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Line Fitting(直线拟合)



Least Squares Fit(最小二乘拟合)

Standard linear solution to estimating 
unknowns.

If we know which points belong to which line
Or if there is only one line
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Line Fitting
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Least Squares Fit

Standard linear solution to a classical 
problem.
Poor Model for vision applications.
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Line fitting can be max.
likelihood - but choice of
model is important



Least Squares Fit

Solution: 
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Let’s make it more concise…

Solution: 
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Line Fitting

Alternatives
Least squares fit (take derivatives w.r.t. unknowns)
Define observation matrices, vector of unknowns
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Matlab code

%a very easy demo of line fitting
a0=0.75;
b0=0.6;
x=(0:10)';
y=a0*x+b0+(rand(11,1)-0.5)*0.9;
A=[x ones(11,1)];
%coeff1=A\y;         %choice 1: use backslash
coeff2=pinv(A)*y; %choice 2: use pseudo inverse
coeff=coeff2;
figure;
scatter(x,y); %draw all points
line([0,10],[coeff(2),coeff(1)*10+coeff(2)]); %draw fitted line



Conics Fitting
Curve described by 2nd-degree equation in the plane
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Five points define a conic

For each point the conic passes through
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Who came from which line?

Assume we know how many lines there 
are - but which lines are they?

easy, if we know who came  from which 
line

Strategies
Incremental line fitting
K-means



Invariance to …

Scaling and rotation Viewpoint Illumination



Line Fitting: Challenge

If we know nothing at all about how 
many lines and which point belongs to 
which line……



Contents

Curve Fitting
Hough Transform
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Fitting

Choose a parametric object/some objects 
to represent a set of tokens(标识点)
Most interesting case is when criterion is 
not local

can’t tell whether a set of points lies on a line 
by looking only at each point and the next.



Fitting

Three main questions:
what object represents this set of tokens 
best?
which of several objects gets which token?
how many objects are there?

(you could read line for object here, or 
circle, or ellipse or...)



Finding lines in an image

Option 1:
Search for the line at every possible position/orientation
What is the cost of this operation?

Option 2:
Use a voting scheme:  Hough transform(霍夫变换)

We do for lines only
General goal: From edges to straight lines



Advantage of Voting
Example: Two candidates (A & B) run for the president

Assumption: the correct probability of each vote is 0.7

Scheme 1: assigned by the previous president.

Correct rate:   70%=0.7

Scheme 2: general election, the candidate with more votes wins

Correct rate for 3 votes: 784.0)7.0(3.0)7.0( 322
3 =+⋅⋅C

Correct rate for 5 votes: 837.0)7.0()3.0()7.0()3.0()7.0( 544
5

233
5 =+⋅⋅+⋅⋅ CC

Correct rate for 10,000,000 votes: ……



Recall: Increase transmission 
reliability by voting

Example: Transmit one “0” or “1” bit in a channel of 80% reliability

Scheme 1: Directly transmit the bit(0 or 1).

Correct rate:   80%=0.8

Scheme 2: Transmit “000” for the bit 0 and “111” for 
the bit 1. Take the symbol appears more times in the 
received sequence as the correct one, eg. “101”->”1”
“001”->”0”, “100”->”0”, “111”->”1”

Correct rate: 896.0)8.0(2.0)8.0( 322
3 =+⋅⋅C



Lines in Cartesian Coordinate

A line is a set of points (x, y)
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Hough Transform(霍夫变换)

ymxb +−= yxmb +−= ''

yxmb +−= ''''
(x,y)

(x,y) (m,b)



image (x,y) space and Hough (m,b) spaces

A line in the image corresponds to a point in Hough space
To go from image space to Hough space:

given a set of points (x,y), find all (m,b) such that y = mx + b

What does a point (x0, y0) in the image space map to?
A:  the solutions of b = -x0m + y0

this is a line in Hough space

x

y

m

b

m0

b0

image space Hough space



Hough Transform: Quantization

m
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mm

Detecting Lines by finding maxima / clustering in parameter space

y
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implementation :

1. the parameter space is discretised
2. a counter is incremented at each cell where the lines pass 
3. peaks are detected

ymxb +−=  )(

Hough transform: Principle

m



Hough Transform: Principle

For each image point, determine 
most likely line parameters b,m (direction 
of gradient)
strength (magnitude of gradient)

