Image and Vision Computing

!'_ Image Filtering

Instructor: Chen Yisong
HCI & Multimedia Lab, Peking University



i What is an image?

= Binary
= Gray Scale
m Color




Image as a matrix:

i Binary Images

Y

0: Black — [o]o]o

1: White




Image as a matrix:
* Gray Level Image
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Image as multiple matrices:

i Color Image




What can we do with an image?

Object Detection/RecognitiQn
Curve Detection/Fitting

Line Detection/Fitting

Key Feature Estimation

Scene Editing/Augmentation





Image as a Function

= We can think of an image as a function, 7,
from R? to R:

= T (X, y) gives the intensity at position (X, y)

= Realistically, we expect the image only to be
defined over a rectangle, with a finite range:

« f: [a,b]x[c,d] = [0,1]
= A color image Iis just three functions pasted

together. We can write this as a “vector-

valued” function: i} _
r(x,y)

f(xy)=|9(xy)
| b(x,y)




Image as a Function




Image Processing

= Define a new image g in terms of an
existing image 7
= We can transform either the domain or the
range of 7

= Range transformation:

g(z,y) = t(f(z,y))

What kinds of operations can this perform?

Smoothing, Enhancing, Denoising, Binarizing......



i Blur

Original Image

Filtered Image

10
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More examples




i Image Processing

= Some operations preserve the range
but change the domain of f :

g(z,y) = f(te(z,y), ty(z,y))

= What kinds of operations can this
perform?

Translation, Rotation, Scaling......

13



Image Scaling

14



i Image Rotation

15



i Image Processing

= Still other operations operate on both the
domain and the range of f .

g(x,y) =s(1(t.(x y).t,(x,y)))

= What kinds of operations can this perform?

Fractal Image coding, Wavelet Image coding......

16



Fractal image coding
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‘L Wavelet Image Coding
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This image is too big to fit g
on the screen. How can we {8
reduce it? |

How to generate a half-
sized version?




Image Sub-Sampling

A image of size 1/2 size image is created by throwing away every other row

and column - called image sub-sampling 20



"

1/2 1/4 (2x zoom) 1/8 (4x zoom) 21



Sub-Sampling with Gaussian Pre-Filtering

Gaussian 1/2
= Solution: filter the image, then subsample
= Filter size should double for each 2 size reduction. Why?



ub-Sampling with Gaussian Pre-Filtering

Gaussian 1/2



Compare with...

1/ 2 1/4 (2x zoom) 1/ 3 (4x zoom)

24
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_ Aliasing

rtrait | | 3.000 BBDx| kp File State || Page | | Portrait || 3.000 | | EBox
| Fized Size
Open
Print Al
Chapter 1: Introduction Print Marked Chapter 1: Introduction
Save Al
Save Marked
1 Introduction 1 Introduction

This manual corresponds to version 3.2 of This manual corresponds to version

Fedisplay
The library’s fundamental purpose is to ¢ -
user, similar to what shells do when looking u |°=

The library’s fundamental purpose i
user, similar to what shells do when lool

}i
lwinn

The following software, all of which we i The following software, all of which
e Dviljk (see the *dvilj” man page)

e Dvipsk (see section “Introduction” in Ch
e GNU font utilities (see section “Introduc
e Web2c (see section “Introduction™ in We¢

e Xdvik (see the *xdvi’ man page)

Dviljk (see the *dvilj” man page)
e Dvipsk (see section “Introduction”

oo pa = =
L

e GNU font utilities (see section “Int
e Web2c (see section “Introduction”
e Xdvik (see the ‘xdvi’ man page)

o o = oon

Other software that we do not maintain also u

R

Other software that we do not maintain



Canon D60 (w/ anti-alias filter) Sigma SD9 (w/o anti-alias filter)

27
From Rick Matthews website, images by Dave Etchells




Image Resampling

o far, we considered only power-ofstwo subsampling
= What about arbitrary scale reduction?
= How can we increase the size of the image?

