pair check how many more points 
are consistent: O(n)
Total complexity: O(n3 )



RANSAC

Another application of RANSAC:               
Find transformation between images
Example: compute homography

Compute homography for every 4 pairs of 
corresponding points
Choose the homography that best explains 
the image
m4n4 sets should be tested

Another example: compute epipolar 
lines

How many correspondences are needed?



Hough Transform



Hough Transform
Linear in the number of points
Describe lines as

Or better

Prepare a 2D table

y mx n= +

cos sinx y cθ θ+ =

θ

c



Hough Transform

θ

c

+1 +1 +1 +1 +1



Hough Transform

θ

c

13 16

What if we want to find circles?



Summary

Local processing is often insufficient to 
separate objects
We reviewed several approaches for

curve extraction, completion
region segmentation



Preattentive: Parallel



Preattentive: Parallel



Attention: Serial



Camouflage(伪装) 



















The famous invisible dog eating under a tree:



A Final Example
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From images to objects

What Defines an Object?
Subjective problem, but has been well-studied
Gestalt Laws seek to formalize this

proximity, similarity, continuation, closure, common fate



Extracting objects

How could this be done?



Image Segmentation

Many approaches proposed
cues:  color, texture, regions, contours…
automatic vs. user-guided
no clear winner

we’ll consider several approaches 
today



Region Segmentation



Layer Representation



Segmentation

Find set of regions R1, R2, ….,Rn such 
that

All pixels in region i satisfy                      
some similarity constraint
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Similarity Constraints

All pixels in any sub-image must have the 
same gray levels.
All pixels in any sub-image must not differ 
more than some threshold
All pixels in any sub-image may not differ 
more than some threshold from the mean of 
the gray of the region
The standard deviation of gray levels in 
any sub-image must be small.



Image Segmentation: 
Thresholding



Histogram
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Thresholding



Thresholding
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Matlab Demo 0: Contours

I = imread('rice.png');
imshow(I);
figure, imcontour(I,3);



Matlab Demo 1- boundary
I = imread('coins.png');
imshow(I);
BW = im2bw(I);
figure;imshow(BW);
dim = size(BW)
col = round(dim(2)/2)-90;
row = min(find(BW(:,col)));
boundary = bwtraceboundary(BW,[row, col],'N');
figure;imshow(I);
hold on;
plot(boundary(:,2),boundary(:,1),'g','LineWidth',3);
BW_filled = imfill(BW,'holes');% fills holes in the binary image BW
boundaries = bwboundaries(BW_filled); %compute all boundaries
figure;imshow(I);
hold on;
for k=1:10

b = boundaries{k};
plot(b(:,2),b(:,1),'g','LineWidth',3);

end



Simple Segmentation
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Histogram graphs the number of pixels 
with a particular gray level as a function 
of the image of gray levels.

Image Histogram



Segmentation Using Histogram
Simple Case



Segmentation Using Histogram
Simple Case
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Realistic Histograms

Not realistic

Real (noise)



Realistic Histograms

Smooth out noise in the histogram
Convolve by averaging or 1D Gaussian filter

peak

peak

peak

valley

valley

valley



Histogram-based segmentation
Goal: Break the image into K regions (segments)
Solution: Reduce the number of colors to K and 
mapping each pixel to the closest color 

Histogram-based threshold is a convenient scheme

Cut here



Histogram-based segmentation
Goal

Break the image into K regions (segments)
Solve this by reducing the number of colors to K and 
mapping each pixel to the closest color 

photoshop demo

Here’s what it looks like if we use two colors



Segmentation Using Histogram
Real image histograms

1. Compute the histogram of a given image.
2. Smooth the histogram by averaging peaks 

and valleys in the histogram.
3. Detect good peaks by applying 

thresholds at the valleys. 
4. Segment the image into several binary 

images using thresholds at the valleys. 
5. Apply connected component algorithm 

to each binary image find connected 
regions.