Increment parameter counter by 
strength value

Cluster in parameter space, pick local 
maxima



Problem : unbounded parameter domain, vertical lines require infinite m

ρθθ =+   sin  cos yx

Each point will add a cosine function in the (θ,ρ) parameter space

Solution: alternative representation

Hough transform: Principle

x

∞→m

θ: determine the slope of the line: m

ρ: the distance from the line to the origin

ymxb +−=  )(



Hough transform: Principle
ρθθ =+ sincos yx

Different ρ for constant θ

Different θ for constant ρ



Hough transform: Principle

ρθθ =+   sin  cos yx
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Each feature point corresponds to a sine 
cuve in Hough space



Hough transform: Hough space

Typically use a different parameterization

d is the perpendicular distance from the line 
to the origin
θ is the angle this perpendicular makes with 
the x axis
Why?



Hough Transform

Different choices of θ, d>0 give different lines
For any (x, y) there is a one parameter family of lines 
through this point, given by

Each point gets to vote for each line in the family; if 
there is a line that has lots of votes, that should be the 
line passing through the points

θθ sincos yxd +=



tokens
votes

Hough Transform: Demo



Hough transform algorithm
Basic Hough transform algorithm
1. Initialize H[d, θ]=0
2. for each edge point I[x,y] in the image

for θ = 0 to 180 
H[d, θ] += 1

3. Find the value(s) of (d, θ) where H[d, θ] is 
maximum

4. The detected line in the image is given by



Square : Circle : 

Hough Transform: Straight lines



Hough Transform: Straight lines



Hough Transform: Results

Hough TransformImage Edge detection



Hough Transform: Examples

Problem: Looking for straight lines in the above image



Hough transform result

ρ

θ



Hough Transform Summary:
Problem formulation

Line equation

Using edge pixels
Compute b for every m

Problematic for vertical lines
m and b grow to infinity

intercept- is  slope, is       ybmbmxy +=

xmyb ji −=



Hough space selection
For each edge point

Fix m compute

Fix θ compute 

xmyb ji −=

ρθθ =+ sincos yx

ρ

θ



Polar coordinate representation
For each point on line θ and ρ are constant
Numerically stable for lines in any orientation

Different choices of θ for constant ρ gives 
different choices of lines, and vice versa

Discussions

ρθθ =+ sincos yx (A)



Algorithm

Construct  accumulator array in 2D (θ,ρ)
Initial values 0

Select granularity of angle θ
For instance 10° increments

For every edge point
Compute ρ using (A)
Increment accumulator array by one for 
each computed (θ,ρ) pair.



Line detection result



Error analysis

noisy

ideal

very noisy



tokens
votes



tokens votes

Noise degrades the performance



lots of noise can lead to large peaks in the array



This is the number of votes that the real line of 20 points gets with increasing noise

Noise Factor



As the noise increases in a picture without a line, maximal number of votes goes up too.

Noise Factor



Difficulties

What is the increments for θ and ρ.
too big? We cannot distinguish between different lines
too small? noise causes lines to be missed

How many of detected lines are correct
count the peaks in the Hough array

Which edge point belongs to which line
tag the votes

Hardly ever satisfactory due to noise.
problems with noise and cell size defeat it



Matlab Demos

RGB = imread('gantrycrane.png');
I  = rgb2gray(RGB); %convert to intensity
BW = edge(I,'canny'); %extract edges
[H,T,R] = hough(BW,'RhoResolution',0.5,'ThetaResolution',0.5);%hough transform
subplot(2,1,1);
imshow(RGB); %display original image
title('gantrycrane.png');
subplot(2,1,2);
imshow(imadjust(mat2gray(H)),'XData',T,'YData',R,'InitialMagnification','fit');
title('Hough transform of gantrycrane.png');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
colormap(hot);



Matlab Demos

I  = imread('circuit.tif');
BW = edge(imrotate(I,50,'crop'),'canny'); %canny edge detector
[H,T,R] = hough(BW);
P  = houghpeaks(H,2); % P records indices of 2 highest peak T-R pairs
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
plot(T(P(:,2)),R(P(:,1)),'s','color','white'); %draw hough peaks as white squares