= Recall how a digital image is formed
Flz,y] = quantize{ f(zd, yd)}

= It is a discrete point-sampling of a continuous function

= If we could somehow reconstruct the original function,
any new image could be generated, at any resolution

and scale
Fx]
d =1 in this
example
Now d =0.5
. 28




Image Resampling

iSo what to do if we don’t know f
= Answer: guess an approximatiols
= Can be done in a principled way: filtering

1 d =1 in this

h// example
T 7 25 3 4 5> &L
O Image reconstruction

= Convert F to a continuous function

A

fr(z) = F(3) when 7 is an integer, 0 otherwise

= Reconstruct by cross-correlation:
f=hQ fp 29



Resampling Filters

s What does the 2D version of this hat function

look like?
h(x/\ h(z,y) ﬁ
performs (tent function) performs
linear interpolation bilinear interpolation

= Better filters give better resampled images

= Bicubic is common choice

= fit 3" degree polynomial surface to pixels in
neighborhood

« can also be implemented by a convolution 30



Bilinear Interpolation(X{Zk M43 {H)

= A simple method for resampling images

(¢, + 1) (¢e+1,74+1)
(z,y)
Yl
(4,4) (i4+1,5)
flx,y) = (1 —a)(1=0) f[i,j]
+a(1-06)  fli+1,5]
+ab fli+1,5+1]
+(1—=a)  fli, 5+ 1]




Correlation (%)

+

How do we locate the template in the image?

-.. o h. . E1
template

Minimize
E(i, ))=2 2 [F(m.n)-t(m-i.n— j)f
— Zmlzn:[fz(m,n)ﬂz(m—i,n— j)-2f(mn)t(m-in-j)]
Maximize

R, (i, j)= Z Zt(m —i,n—j)f(m,n) Cross-correlation

32



i Correlation (#H%)

= Cauchy inequality (#7] Pt

DA L)

a’+b*+c°>ab+bc+ca

R{(a,b,c), (a,b,c)}> R{(a,b,c), (b,c,a)}

4a® +4b% +4¢c% > a® +b? +¢?

R{(a,b,c), (4a,4b,4¢c)}> R{(a,b,c), (a,b,c)} ?

33



iCross—correIation (HAHK)

Rtf(i,j)zzmlzn:t(m—i,n—j)f(m,n) Ry =t® f

Note: t® f = f ®t

Rff = f X f Auto-correlation

WWTT% Wﬁm OOOO}UTTQ Oﬁ%

Problem:

A C
t

R (C) > Ry (B) > R, (A) We need Ry (A) to be the maximum! 34



i Correlation

= Cauchy inequality (}] 75 AN2E5X)

Corr(A,B)=dot(A,B)/sqrt(JA]|B|)

Corr{(a,b,c), (4a,4b,4c)}= Corr{(a,b,c), (a,b,c)}=1.0

35



Normalized Correlation

Account for energy differences

Zmzzn:t(m—i,n—j)f(m,n)

%

[zxeo-ini] [z




Normalized
orrelation

onion = imread(‘onion.png";

peppers = imread('peppers.png’);

imshow(onion);

figure, imshow(peppers);

rect_onion = [111 33 65 58];

rect_peppers = [163 47 143 151];

sub_onion = imcrop(onion,rect_onion);

sub_peppers = imcrop(peppers,rect_peppers);

¢ = normxcorr2(sub_onion(:,:,1),sub_peppers(:,:,1));
[max_c, imax] = max(abs(c(:)));

[ypeak, xpeak] = ind2sub(size(c),imax(1));
corr_offset = [(xpeak-size(sub_onion,2)); (ypeak-size(sub_onion,1))];

rect_offset = [(rect_peppers(1)-rect_onion(1)); (rect_peppers(2)-rect_onion(2))];
offset = corr_offset + rect_offset;

xoffset = offset(1);

yoffset = offset(2);

xbegin = round(xoffset+1);
xend = round(xoffset+ size(onion,2));
ybegin = round(yoffset+1);

yend = round(yoffset+size(onion,1));
extracted_onion = peppers(ybegin:yend,xbegin:xend,:);
recovered_onion = uint8(zeros(size(peppers)));
recovered_onion(ybegin:yend,xbegin:xend,:) = onion;
[m,n,p] = size(peppers);

mask = ones(m,n);

i = find(recovered_onion(:,:,1)==0);

mask(i) = .2;
figure, imshow(peppers(:,:,1));
hold on;

h = imshow(recovered_onion); -
set(h,'AlphaData’',mask);



i Convolution(F&f4)

f*.:? g

0.5}
b3 0.6}

0.4} \ -
A R .
2 -1.5 -1 -0.5 0.5 1 2 -1.5 -1 -0.5 1.5 %

Eric Weisstein’s Math quﬁd



i Example of Convolution
<) (0

ZAN

| c=axb
rc(x)