Good Peaks
Peakiness Test
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Segmentation Using 
Histograms

Select the valleys as thresholds
Apply threshold to histogram
Label the pixels within the range of a 
threshold with same label, i.e., a, b, c … or 
1, 2, 3 …



Example:
Detecting Finger Tips (marked white)



Example
Segmenting a bottle image

93 peaks



Example
Segmenting a bottle image

Smoothed histogram 
(averaging using mask 
Of size 5)
54 peaks (once)
After peakiness 18

Smoothed histogram
21 peaks (twice)
After peakiness 7

Smoothed histogram
11 peaks (three times)
After peakiness 4



Example
Segmenting a bottle image

(0,40) (40, 116) (116,243) (243,255)



Steps in Seed Segmentation

1. Compute the histogram.
2. Smooth the histogram
3. Detect good peaks
4. Segment image into binary images 

using thresholds at the valleys. 
5. Apply connected component algorithm.



Difference Between Segmentation 
and Edge Detection

Closed boundary
Edges are usually open
Segmentation provides closed boundaries

Local or global
Edges are computed in the locality
Segmentation is global

Increasing feature vector dimensionality
Does not drastically improve edge detection
Improves segmentation (motion, texture 
information etc.)



Matlab Demo 2- contrast
I = imread('cell.tif');
figure, imshow(I), title('original image');
[junk threshold] = edge(I, 'sobel'); %use Sobel operator to calculate the threshold value
fudgeFactor = .5;
BWs = edge(I,'sobel', threshold * fudgeFactor); %use edge again to obtain the binary mask
figure, imshow(BWs), title('binary gradient mask');
se90 = strel('line', 3, 90);
se0 = strel('line', 3, 0);
BWsdil = imdilate(BWs, [se90 se0]); %dilate to remove gaps
figure, imshow(BWsdil), title('dilated gradient mask');
BWdfill = imfill(BWsdil, 'holes'); %hole filling
figure, imshow(BWdfill);title('binary image with filled holes');
BWnobord = imclearborder(BWdfill, 4); %remove object on border
figure, imshow(BWnobord), title('cleared border image');
seD = strel('diamond',1);
BWfinal = imerode(BWnobord,seD);
BWfinal = imerode(BWfinal,seD); %smoothen the object by repeated eroding
figure, imshow(BWfinal), title('segmented image');
BWoutline = bwperim(BWfinal); %place an outline
Segout = I;
Segout(BWoutline) = 255;
figure, imshow(Segout), title('outlined original image');



Outline

Segmentation Challenges
Segmentation Approaches
Segmentation by Clustering
Segmentation by Graph Cuts



Clustering Principle



Segmentation as clustering
Cluster together (pixels, tokens, etc.) that belong together
Agglomerative (凝聚)  clustering (bottom-up)

attach closest to cluster it is closest to
repeat

Divisive (分裂) clustering (top-down)
split cluster along best boundary
Repeat

Point-Cluster distance (merge/split rules)
single-link clustering
complete-link clustering
group-average clustering

Dendrograms (树形图)
yield a picture of output as clustering process continues



Image Clusters on intensity Clusters on color

Example



Simple clustering algorithms



Agglomerative clustering—
Clustering by merging



Divisive clustering—
Clustering by splitting



Clustering

We want to group together some primitives

Seems easy, but…



Clustering

We want to group together some primitives
If we knew which items belongs to a group…

A good description of the groups can be drawn
Position, intensity, texture…

If we knew a good description of the group…
We may figure out which primitives belong to which groups
Or at least the probability…

This is a chicken and egg problem…

),(),,( 21 Σ== μNormalfbaUnitf



Clustering 

Iterative solution:
Guess one side of the answer
Figure out the other side
Refigure out the first side
Keep going till we converge



Clustering

How to choose the representative colors?
This is a clustering problem!

Objective
Each point should be as close as possible to a cluster center

Minimize sum squared distance of each point to closest center

R R

G G



Break it down into subproblems

Suppose I tell you the cluster centers ci

Q:  how to determine which points to associate with each ci?
A:  for each point p, choose closest ci

Suppose I tell you the points in each cluster
Q:  how to determine the cluster centers?
A:  choose ci to be the mean of all points in the cluster



K-means clustering
K-means clustering algorithm
1. Randomly initialize the cluster centers, c1, ..., cK

2. Given cluster centers, determine points in each cluster
• For each point p, find the closest ci.  Put p into cluster i

3. Given points in each cluster, solve for ci

• Set ci to be the mean of points in cluster i
4. If ci have changed, repeat Step 2

Properties
Will always converge to some solution
Can be a “local minimum”

• does not always find the global minimum of objective function:



Convergence of the algorithm

The iteration always reduces the error measure
Reassigning a point to the nearest center reduces error
The center that minimizes MSE is the average

d1 d2

d2 < d1



Recall –
Fitting a constant function

For constant function y=a
Minimizing squares gives a=mean
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K-Means

Choose a fixed number of clusters
Choose cluster centers and point-cluster allocations to 
minimize error 

can’t do this by search, because there are too many possible 
allocations.
Algorithm

fix cluster centers; allocate points to closest cluster
fix allocation; compute best cluster centers

x could be any set of features for which we can compute a 
distance (careful about scaling)

x j − μ i
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K-Means



K-Means

* From Marc Pollefeys COMP 256 2003



K-means: Discussion
What does the term “close” mean

Color, position, texture, shape, motion…

The convergence of the algorithm
Each iteration reduces the error measure.
Must converge in a finite number of steps.

Local minima: Initial guess is crucial
Try cluster 2, 6, 12 into two clusters

Start from (3,10) -> (4,12)
Start from (0,6) -> (2,9)

How to initialize and how many clusters
Try many initializations and pick the best answer
Determining the number of clusters  is always a problem



Image Segmentation by K-Means

Select a value of K
Select a feature vector for every pixel (color, 
texture, position, or combination of these etc.)
Define a similarity measure between feature 
vectors (Usually Euclidean Distance).
Apply K-Means Algorithm.
Apply Connected Components Algorithm.
Merge any components of size less than some 
threshold to an adjacent component that is most 
similar to it.

* From Marc Pollefeys COMP 256 2003



K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color

* From Marc Pollefeys COMP 256 2003

Results of K-Means Clustering:



Expectation-Maximization

Can we go farther than K-means?
Idea 1: make soft assignments: Expectation-Maximization

A point is partially assigned to all clusters
Use probabilistic formulation (e.g. weather forcasting)
Each cluster is a probability distribution over possible primitives
Assign a probability that each primitive belongs to each cluster

Idea 2: Take more feasible similarity definition: Mean-shift 
Mean-shift is intrinsically a E-M algorithm
The computation is executed in a kernel space



K-Means and E-M

K-Means an approximation to EM
Model (hypothesis space): Mixture of N Gaussians
Latent variables: Correspondence of data and 
Gaussians

We notice: 
Given the mixture model, it’s easy to calculate the 
correspondence
Given the correspondence it’s easy to estimate the 
mixture models



Finding Modes in a Histogram

How Many Modes Are There?
Easy to see, hard to compute



Mean Shift Segmentation
• One of the most popular techniques

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



Mean Shift Algorithm
Mean Shift Algorithm

1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) in the search window.
4. Center the search window at the mean location computed in Step 3.
5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:



Mean Shift Segmentation



Mean Shift Segmentation
Given an image, convert it to a function 
that is inversely related to edgeness
Perform mean shift from every pixel
Cluster pixels that lead to the same peak



Mean Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



Mean Shift [Comaniciu & Meer]

Iterative Mode Search
1. Initialize random seed, and window W
2. Calculate center of gravity (the “mean”) of W:
3. Translate the search window to the mean
4. Repeat Step 2 until convergence



Mean-Shift
Approach

Initialize a window around each point
See where it shifts—this determines which segment it’s in
Multiple points will shift to the same segment

http://www.caip.rutgers.edu/~comanici/clusterDemo.html


Mean-shift for image 
segmentation

More Examples:  http://www.caip.rutgers.edu/~comanici/segm_images.html

Useful to take into account spatial information
instead of (R, G, B), run in (R, G, B, x, y) space
D. Comaniciu, P. Meer, Mean shift analysis and applications, 7th International 
Conference on Computer Vision, Kerkyra, Greece, September 1999, 1197-1203.

http://www.caip.rutgers.edu/riul/research/papers/pdf/spatmsft.pdf

http://www.caip.rutgers.edu/~comanici/segm_images.html
http://www.caip.rutgers.edu/riul/research/papers/pdf/spatmsft.pdf