Matlab Demos

I  = imread('circuit.tif');
rotI = imrotate(I,33,'crop'); %rotate to prevent degradation
BW = edge(rotI,'canny');
[H,T,R] = hough(BW);
imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
xlabel('\theta'), ylabel('\rho');
axis on, axis normal, hold on;
P  = houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));
x = T(P(:,2)); y = R(P(:,1));
plot(x,y,'s','color','white');      %draw hough transform image with 5 peaks on
lines = houghlines(BW,T,R,P,'FillGap',5,'MinLength',7);
figure, imshow(rotI), hold on;
max_len = 0;
for k = 1:length(lines)

xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green'); %green line
plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');%yellow start point
plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');    %red end point
len = norm(lines(k).point1 - lines(k).point2);
if ( len > max_len)

max_len = len;
xy_long = xy;

end
end
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan'); % highlight the longest line segment



Real World Example

Original Edge Detection Found Lines

Parameter Space



Curve Fitting by Hough 
Transform

Let y=f (x,a) be the chosen parameterization of a 
target curve.
Discretize the intervals of variation of a1,… ak and let 
s1,… sk be the number of the discretized intervals.
Let A(s1,… sk) be an array of integer counters and 
initialize all its elements to zero.
For each pixel E(i,j) such that E(i,j)=1, increment all 
counters on the curve defined by y=f (x,a) in A.
Find all local maxima above certain threshold.



Curve Fitting by Hough 
Transform

Suffer with the same problems as line fitting by 
Hough Transform.
Computational complexity and storage complexity 
increase rapidly with number of parameters.
Not very robust to noise



Circle Fitting

Similar to line fitting
Three unknowns

Construct a 3D accumulator array A
Dimensions: x0, y0, r

Fix one of the parameters change the others
Increment corresponding entry in A.
Find the local maxima in A

0)()( 222 =−−+− ryyxx oo



More Practical Circle Fitting

Use the tangent direction θ at the edge 
point

Compute x0, y0 given x, y, r 

θ

θ
θ

sin
cos

0

0

ryy
rxx

−=
−=



In the image space…
With no orientation, each token (point) votes for all possible circles. 
With orientation, each token can vote for a smaller number of circles.



In Hough space…
With no orientation, each token (point) votes for one full circle. 
With orientation, each token can vote for a smaller part of a circle.



Examples



Real World Circle Examples

Crosshair indicates results of Hough transform,
bounding box found via motion differencing.



Finding Coins
Original Edges (note noise)



Finding Coins (Continued)
Penny Quarters



Finding Coins (Continued)

Coin finding sample images 
from: Vivik Kwatra

Note that because the 
quarters and penny are 
different sizes, a 
different Hough 
transform (with 
separate accumulators) 
was used for each 
circle size.



Conclusion

Finding lines and other parameterized objects is an 
important task for computer vision. 
The (generalized) Hough transform can detect 
arbitrary shapes from (edge detected) tokens.
Success rate depends directly upon the noise in the 
edge image.
Downsides: Can be slow, especially for objects in 
arbitrary scales and orientations (extra parameters 
increase accumulator space exponentially).



Extensions
Extension 1:  Use the image gradient
1. same
2. for each edge point I[x,y] in the image

compute unique (d, θ) based on image gradient at 
(x,y)

H[d, θ] += 1
3. same
4. same

1. What’s the running time measured in votes?



Extensions

Extension 2
give more votes for stronger edges

Extension 3
change the sampling of (d, θ) to give more/less 
resolution

Extension 4
the same procedure can be used with circles, 
squares, or any other shape



Summary Hough Transform

Smart counting
Local evidence for global features
Organized in a table
Careful with parameterization!

Subject to Curse of Dimensionality
Works great for simple features with 3 
unknowns
Will fail for complex objects (e.g., all faces)



Curse of Dimensionality

Goal: looking for some target in a given space

Case 1: 1D space

Case 2: 2D space

Case 3: 3D space



Optional Assignments:
Curve fitting

Goal:
Line fitting
Conic fitting
Other curve fitting

Techniques:
Least squares fit
Hough transform
Robust implementation
……



Contents
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Outliers

Least squares assumes Gaussian errors
Outliers: Points with extremely low 
probability of occurrence (according to 
Gaussian statistic)

Can result from data association errors

Strongly influence least squares



Robust estimation

Goal: develop parameter estimation 
methods insensitive to small numbers of 
large errors
General approach: try to give large 
deviations less weight
M-estimators: minimize some function 
other than (y-f(x,a,b,…))^2



Least absolute value fitting

Minimize                                                  

instead of

Points far away from trend get 
comparatively less influence
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Example: constant

For constant function y=a

Minimizing squares gives a=mean

Minimizing absolute value give a=median



Example: constant – Proof

For constant function y=a
Minimizing squares gives a=mean
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Example: constant – Proof
For constant function y=a

Minimizing absolute value gives a=median
∑ −=

i
i ayE

m samples to the left n samples to the rightdΔ

)(12 nmdndmdEEE −Δ=⋅Δ−⋅Δ=−=Δ

Minimum is reached when m=n

1a 2a

• Sample number is odd

• Sample number is even



Who came from which line?