/1\
2 -1 1 2




!'_ Image Filtering (Discrete)



i Image Filtering

= Modify pixels based on the
neighborhood

10 |30 |10

20 |11 |20 > 14.7

11|19 |1




i Linear Filtering

= The output is the linear combination of
the neighborhood pixels

= Weighted Sum(hint )

1 13 |0 1 |10 |1 1 }o lo
2 1102 |® |2 |0 [-2 | = |4 f4 4
4 |1 |1 1 |0 |-1 N E

Image Kernel Filter Output

— convolution



‘ﬁverage Filter(CF- X3 A%)

Mask with positive
entries, that sum 1.

 Replaces each pixel F
with an average of 1 11 |1
Its neighborhood. 1911 1 |1

 If all weights are 111

equal, it Is called a
BOX filter.

43
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‘L Blurring Examples

8
2.4
03 Il
0
original Kernel filtered

[l i i

original Kernel filtered

48



Gaussian Filter(i= & #5)

49



* Gaussian vs. Averaging

Gaussian Smoothing Smoothing by Averaging

50



After Averaging

Gaussian Noise

After Gaussian Smootgilng



Salt & Pepper Noise

After Gaussian Smoothsng



Image as a Function

53



Digital Images

The scene is
= projected on a 2D plane,
= sampled on a regular grid, and each

sample is
= quantized (rounded to the nearest
integer) £(i, j)= Quantize{f (iA, jA)}

J

 ———

62 79 23 119 120 105 4

Image as a matrix Zl

10 10 9 62 12 78 34

10 58 197 46 46 0 0 48

176 135 5 188 191 68 0 49

2 1 1 29 26 37 0 77

0 89 144 147 187 102 62 208
255 252 0 166 123 62 0 31

166 63 127 17 1 0 99 30 54




iAveraging

Pixel Volues —»
n=0

A B c D £ F q_
| e Tere] o) o) teel) G
= A+B +C C+ D+
4 /\.}\355?"\.5""}

ne2 | (A+2B+C) (B+2¢+D) (C+2D+E)D+2E+F (E+2F
(A438+6) (BraceD) C42mE)Draeen) €+ 2849
n=3 (A +38+3C+D) @+3c+3D+E) (c+3b+3e+F)

For n=2, convolve pixel values with [1]2]1

2D images:

1 1 1
(@)use |1]2]|1| then [2| or(b)use |[1|2|1[k|2[=]2
1 1 1

Whichis faster?  (2)0(2(n+1))  (b)O((n+1)




Averaging By Convolution

n=2
il
n=28
A
A'f‘TT TT'T‘A
large N

Repeated averaging & Gaussian smoothing 56



Gaussian Smoothing (/=)

)= 1 e_%(lo;]}

2o

Gaussian kernel h(

Filter size N cc o ...can be very large
(truncate, if necessary)

i) L5 i jon

272-0 m=1 n=1

2D Gaussian is separable!

(i, j)=—— e%zew m, j-n)

2762 powr)

Use 2 1D Gaussian filters 57



i Image Border

= Ignore

= Output image will be smaller than original

s Pad with constant values

= Can introduce substantial 1st order derivative values

s Pad with reflection

= Can introduce substantial 2"? order derivative values

58



Gaussian Smoothing

original SEEEEEREENE =




Gaussian Smoothing

by Charles Allen Gillbert by Harmon & Julesz

60
http://www.michaelbach.de/ot/coq blureffects/index.html



http://www.michaelbach.de/ot/cog_blureffects/index.html
http://www.michaelbach.de/ot/cog_blureffects/index.html

More Interesting examples

61



Median Filter( " {EJE %)

= Smoothing is averaging ©®@ ° = _ °

(a) Blurs edges S e

(b) Sensitive to outliers i) ° %
= Median filtering

= Sort N°-1 values around the pixel

= Select middle value (median)

@ sort © median
O] Q o QO Q o Q Q @)

= Non-linear (Cannot be implemented with convolution)_



i Median filters : principle

= hon-linear filter

= method :
= rank-order neighbourhood intensities
=« take middle value

= N0 new grey levels emerge...