Matlab Demo 3- cluster
he = imread('hestain.png');
figure,imshow(he), title('H&E image');
cform = makecform('srgb2lab');
lab_he = applycform(he,cform);
ab = double(lab_he(:,:,2:3));
nrows = size(ab,1);
ncols = size(ab,2);
ab = reshape(ab,nrows*ncols,2);
nColors = 3; % repeat the clustering 3 times to avoid local minima
[cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEu','Replicates',3);
pixel_labels = reshape(cluster_idx,nrows,ncols);
figure,imshow(pixel_labels,[]), title('image labeled by cluster index');
segmented_images = cell(1,3);
rgb_label = repmat(pixel_labels,[1 1 3]);
for k = 1:nColors

color = he;
color(rgb_label ~= k) = 0;
segmented_images{k} = color;

end
figure,imshow(segmented_images{1}), title('objects in cluster 1');
figure,imshow(segmented_images{2}), title('objects in cluster 2');
figure,imshow(segmented_images{3}), title('objects in cluster 3');
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Clustering –
Determine Regions



Graph Cut –
Determine Boundaries



Preface—shortest path

How to find the shortest path connecting the start point and the end point ?



Intelligent Scissors (demo)



Intelligent Scissors [Mortensen 95]

Approach answers 
a basic question

Q:  how to find a 
path from seed to 
mouse that follows 
object boundary as 
closely as possible?



Intelligent Scissors

Basic Idea
Define edge score for each pixel

edge pixels have low cost

Find lowest cost path from seed to mouse

seed

mouse

Questions
• How to define costs?
• How to find the path?



Path Search (basic idea)

Graph Search 
Algorithm

Computes 
minimum cost 
path from seed 
to all other
pixels



How does this really work?

Treat the image as a graph

Graph
node for every pixel p
link between every adjacent pair of pixels, p,q
cost c for each link

Note:  each link has a cost
this is a little different than the figure before where each pixel had a 
cost

p

q
c



the link should follow the intensity edge
want intensity to change rapidly with respect to the link

c ≈ - |difference of intensity with respect to link|

Defining the costs

Treat the image as a graph

Want to hug image edges:  how to define cost of a link?

p

q
c



Defining the costs

p

q
c

c can be computed using a cross-correlation filter
assume it is centered at p

Also typically scale c by its length
set c = (max-|filter response|)

where max = maximum |filter response| over all pixels in the image



Defining the costs

p

q
c 1

-1w
-1-1

11

c can be computed using a cross-correlation filter
assume it is centered at p

Also typically scale c by its length
set c = (max-|filter response|)

where max = maximum |filter response| over all pixels in the image



Dijkstra’s shortest path algorithm
∞

∞ 0

∞

∞

∞ ∞ ∞

∞

5
31

33

4 9

2

Algorithm
1. init node costs to ∞, 
2. Init an active set p = seed point, cost(p) = 0
3. expand p as follows:

for each of p’s neighbors q that are not expanded
set cost(q) = min( cost(p) + cpq,  cost(q) )

link cost



Dijkstra’s shortest path algorithm
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1. init active set p = seed point, cost(p) = 0
2. expand p as follows:

for each of p’s neighbors q that are not expanded
set cost(q) = min( cost(p) + cpq,  cost(q) )
if q’s cost changed, make q point back to p

3. set r = node with minimum cost on the ACTIVE list
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Dijkstra’s shortest path algorithm
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Algorithm
1. init node costs to ∞, set p = seed point, cost(p) = 0
2. expand p as follows:

for each of p’s neighbors q that are not expanded
set cost(q) = min( cost(p) + cpq,  cost(q) )
if q’s cost changed, make q point back to p

3. set r = node with minimum cost on the ACTIVE list
4. repeat Step 2 for p = r



Dijkstra’s shortest path algorithm
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Algorithm
1. init node costs to ∞, set p = seed point, cost(p) = 0
2. expand p as follows:

for each of p’s neighbors q that are not expanded
set cost(q) = min( cost(p) + cpq,  cost(q) )

if q’s cost changed, make q point back to p
put q on the ACTIVE list   (if not already there)

3. set r = node with minimum cost on the ACTIVE list
4. repeat Step 2 for p = r



Dijkstra’s shortest path algorithm
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Algorithm
1. init node costs to ∞, set p = seed point, cost(p) = 0
2. expand p as follows:

for each of p’s neighbors q that are not expanded
set cost(q) = min( cost(p) + cpq,  cost(q) )

if q’s cost changed, make q point back to p
put q on the ACTIVE list   (if not already there)

3. set r = node with minimum cost on the ACTIVE list
4. repeat Step 2 for p = r



Dijkstra’s shortest path algorithm

Properties
It computes the minimum cost path from the seed to every 
node in the graph.  This set of minimum paths is 
represented as a tree
Running time, with N pixels:

O(N2) time if you use an active list
O(N log N) if you use an active priority queue (heap)
takes fraction of a second for a typical (640x480) image

Once this tree is computed once, the optimal path can be 
extracted from any point to the seed in O(N) time. it runs in 
real time as the mouse moves
What happens when the user specifies a new seed?



