Image and Vision Computing Image Filtering

Instructor: Chen Yisong HCI & Multimedia Lab, Peking University

What is an image?

- Binary
- Gray Scale
- Color

Image as multiple matrices: Color Image

What can we do with an image?

Object Detection/Recognition

Curve Detection/Fitting

Line Detection/Fitting

Key Feature Estimation

Scene Editing/Augmentation

Image as a Function

- We can think of an image as a function, f, from R² to R:
 - *f*(*x*, *y*) gives the **intensity** at position (*x*, *y*)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - $f: [a,b] \times [c,d] \rightarrow [0,1]$
- A color image is just three functions pasted together. We can write this as a "vectorvalued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Image as a Function

Image Processing

- Define a new image g in terms of an existing image f
 - We can transform either the domain or the range of *f*
- Range transformation:

$$g(x,y) = t(f(x,y))$$

What kinds of operations can this perform?

Smoothing, Enhancing, Denoising, Binarizing.....

Filtered Image

More examples

Image Processing

Some operations preserve the range but change the domain of f:

$$g(x,y) = f(t_x(x,y),t_y(x,y))$$

What kinds of operations can this perform?

Translation, Rotation, Scaling.....

Image Scaling

Image Rotation

Image Processing

Still other operations operate on both the domain and the range of f.

$$g(x, y) = s(f(t_x(x, y), t_y(x, y)))$$

What kinds of operations can this perform?

Fractal Image coding, Wavelet Image coding.....

Fractal image coding

$\begin{array}{c} \omega_{i} \left(\begin{bmatrix} x_{D} \\ y_{D} \\ z_{D} \end{bmatrix} \right) = \begin{bmatrix} x_{R} \\ y_{R} \\ z_{R} \end{bmatrix} = \begin{bmatrix} a_{i} & b_{i} & 0 \\ c_{i} & d_{i} & 0 \\ 0 & 0 & s_{i} \end{bmatrix} \begin{bmatrix} x_{D} \\ y_{D} \\ z_{D} \end{bmatrix} + \begin{bmatrix} e_{i} \\ f_{i} \\ o_{i} \end{bmatrix}$

■ 定义域块

迭代函数系统IFS

■ 值域块

Wavelet Image Coding

original image

one step decomposition

- This image is too big to fit on the screen. How can we reduce it?
- How to generate a halfsized version?

Image Sub-Sampling

1/8

1/4

A image of size 1/2 size image is created by throwing away every other row and column - called *image sub-sampling*²⁰

Image Sub-Sampling

1/2

1/4 (2x zoom)

21

Sub-Sampling with Gaussian Pre-Filtering

G 1/8

G 1/4

Gaussian 1/2
Solution: filter the image, *then* subsample
Filter size should double for each ½ size reduction. Why?

Sub-Sampling with Gaussian Pre-Filtering

Gaussian 1/2

G 1/4

Compare with...

1/4 (2x zoom)

1/8 (4x zoom)

Aliasing(混叠/走样)

0	o	o	0	0	0	0	0	¢	¢.	¢	Þ
0	¢	0	٥	0	0	a	0				
٥	٥	¢	۵	Ċ	٥	D	٥	0	σ	Ō	o
a	0	¢	¢	¢	0	¢	¢				
σ	¢	0	D	0	0	0	0	0	0	o	0
0	Ð	0	0	0	0	0	0				
0	0	o	0	0	0	0	Ð	Þ	¢	¢	¢
٥	0	٥	٥	0	0	٥	Ċ				
o				o				o	o		o
¢				o				o	Ø		o
¢				o				o	o		0
¢				o				o 0	0		0 0
¢				0 Q				•	0		0 0
¢				0				0	Ð		•
0				0				•	0		ି ୦ ୦

25

Aliasing

Canon D60 (w/ anti-alias filter)

Sigma SD9 (w/o anti-alias filter)

27 From Rick Matthews website, images by Dave Etchells

Image Resampling

So far, we considered only power-of₄two subsampling

- What about arbitrary scale reduction?
- How can we increase the size of the image?
- Recall how a digital image is formed F[x, y] = quantize{f(xd, yd)}
 - It is a discrete point-sampling of a continuous function
 - If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