63



i Median filters : example

filters of width 5 :

"8 8 "0 L B

INPUT

"8 8" 0" e

MEDIAN

MEAN




i Median filters : discussion

= median completely discards the spike,

= lInear filter always responds to all
aspects

= median filter preserves discontinuities,

m lInear filter produces rounding-off
effects

= DON'T become all too optimistic

65



Median filters C

| = imread(‘eight.tif');
imshow(l);

J = imnoise(l,'salt & pepper’,0.02);

figure, imshow(J);

K = filter2(fspecial(‘average',3),J)/255;

figure, imshow(K);
L = medfilt2(J,[3 3]);
figure, imshow(L);




Salt and pepper noise Gaussian noise
Gaussian Median Gaussian Median




Convolution(Z&FH)

= A convolution operation Is a cross-correlation
where the filter is flipped both horizontally and
vertically before being applied to the image:

k k
Gli, 7] = Z Z Hlu,v]F[i — u,j — v]

u=—kv=-%k

s It IS written:
G = HxF

= Suppose H is a Gaussian or mean kernel. How
does convolution differ from cross-correlation?

68



\ﬂJ_A

Image gradient(£f /%)

i The gradient of an image: Vf = [gng, ggﬂ

The gradient points in the direction of most rapid
change In intensity

vi=[50 I vi =[5 3]
F vfz[o’ﬁ] k

= The gradient direction is given by:

_ _1(9f 0
o = tan—1 (4L/90)
= how does this relate to the direction of the edge?
= The edge strength is given by the gradient

magnitude V7] = \/(gf) + (2 ) o




Effects of noise ("5 1 5 i)

= Consider a single row or column of the image

= Plotting intensity as a function of position gives a
signal

f(x) |

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
| | T | . | | |

duf (@)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

= Where is the edge?



Solution: smooth first

hx f

I (hx f)

Where is the edge? Look for peaks In

Sigma = 50

Signal

....................................................................................................

| | | | | |
200 400 600 800 1000 1200 1400 1600 1800 2000

Kernel

=

Convolution

Differentiation

:
200 400 600 800 1000 1200 1400 1600 180 2000



‘LDerivative theorem of convolution

D (hxf) = (%h) = f This saves us one operation:

Sigma = 50

.................................................

~
Signal

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

ox
| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

[
o
9 5
o
(3 h)xf ¢
£ o

|:|_ ................ 72

I | I I i | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000



Laplacian of Gaussian
2ot )= Zones

OX OX

. 2 Sigma = 50
Consider Z5(h  f) —

Laplacian of Gaussian

Signal

i I I i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

........ , L,aplac.lanOfGaUSSIa.nﬁﬁ_
1 _operator | .

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution
=
[

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge? Zero-crossings of bottom graph ’°



2D edge detection filters

Laplacian of Gaussian

\
g;'fo’t"\\\

#‘? “‘ "‘0““ Rl tete e’
Dl AN
L NS
e IS Wl
ey ettty

Gaussian derivative of Gaussian
1 _uite? o
ho(u,v) = ——=e 242 —ho(u,v)

2mo2 ox

= V2 is the Laplacian operator:

P o2
v f_amé : 3y£ 74




Edge detection by subtraction

+

original

75



Edge detection by subtraction

+

\

~ smoothed (5x5 Gaussian)

76



Edge detection by subtraction

b

Why does
this work?

smoothed — original filter demo -
(scaled by 4, offset +128)



original

smoothed (5x5 Gaussian)

why does
this work?

smoothed — original
(scaled by 4, offset +128)

78



Gaussian - image filter

Ji
UMM

4] et
N
":""‘:’o't‘t‘o‘o‘.‘o‘.‘g\‘\g}}‘

Gaussian delta function

w

Laplacian of Gaussidh



Average

+

Mask with positive
entries, that sum 1.