Intelligent Scissors Results



Graph theoretic clustering

Represent tokens (which are associated with 
each pixel) using a weighted graph.

affinity matrix (亲合矩阵)

Cut up this graph to get subgraphs with strong 
interior links and weaker exterior links



Graphs Representations
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Weighted Graphs
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Minimum Cut

A cut of a graph G is the set of 
edges S such that removal of S
from G disconnects G.

Minimum cut is the cut of 
minimum weight, where weight 
of cut <A,B> is given as
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Minimum Cut and Clustering
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Image Segmentation & Minimum Cut

Image
Pixels

Pixel 
Neighborhood

w

Similarity
Measure

Minimum
Cut



Segmentation by min (s-t) cut 
[Boykov 2001]

Graph
node for each pixel, link between pixels
specify a few pixels as foreground and background

create an infinite cost link from each bg pixel to the “t” node
create an infinite cost link from each fg pixel to the “s” node

compute min cut that separates s from t
how to define link cost between neighboring pixels?

t s

min cut



S-T Min-Cut/Max Flow

S

t



S-T Min-Cut/Max Flow



Minimum Cut

There can be more than one minimum cut in a 
given graph

All minimum cuts of a graph can be found in 
polynomial time1.

1H. Nagamochi, K. Nishimura and T. Ibaraki, “Computing all small cuts in an 
undirected network. SIAM J. Discrete Math. 10 (1997) 469-481. 
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Finding the Minimal Cuts:
Spectral Clustering Overview

Data Similaritie
s

Block-
Detection

* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University



Eigenvectors and Blocks
Block matrices have block eigenvectors:

Near-block matrices have near-block eigenvectors:

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

eigensolver

.71

.71
0
0

0
0

.71

.71

　1= 2 　2= 2 　3= 0 　4= 0

1 1 .2 0
1 1 0 -.2
.2 0 1 1
0 -.2 1 1

eigensolver

.71

.69

.14
0

0
-.14
.69
.71

　1= 2.02 　2= 2.02 　3= -0.02 　4= -0.02



Spectral Space
Can put items into blocks by eigenvectors:

Resulting clusters independent of row ordering:

1 1 .2 0
1 1 0 -.2
.2 0 1 1
0 -.2 1 1

.71

.69

.14
0

0
-.14
.69
.71

e1

e2

e1 e2

1 .2 1 0
.2 1 0

1
-.2

1
1 0 -.2
0 1 1

.71

.14

.69
0

0
.69
-.14
.71

e1

e2

e1 e2



The Spectral Advantage
The key advantage of spectral clustering is the 
spectral space representation:



Clustering and Classification
Once our data is in spectral space:

Clustering

Classification



Measuring Affinity(亲合力)
Intensity

Texture

Distance

aff x, y( )= exp − 1
2σ i
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Geometry, Topology, Motion…



Eigenvectors and cuts
Simplest idea:  we want a vector a giving the association 
between each element and a cluster
We want elements within this cluster to, on the whole, 
have strong affinity with one another
We could maximize  

But need the constraint 

This is an eigenvalue problem - choose the eigenvector of 
A with largest eigenvalue

aT Aa

aTa = 1



Eigenvectors and cuts
Maximize                 subject to 

Introduce the Lagrange multiplier  , The Lagrangian is

Differentiation and dropping a factor of two yields

a is an eigenvector of A

aT Aa aTa = 1

λ
)1( −+ aaAaa TT λ

aAa λ=



Scale affects affinity
aff x, y( )= exp − 1

2σ t
2
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Matlab demo 4—Graph cut