Assume we know how many lines there 
are - but which lines are they?

easy, if we know who came  from which line

Three strategies
Incremental line fitting
K-means
Probabilistic (later!)



Incremental line fitting













K-means line fitting

















Robustness

As we have seen, squared error can be 
a source of bias in the presence of 
noise points

One fix is EM  - we’ll do this shortly
Another is an M-estimator

Square nearby, threshold far away

A third is RANSAC
Search for good points



Least squares fit– no noise



Least squares fit – with noise

The problem is the 
single point on the 
right; the error for that 
point is so large that it 
drags the line away 
from the other points 
(the total error is lower 
if these points are 
some way from the line, 
because then the point 
on the line is not so 
dramatically far away).



Least squares fit in the presence 
of noise – another example



Let us zoom in…

Detail of the previous slide - the line is actually quite far from the points.



M-estimators

Generally, minimize 

where is the residual

( )( )σθρ ;,ii
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Parameter selection

Fit to earlier data with an appropriate choice of s



Here the parameter is too small, and the error for every point looks like distance^2

Parameter selection



Here the parameter is too large, meaning that the error value is about constant for 
every point, and there is very little relationship between the line and the points.

Parameter selection



RANSAC



Motivation

Estimating motion models
Typically: points in two images
Candidates:

Translation
Homography
Fundamental matrix



The Problem with Outliers
Least squares is a technique for fitting a 
model to data that exhibit a Gaussian error 
distribution
When there are outliers—data points that 
are not drawn from the same distribution—
the estimation result can be biased

Line fitting using
regression is

biased by outliers
from Hartley & Zisserman



Simpler Example

Fitting a straight line



Robust Estimation

View estimation as a two-stage process:
Classify data points as outliers or inliers
Fit model to inliers 



Discard Outliers

No point with d>t
RANSAC:

RANdom SAmple Consensus
Fischler & Bolles 1981
Copes with a large proportion of outliers



RANSAC

Main idea
Select 2 points at random
Fit a line
“Support” = number of inliers
Line with most supports wins

General algorithm
Randomly select s points
Instantiate a model
Get consensus set Si (supports)
Repeat for N trials, return model with max |Si|



A demo for line fitting

Trial 1: Support number=2

Trial 2: Support number=6

Trial 3: Support number=4

Trial 2 Wins with maximal support number !



RANSAC
Why will this work?

More support -> better fit
Best Line has most support

Fit a more general model
Robust fit of a model to data S

RANdom SAmple Consensus: designed for 
bad data (in best case, up to 50% outliers)



RANSAC 
(RANdom SAmple Consensus)

1. Randomly choose minimal subset of data points 
necessary to fit model (a sample)

2. Points within some distance threshold t of model are a 
consensus set.  Size of consensus set is model’s support

3. Repeat for N samples; model with biggest support is 
most robust fit

Points within distance t of best model are inliers
Fit final model to all inliers

Two samples
and their supports

for line-fitting
from Hartley & Zisserman



After RANSAC
RANSAC divides data into inliers and outliers 
and yields estimate computed from minimal 
set of inliers with greatest support
Improve this initial estimate with estimation 
over all inliers (i.e., standard minimization)
But this may change inliers, so alternate 
fitting with re-classification as inlier/outlier

from Hartley & Zisserman



RANSAC
Issues

How many times?
Often enough that we are likely to have a good line

How big a subset?
Smallest possible

What does close mean?
Depends on the problem

What is a good line?
The number of nearby points is so big it is unlikely to be all outliers



RANSAC: How many samples?
We want: at least one trial with a sample of all inliers
Can’t guarantee: use probability
Using all possible samples is often infeasible

Instead, pick N so that, with probability p of at least 
one sample is free from outliers (or being all inliers)

where e is probability that point is an outlier

Typically p = 0.99

( ) ( )( )sepN −−−= 11log/1log



Calculate N

If w = proportion of inliers = 1-e
P(sample with all inliers)=ws

P(sample with an outlier)=1-ws

P(N samples an outlier)=(1-ws)N

We want P(N samples an outlier)<1-p
(1-ws)N<1-p
N>log(1-p)/log(1-ws)