Image Resampling

So what to do if we don't know f

- Answer: guess an approximation *f*
- Can be done in a principled way: filtering

d = 1 in this example

Image reconstruction

Convert F to a continuous function

 $f_F(x) = F(\frac{x}{d})$ when $\frac{x}{d}$ is an integer, 0 otherwise

• Reconstruct by cross-correlation: $\tilde{f} = h \otimes f_F$

Resampling Filters

What does the 2D version of this hat function look like?

performs linear interpolation

(tent function) performs **bilinear interpolation**

Better filters give better resampled images

- Bicubic is common choice
 - fit 3rd degree polynomial surface to pixels in neighborhood
 - can also be implemented by a convolution

Bilinear Interpolation(双线性插值)

A simple method for resampling images

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

Correlation(相关)

template

How do we locate the template in the image?

Minimize

$$E(i, j) = \sum_{m} \sum_{n} [f(m, n) - t(m - i, n - j)]^{2}$$

= $\sum_{m} \sum_{n} [f^{2}(m, n) + t^{2}(m - i, n - j) - 2f(m, n)t(m - i, n - j)]$

Maximize

$$R_{tf}(i,j) = \sum_{m} \sum_{n} t(m-i,n-j)f(m,n)$$
 Cross-correlation

Cauchy inequality (柯西不等式)

Correlation (相关)

 $a^2 + b^2 + c^2 \ge ab + bc + ca$

 $R\{(a,b,c), (a,b,c)\} > R\{(a,b,c), (b,c,a)\}$

 $4a^2 + 4b^2 + 4c^2 \ge a^2 + b^2 + c^2$

 $R\{(a,b,c), (4a,4b,4c)\} > R\{(a,b,c), (a,b,c)\}?$

Cross-correlation (互相关)

$$R_{tf}(i, j) = \sum_{m} \sum_{n} t(m-i, n-j) f(m, n) \qquad R_{tf} = t \otimes f$$
Note: $t \otimes f \neq f \otimes t$
 $R_{ff} = f \otimes f$ Auto-correlation
Problem:

$$f_{ff} = f \otimes f$$

$$R_{tf}(C) > R_{tf}(B) > R_{tf}(A)$$
We need $R_{tf}(A)$ to be the maximum!

Correlation Cauchy inequality (柯西不等式)

Corr(A,B)=dot(A,B)/sqrt(|A||B|)

 $Corr\{(a,b,c), (4a,4b,4c)\} = Corr\{(a,b,c), (a,b,c)\} = 1.0$

Normalized Correlation

Account for energy differences

$$N_{tf}(i,j) = \frac{\sum_{m=n}^{\infty} t(m-i,n-j)f(m,n)}{\left[\sum_{m=n}^{\infty} t^{2}(m-i,n-i)\right]^{\frac{1}{2}} \left[\sum_{m=n}^{\infty} f^{2}(m,n)\right]^{\frac{1}{2}}}$$

Normalized Correlation

onion = imread('onion.png'); peppers = imread('peppers.png'); imshow(onion); figure, imshow(peppers); rect_onion = [111 33 65 58]; rect_peppers = [163 47 143 151]; sub_onion = imcrop(onion,rect_onion); sub_peppers = imcrop(peppers,rect_peppers); c = normxcorr2(sub_onion(:,:,1),sub_peppers(:,:,1)); $[max_c, imax] = max(abs(c(:)));$ [ypeak, xpeak] = ind2sub(size(c), imax(1));corr_offset = [(xpeak-size(sub_onion,2)); (ypeak-size(sub_onion,1))]; rect_offset = [(rect_peppers(1)-rect_onion(1)); (rect_peppers(2)-rect_onion(2))]; offset = corr_offset + rect_offset; xoffset = offset(1);yoffset = offset(2); xbegin = round(xoffset+1);xend = round(xoffset + size(onion, 2)); ybegin = round(yoffset+1); yend = round(yoffset+size(onion, 1)); extracted_onion = peppers(ybegin:yend,xbegin:xend,:); recovered_onion = uint8(zeros(size(peppers))); recovered_onion(ybegin:yend,xbegin:xend,:) = onion; [m,n,p] = size(peppers);mask = ones(m,n); $i = find(recovered_onion(:,:,1) = = 0);$ mask(i) = .2;figure, imshow(peppers(:,:,1)); hold on: h = imshow(recovered_onion); set(h,'AlphaData',mask);