caseid = 3;
[data,size_cluster] = build_scene(caseid);%one circular plus two gaussian blobs
figure(1);clf;
plot(data(1,:),data(2,:),'ks', 'MarkerFaceColor','k','MarkerSize',5); axis image; hold on; 
[W,Dist] = compute_relation(data); %data is a 2D point coordinate matrix
nbCluster = 4;%the number of clusters has to be preassigned
[NcutDiscrete,NcutEigenvectors,NcutEigenvalues] = ncutW(W,nbCluster);
cluster_color = ['rgbmyc']; % display clustering result
figure(2);clf;
for j=1:nbCluster,

id = find(NcutDiscrete(:,j));
plot(data(1,id),data(2,id),[cluster_color(j),'s'], 'MarkerFaceColor',cluster_color(j),'MarkerSize',5); 
hold on; 

end
hold off; axis image;

function [A,B] = compute_relation(data,scale_sig,order)
order = 2;
B = zeros(length(data),length(data));   %build the affinity matrix
for j = 1:length(data),

B(j,:) = ( sqrt( (data(1,:)-data(1,j)).^2 +(data(2,:)-data(2,j)).^2)); % pairwise euclidean distance
end
scale_sig = 0.05*max(B(:));
tmp = (B/scale_sig).^order;
A = exp(-tmp);  %Mahalanobis distance based probability matrix



q

Summary: Automatic graph cut

Fully-connected graph
node for every pixel
link between every pair of pixels, p,q
cost cpq for each link

cpq measures similarity
similarity is inversely proportional to difference in color and 
position

p

Cpq

c



Segmentation by Graph Cuts

Break Graph into Segments
Delete links that cross between segments
Easiest to break links that have low cost (similarity)

similar pixels should be in the same segments
dissimilar pixels should be in different segments

w

A B C



Cuts in a graph

Link Cut
set of links whose removal makes a graph 
disconnected
cost of a cut:

A B

Find minimum cut
• gives you a segmentation



Drawbacks of Minimum Cut

Weight of cut is directly proportional to 
the number of edges in the cut.

Ideal Cut

Cuts with 
lesser weight
than the 
ideal cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Cuts in a graph

A B

Normalized Cut
• a cut penalizes large segments
• fix by normalizing for size of segments

• volume(A) = sum of costs of all edges that touch A



Normalized Cuts1

Normalized cut is defined as 

Ncut(A,B) is the measure of dissimilarity of sets 
A and B.
Small if

Weights between clusters small
Weights within a cluster large 

Minimizing Ncut(A,B) maximizes a measure of 
similarity within the sets A and B
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Finding Minimum Normalized-Cut

Finding the  Minimum Normalized-Cut 
is NP-Hard.
Polynomial Approximations are 
generally used for segmentation



Normalized Cuts



Normalized Cuts



Matlab demo 4—Graph cut

dim = 16;
I = rand( dim, dim );                % generate a random image
I( 1:dim/2,:) = I( 1:dim/2,:) + 1; % brighten the top half
[X,Y] = meshgrid( [1:dim]/dim-0.5, [1:dim]/dim-0.5 ); 
I = I(:); X = X(:);Y = Y(:);
N = length(I);   % number of pixels
W = zeros( N );  
sigD = 0.1; % variance for distance
sigI = 0.1; % variance for intensity
for k = 1 : N

dist = sqrt( (X(k)-X).^2 + (Y(k)-Y).^2 );
W(:,k) =  exp( -((I(k)-I).^2)/sigI  ) .* exp( -(dist.^2)/sigD );

end  
subplot(121); imagesc( reshape(I,dim,dim) ); axis image; % original image

%%% CLUSTER
d = sum(W);D1 = diag(d);D2 = diag(1./sqrt(d));
[vv, dd] = eig(D2 * (D1-W) * D2);
v2 = vv(:,2) > 0;
cc = sum(vect(W(v2==0,v2==1)))/sum(d(v2==0)) +sum(vect(W(v2==1,v2==0)))/sum(d(v2==1)); 
v2 = reshape( v2, dim, dim ); % 2 clusters by a 6 binary matrix
subplot(122); imagesc( v2 ); axis image; title( cc );    % segmentation result
colormap gray; 

%%% VECTORIZE A MATRIX
function [c] = vect(m)

c = m(:);



Figure from “Image and video segmentation: the normalised cut framework”, by Shi and Malik, 1998

Example Results



Figure from “Normalized cuts and image segmentation,” Shi and Malik, 2000

More Results



Drawbacks of Minimum Normalized Cut

Huge Storage Requirement and time 
complexity
Bias towards partitioning into equal 
segments
Have problems with textured 
backgrounds