Replaces each pixel
with an average of
Its neighborhood.

If all weights are
equal, it Is called a
BOX filter.

Filter

1/9 |

80



Example: Smoothing by Averaging




i Gaussian Averaging (s i 34))

= Rotationally
symmetric.

= Weights nearby
pixels more than

distant ones. \/

= | hisS makes sense

as probabalistic =« A Gaussian gives a

inference. good model of a fuzzy
blob

82



i An Isotropic Gaussian

= The picture shows a
smoothing kernel
proportional to

[ (2142))

122 )

(which is a reasonable
model of a circularly
symmetric fuzzy blob)

83



‘-ﬁmoothmg with a Gaussian




Noise

ng The effects of smoothing
Each row shows smoothing
with gaussians of different
width; each column shows
different realizations of
an image of gaussian noise.

o=1 pixel

a=2 pixels

Slide credit: Marc Pollefeys
85



!-| Filter responses are correlated
= Filtered noise is sometimes useful

= looks like some natural textures, can be used to
simulate fire, etc.




!'_ Edge Detection (Break)



Example

88




)

il

Uke 3

i Edge Detection(

= What Is an Edge?

= How can we find it?




i What is an Edge?

= Discontinuity of intensities in the image

= Edge models

s Step
= Roof
= Ramp
= Spike

Step

Spike

90



What Causes an Edge?

+

= Reflectance
discontinuity (i.e.,
change in surface
material properties)

= Depth discontinuity

s Surface orientation
discontinuity

= lllumination
discontinuity (e.g.,
shadow)

91



i Quiz: How Can We Find Edges?

a




i Detecting Discontinuities

= Image derivatives

of _ f(xps)=f(x)
j = oxX AX

of (f(x+5)— f(x)

—=1im
ax £—0 P

= Convolve image with derivative filters

Backward difference [-1 1]
Forward difference [1 -1]

Central difference [(1 O 1]

93



i Derivative in Two-Dimensions

s Definition

6X &—0 E

= Approximation

af(xy)_ "m( f(x+2,y)-f(xy)

of (X, y) (X V)= F (%o Vi)

~y
N/

OX AX

s Convolution kernels

-l 1]

Ar)_yty22)=1(5)

94



Image Derivatives(5:%%)

|, =1*1 —1]

95



i Derivatives and Noise

= Strongly affected by
noise

= Obvious reason: image
noise results in pixels
that look very different
from their neighbors
= The larger the noise is
the stronger the

response

What is to be done?

Neighboring pixels
look alike

Pixel along an edge
look alike

Image smoothing
should help

= Force pixels different
to their neighbors
(possibly noise) to
look like neighbors

96



* Derivatives and Noise

V/f7 4///7 4

Increasing noise

Zero mean additive gaussian noise



i Image Smoothing (/%4>

= Expect pixels to “be like” their
neighbors

= Relatively few reflectance changes

= Generally expect noise to be
iIndependent from pixel to pixel

= Smoothing suppresses noise

98



i Gaussian Smoothing (75 /)

; . . ; . & >
E -f =y
g : P 3 (x2+y?
— 5 # 2

= Scale of Gaussian o
= As oincreases, more pixels are involved in average
= As oincreases, image is more blurred
= As oincreases, noise is more effectively suppressed

99




i Edge Detectors(G1Z 1)

= Gradient operators(#f 5 H 1)

= Prewit
= Sobel

= Laplacian of Gaussian (Marr-Hildreth)
= Gradient of Gaussian (Canny)

= Facet Model Based Edge Detector
(Haralick)

100



iPrewitt and Sobel Edge Detector

= Compute derivatives
« In x and y directions

= Find gradient magnitude
= Threshold gradient magnitude

101



average

v

smoothing in x

11
11

* Prewitt Edge Detector

derivative

filtering in x

11

average

smoothing iny

v

and

L -]

derivative

\\<§¥@§*1 0 -1
10 -1

10 -1

filtering iny

111
111

and

1 1 1
|:_1:| - ——| 0 0 0
-1 -1 -1

results

102



* Sobel Edge Detector

average

derivative

smoothing in x

filtering in x

L -]