Convolution(卷积)

Eric Weisstein's Math World

Image Filtering (Discrete)

Image Filtering

 Modify pixels based on the neighborhood

Linear Filtering

- The output is the linear combination of the neighborhood pixels
- Weighted Sum(加权和)

Kernel

convolution

 \equiv

Filter Output

Average Filter(平均滤波器)

- Mask with positive entries, that sum 1.
- Replaces each pixel with an average of its neighborhood.
- If all weights are equal, it is called a BOX filter.

*

=

Blurring Examples

Gaussian Filter(高斯滤波器)

Gaussian vs. Averaging

Gaussian Smoothing

Smoothing by Averaging

Noise Filtering(噪声过滤)

Gaussian Noise

After Averaging

After Gaussian Smoothing 51

Salt & Pepper Noise

After Averaging

After Gaussian Smoothigg

Image as a Function

Digital Images The scene is projected on a 2D plane, sampled on a regular grid, and each sample is quantized (rounded to the nearest integer) f(i, j) =Quantize $\{f(i\Delta, j\Delta)\}$ 2

Image as a matrix

ļ	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	₃₀ 54

Image Border

- Ignore
 - Output image will be smaller than original
- Pad with constant values
 - Can introduce substantial 1st order derivative values
- Pad with reflection
 - Can introduce substantial 2nd order derivative values

Gaussian Smoothing

Gaussian Smoothing

by Charles Allen Gillbert

by Harmon & Julesz

60 http://www.michaelbach.de/ot/cog_blureffects/index.html

More interesting examples

Median Filter(中值滤波)

- Smoothing is averaging
 (a) Blurs edges
 (b) Sensitive to outliers
- Median filtering
 - Sort $N^2 1$ values around the pixel
 - Select middle value (median)

Non-linear (Cannot be implemented with convolution)₆₂

Median filters : principle

- non-linear filter
- method :
 - rank-order neighbourhood intensities
 - take middle value
- no new grey levels emerge...

Median filters : example

filters of width 5 :

Median filters : discussion

- median completely discards the spike,
- linear filter always responds to all aspects
- median filter preserves discontinuities,
- linear filter produces rounding-off effects
- DON'T become all too optimistic

- J = imnoise(I,'salt & pepper',0.02);

```
figure, imshow(J);
```

- K = filter2(fspecial('average',3),J)/255;
- figure, imshow(K); L = medfilt2(J,[3 3]);
- figure, imshow(L);

Convolution(卷积)

A convolution operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

 $G = H \star F$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Image gradient(梯度)

The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

- The gradient direction is given by: $\theta = \tan^{-1} \left(\frac{\partial f}{\partial u} / \frac{\partial f}{\partial x} \right)$
 - how does this relate to the direction of the edge?
- The *edge strength* is given by the gradient magnitude $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Solution: smooth first

Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h \star f)^{1}$

2D edge detection filters

Edge detection by subtraction

original

Edge detection by subtraction

smoothed (5x5 Gaussian)

Edge detection by subtraction

Why does this work?

smoothed - original

(scaled by 4, offset +128)

filter demo 77

original

smoothed (5x5 Gaussian)

why does this work?

Average Filter

- Mask with positive entries, that sum 1.
- Replaces each pixel with an average of its neighborhood.
- If all weights are equal, it is called a BOX filter.

Example: Smoothing by Averaging

Gaussian Averaging(高斯平均)

- Rotationally symmetric.
- Weights nearby pixels more than distant ones.
 - This makes sense as probabalistic inference.