Interpretation as a Dynamical 
System

Treat the links as springs and shake the system
elasticity proportional to cost
vibration “modes” correspond to segments

can compute these by solving an eigenvector problem
http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf

http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf


Interpretation as a Dynamical 
System

Treat the links as springs and shake the system
elasticity proportional to cost
vibration “modes” correspond to segments

can compute these by solving an eigenvector problem
http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf

http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf


Color Image Segmentation



Grabcut [Rother et al., SIGGRAPH 2004]

http://research.microsoft.com/vision/cambridge/segmentation/
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Applications



Shot Boundary Detection
Find the shots in a sequence of video

shot boundaries usually result in big differences between succeeding frames

Strategy:
compute inter-frame distances
declare a boundary where these are big

Possible distances
frame differences
histogram differences
block comparisons
edge differences

Applications:
representation for movies, or video sequences 
Support search



Background Subtraction

If we know what the background looks like, it is 
easy to identify “interesting bits”
Applications

Person in an office
Tracking cars on a road
Surveillance

Approach:
use a moving average to estimate background image
subtract from current frame
large absolute values are interesting pixels



















Appendix

Expectation-Maximization



Generalized K-Means (EM)



Idea

Data generated from mixture of Gaussians

Latent variables: Correspondence between 
Data Items and Gaussians



Learning a Gaussian Mixture
(with known covariance)
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Generalized K-Means

Converges!
Proof [Neal/Hinton, McLachlan/Krishnan]:

E/M step does not decrease data likelihood
Converges at saddle point



EM Clustering: Results



Probabilistic clustering
Basic questions

what’s the probability that a point x is in cluster m?
what’s the shape of each cluster?

K-means doesn’t answer these questions

Basic idea
instead of treating the data as a bunch of points, 
assume that they are all generated by sampling a 
continuous function
This function is called a generative model 

defined by a vector of parameters θ



Mixture of Gaussians

One generative model is a mixture of Gaussians (MOG)
K Gaussian blobs with means μb covariance matrices Vb, dimension d

blob b defined by:

blob b is selected with probability 
the likelihood of observing x is a weighted mixture of Gaussians

where 



Expectation maximization (EM)

Goal
find blob parameters θ that maximize the likelihood function:

Approach:
1. E step:  given current guess of blobs, compute ownership of 

each point
2. M step:  given ownership probabilities, update blobs to 

maximize likelihood function
3. repeat until convergence



E-step
compute probability that point x is in blob i, given current guess of θ

M-step
compute probability that blob b is selected

mean of blob b

covariance of blob b

EM details

N data points



Applications of EM
Turns out this is useful for all sorts of problems

any clustering problem
any model estimation problem
missing data problems
finding outliers
segmentation problems

segmentation based on color
segmentation based on motion
foreground/background separation

...



Problems with EM

Local minima
Need to know number of segments
Need to choose generative model



Sebastian Thrun                                  Stanford University CS223B Computer Vision

Normalized Cuts1

Normalized cut is defined as 

Ncut(A,B) is the measure of dissimilarity of sets A and B.
Small if
– Weights between clusters small
– Weights within a cluster large 

Minimizing Ncut(A,B) maximizes a measure of similarity 
within the sets A and B
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1J. Shi and J. Malik, “Normalized Cuts & Image Segmentation,” IEEE  Trans. of PAMI, 
Aug 2000.

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Finding Minimum Normalized-Cut

Finding the  Minimum Normalized-Cut is NP-
Hard.
Polynomial Approximations are generally used 
for segmentation

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Finding Minimum Normalized-Cut
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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It can be shown that 

such that

If y is allowed to take real values then the minimization can be done 
by solving the generalized eigenvalue system

Finding Minimum Normalized-Cut

( )
Dyy

yWDy
T

T

y
−

= minmin cutN

( ) { } 0 and ,10 ,,1 =≤<−∈ D1y Tbbiy

( ) DyyWD λ=−

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

See: Forsyth Chapters in segmentation (pages 323-326)
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Algorithm

Compute matrices W & D
Solve                                 for eigen vectors with the smallest eigen
values
Use the eigen vector with second smallest eigen value to bipartition 
the graph
Recursively partition the segmented parts if necessary.

( ) DyyWD λ=−

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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