( ) ( )( )sepN −−−> 11log/1logw=1-e :



RANSAC: Computed N (p = 0.99) 
Sample 

size Proportion of outliers ²
s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

adapted from Hartley & Zisserman



Example

P=0.99
s=2, e=5% => N=2
s=2, e=50% => N=17
s=4, e=5% => N=3
s=4, e=50% => N=72
s=8, e=5% => N=5
s=8, e=50% => N=1177





Distance threshold

Choose t so probability for inlier is α (e.g. 0.95) 
Often empirically
Zero-mean Gaussian noise σ then      follows

distribution with m=codimension of model 

2
⊥d

2
mχ

(dimension+codimension=dimension space)

Codimension Model t 2

1 line,F 3.84σ2

2 H,P 5.99σ2

3 T 7.81σ2



Adaptively determining 
the number of samples

e is often unknown a priori, so pick worst case, 
e.g. 50%, and adapt if more inliers are found, e.g. 
80% would yield e=0.2 

N=∞, sample_count =0
While N >sample_count repeat

Choose a sample and count the number of inliers
Set e=1-(number of inliers)/(total number of points)
Recompute N from e
Increment the sample_count by 1

Terminate

( ) ( )( )( )sepN −−−= 11log/1log



Remarks

N = f(e), not the number of points
N increases steeply with s



Adaptive N

When etha is unknown ?
Start with etha=50%, N=inf
Repeat:

Sample s, fit model
-> update etha as |outliers|/n
-> set N=f(etha,s,p)

Terminate when N samples seen



RANSAC—Alternative Scheme

Algorithm
Randomly select s points
Instantiate a model
Get consensus set Si
If |Si|>T, terminate and return model
Repeat for N trials, return model with max |Si|



RANSAC—Alternative Scheme

About Threshold T
Remember: terminate if |Si|>T
Rule of thumb: T ≈ #inliers
So, T=(1-e)n



RANSAC—Summary
Choose a small subset uniformly at random
Least squares fit to that subset
Compute the fitting error 
Determine the consensus set 

comparing each error with the threshold;
Anything close to result is inliers; 
all others are outliers

Repeat the above steps for many trials
Choose the fit that agreed with most points

Can perform one final LS with all inliers



RANSAC—Discussion
Advantages:

General method suited for a wide range of model fitting 
problems;
Easy to implement and easy to calculate its failure rate;

Disadvantages:
Only handles a moderate percentage of outliers without 
cost blowing up
Many real problems have high rate of outliers (but 
sometimes selective choice of random subsets can help)

Hough transform can handle high percentage of 
outliers, but false collisions increases with large bins



More Advanced Example



Automatic Homography H
Estimation

How to get correct correspondences 
without human intervention?

from Hartley & Zisserman



Automatic H Estimation: 
Feature Extraction

Find features in pair of images using corner detection—e.g., 
minimum eigenvalue over threshold of:                           

from Hartley & Zisserman

~500 features found



Automatic H Estimation: 
Finding Feature Matches

Best match over threshold within square search 
window (here §300 pixels) using SSD or 
normalized cross-correlation

from Hartley & Zisserman



Automatic H Estimation: 
Finding Feature Matches

Best match over threshold within square search 
window (here §300 pixels) using SSD or 
normalized cross-correlation

from Hartley & Zisserman



Automatic H Estimation: 
Initial Match Hypotheses

268 matched features (over SSD threshold) in left image 
pointing to locations of corresponding right image features

from Hartley & Zisserman



Automatic H Estimation: 
Applying RANSAC

Sampling
Size: Recall that 4 correspondences suffice to define 
homography, so sample size s = 4
Choice

Pick SSD threshold conservatively to minimize bad matches
Disregard degenerate configurations
Ensure points have good spatial distribution over image

Distance measure
Obvious choice is symmetric transfer error:



Automatic H Estimation: 
Outliers & Inliers after RANSAC

43 samples used with t = 1.25 pixels

117 outliers (² = 0.44)
from Hartley & Zisserman

151 inliers



RANSAC

RANdom SAmple Consensus: designed for 
bad data (in best case, up to 50% outliers)
Idea: Take many random subsets of data 
to improve robustness

Randomly select s points
Instantiate a model
Get consensus set Si (supports)
Repeat for N trials, return model with max |Si|
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