%10_1
2 0 -2

average

derivative

1 0 -1

smoothing iny

filtering iny

¥

results

-1 -2 -1

103



i Sobel Edge Detector

Image |

10 -1]
2 0 -2
10 -1]

1 2 1]
0O 0 O

-1 -2 -1

— Threshold

— Edges

104



* Sobel Edge Detector

105



i Sobel Edge Detector




+

Matlab Demos of Edge detection

107



Edge Finding:-

i Matlab Demo -

im = imread(‘football.jpg");
image(im);

figure(2);

bw = double(rgb2gray(im));

[dx,dy] = gradient(bw);

gradmag = sqrt(dx.”2 + dy.”2);

image(gradmag);

150

200

240

a0

100

150

200

250

(=

11101

1507

0

25N

M



i What is Image Filtering?

Modify the pixels in an image based on

some function of a local neighborhood of

the pixels

10

S

3

A

S

1

1

1

7

Some function
_—

109



i Linear Filtering

= Linear case is simplest and most useful
= Replace each pixel with a linear combination of its neighbors.

= The prescription for the linear combination is called the

convolution kernel.

10| 5 | 3 0|0
4 15 1]Q& 05| 0
1| 7 1.0/ 0.5

kernel

110



Linear Filter = Convolution

+

-1 § col
y
image f
\ () |f() |f()
_ATOfO |56 -
convolution mask SO LT 1 l
\ i+
‘ﬁ.—f"f /
=l =

/4;_!’7

o (i,j) = f(i-1,j-1) + f(i-1,)) + f(i-1,j+1) +
f(i,j-1) + f(ij) + f(i,j+1) +
f(i+1,-1) + f(i+1,)) + f(i+1,j+1)




Tl
—
(D
—.
-
Q
[T]
X
QD
=
=i
M
W

original

coefficient
—

Pixel offset

Filtered
(no change)
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Tl
—
(D
—.
-
Q
[T]
X
QD
=
=i
M
W

original

coefticient
g

0
Pixel offset

shifted
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Tl
—
(D
—.
-
Q
[T]
X
QD
=
=i
M
W

coefﬁcient

0.3
-

|
I LI
0

Pixel offset

original

Blurred (filter
applied in both
dimensions).

114



Image Smoothing With Gaussian

50
1480

200

figure(3);
sigma = 3;
width = 3 * sigma;

support = -width : width; > 50 100 150 200 260 300
gauss2D = exp( - (support / sigma).”™2 / 2);

gauss2D = gauss2D / sum(gauss2D);

smooth = conv2(conv2(bw, gauss2D, 'same'), gauss2D', 'same’);
Image(smooth);

colormap(gray(255));

gauss3D = gauss2D' * gauss2D;

tic ; smooth = conv2(bw,gauss3D, 'same’); toc 115




Slide credit: Marc Pollefeys

Smoothlng Wlth Gau33|an




‘L Example of Blurring

117



Edge Detection With Smoothed Images

+

figure(4);

[dx,dy] = gradient(smooth);
gradmag = sqrt(dx.~2 + dy.~
gmax = max(max(gradmag));
imshow(gradmag);
colormap(gray(gmax));

118



Increased smoothing

= Eliminates noise edges.
= Makes edges smoother and thicker.
= Removes fine detall. 119



‘LThe Edge Normal

/

S =./dx? + dy?

d
o =arctan -2

dx
120



Displaying theé7Edge Normal

200

150
figure(5);
hold on;
Image(smooth);
colormap(gray(255));

[m,n] = size(gradmag); I ———— . S
0 a0 100 140 200 250 300 350

100

a0

edges = (gradmag > 0.3 * gmax);

Inds = find(edges);

[posx,posy] = meshgrid(1:n,1:m); posx2=posx(inds); posy2=posy(inds);
gm2= gradmag(inds);

sintheta = dx(inds) ./ gm2;

costheta = - dy(inds) ./ gm2;

quiver(posx2,posy2, gm2 .* sintheta / 10, -gm2 .* costheta / 10,0);

hold off; 121



Separable Kernels

f[mn] =1®g = 1®g, ®¢g,
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O

ISR

LN

et o
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Combining Kernels / Convolutions

(I1®g)®h =1&®(g®h)
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Effect of Smoothing Radius

1 pixel 3 pixels 7 pixels
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i Robert’s Cross Operator

1

0

0

-1

0

1

-1

0

S= -~/ [I(x%y) - 10¢+1, y+1) |2+ [ 1(x, y+1) - I(x+1, y) ]2

S = [ I(X, y) - I(x+1, y+1) | + | I(X, y+1) - I(x+1, y) |

or
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i Sobel Operator

1]-2)-1 1] 0] 1
s,=/0] 0] 0 s,=[2] 0] 2
1] 2] 1 1] 0] 1

Edge Magnitude = / S;+S;

S
Edge Direction = tan-l {gj
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‘L The Sobel Kernel, Explained

Sobel kernel is separable!
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i Sobel Edge Detector

figure(6)
edge(bw, 'sobel)
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Robinson Compass Masks

1) 0/ 1|]o0| 1|2 |1 21|21 0

2/ o[ 2| [-1] 0/ 1 [o] o]0 [1]0]-1

1l o[ 1|[2[-1] 0 [-1]-2] -1 [0[-1] 2
1/ 0l-1/|0/|-1]-2 [-1]-2| -1 |-2|-1] 0
21 02/ [1]0]-1 [o] o]0 [-1] 0|1
1] 0/-1 | 2] 1[0 [1] 2] 1| [0 1|2
P —
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‘L Claim Your Own Kernel!
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Comparison (by Allan Hanson)

= Analysis based on a step edge inclined at an angle g (relative to
y-axis) through center of window.

= Robinson/Sobel: true edge contrast less than 1.6% different
from that computed by the operator.
= Error in edge direction
= Robinson/Sobel: less than 1.5 degrees error
= Prewitt: less than 7.5 degrees error
= Summary
= Typically, 3 x 3 gradient operators perform better than 2 x 2.

= Prewitt2 and Sobel perform better than any of the other 3x3
gradient estimation operators.

= In low signal to noise ratio situations, gradient estimation operators
of size larger than 3 x 3 have improved performance.

= In large masks, weighting by distance from the central pixel is
beneficial. 131
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Sometimes We want Many Resolutions

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2¥x2k images (assuming N=2%)

level k(=1 pixtlQ\

o) o
| 4
level k-1 V/\
\". ? (¢} (¢} |
level k-2 )'{ filter mask
[V —
o o ole o

level 0 (= original image)

= Known as a Gaussian Pyramid [Burt and Adelson, 1983]
= In computer graphics, a mip map [Williams, 1983]
= A precursor to wavelet transform
= Gaussian Pyramids have all sorts of applications in computer vision

« We'll talk about these later in the course 133



Image Pyramids

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2"x2X images (assuming N=2¥)

level k(= 1 pi};tlQ\

level k-1 1RIIL/

\i

level k-2

1
L7
/ :

level 0 (= onginal image)
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‘L Pyramid Creation

e ° 2 o o |

«— filter mask

o .IT. Q

“Gaussian” Pyramid

= “Laplacian” Pyramid
= Created from Gaussian

pyramid by subtraction
L, = G, — expand(G,.,)
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Octaves In the Spatial Domain
‘L Lowpass Images

= Bandpass Images

136



i Pyramids

= Many applications
= small images faster to process
= good for multiresolution processing
= compression
= progressive transmission
= Known as “MIP-maps” in graphics
community
= Precursor to wavelets
= Wavelets also have these advantages

137



(d) (h) (1)
= Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image

mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236. 138


http://www-bcs.mit.edu/people/adelson/publications/abstracts/spline83.html
http://www-bcs.mit.edu/people/adelson/publications/abstracts/spline83.html
http://www-bcs.mit.edu/people/adelson/publications/abstracts/spline83.html

i Questionnaire

= | want simpler and more intuitive
explanations

= | want more technique details

= The current method is good to me

s Other comments on the lectures or the
assignments?

139
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