 A Gaussian gives a good model of a fuzzy blob

An Isotropic Gaussian

 The picture shows a smoothing kernel proportional to

$$\exp\left(-\left(\frac{x^2+y^2}{2\sigma^2}\right)\right)$$

(which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian

Filter responses are correlated

Filtered noise is sometimes useful

 looks like some natural textures, can be used to simulate fire, etc.

Edge Detection (Break)

Edge Detection(边缘检测)

- What is an Edge?
- How can we find it?

What is an Edge?

- Discontinuity of intensities in the image
- Edge models
 - Step
 - Roof
 - Ramp
 - Spike

What Causes an Edge?

- Reflectance discontinuity (i.e., change in surface material properties)
- Depth discontinuity
- Surface orientation discontinuity
- Illumination discontinuity (e.g., shadow)

Quiz: How Can We Find Edges?

Detecting Discontinuities

Image derivatives

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon) - f(x)}{\varepsilon} \right) \implies \frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}) - f(x)}{\Delta x}$$

Convolve image with derivative filters

- Backward difference [-1 1]
- Forward difference [1 -1]
- Central difference [-1 0 1]

Derivative in Two-Dimensions

Definition

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon} \right)$$

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x_{n+1}, y_m) - f(x_n, y_m)}{\Delta x}$$

$$\frac{\partial f(x, y)}{\partial y} = \lim_{\varepsilon \to 0} \left(\frac{f(x, y + \varepsilon) - f(x, y)}{\varepsilon} \right)$$

$$\frac{\partial f(x, y)}{\partial y} \approx \frac{f(x_n, y_{m+1}) - f(x_n, y_m)}{\Delta x}$$

• Convolution kernels
$$f_x = \begin{bmatrix} 1 & -1 \end{bmatrix}$$

 $f_{y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Image Derivatives(导数)

Derivatives and Noise

Strongly affected by noise

- obvious reason: image noise results in pixels that look very different from their neighbors
- The larger the noise is the stronger the response

What is to be done?

- Neighboring pixels look alike
- Pixel along an edge look alike
- Image smoothing should help
 - Force pixels different to their neighbors (possibly noise) to look like neighbors

Derivatives and Noise

Increasing noise -

Zero mean additive gaussian noise

Image Smoothing(图像平滑)

- Expect pixels to "be like" their neighbors
 - Relatively few reflectance changes
- Generally expect noise to be independent from pixel to pixel
 - Smoothing suppresses noise

Gaussian Smoothing(高斯平滑)

$$g(x, y) = e^{\frac{-(x^2 + y^2)}{2o^2}}$$

Scale of Gaussian σ

- As σ increases, more pixels are involved in average
- As σ increases, image is more blurred
- As σ increases, noise is more effectively suppressed

Edge Detectors(边缘检测子)

- Gradient operators(梯度算子)
 - Prewit
 - Sobel
- Laplacian of Gaussian (Marr-Hildreth)
- Gradient of Gaussian (Canny)
- Facet Model Based Edge Detector (Haralick)

Prewitt and Sobel Edge Detector

- Compute derivatives
 - In x and y directions
- Find gradient magnitude
- Threshold gradient magnitude

Prewitt Edge Detector

Matlab Demos of Edge detection

Edge Finding: ... Matlab Demo ...

im = imread('football.jpg'); image(im); figure(2); bw = double(rgb2gray(im));

[dx,dy] = gradient(bw); gradmag = sqrt(dx.^2 + dy.^2); image(gradmag);

What is Image Filtering?

Modify the pixels in an image based on some function of a local neighborhood of the pixels

Linear Filtering

- Linear case is simplest and most useful
 - Replace each pixel with a linear combination of its neighbors.
- The prescription for the linear combination is called the convolution kernel.

Filtering Examples

original

Filtered (no change)

Filtering Examples

Filtering Examples

original

Blurred (filter applied in both dimensions).

Image Smoothing With Gaussian

 $gauss2D = exp(- (support / sigma).^2 / 2);$

gauss2D = gauss2D / sum(gauss2D);

```
smooth = conv2(conv2(bw, gauss2D, 'same'), gauss2D', 'same');
image(smooth);
```

colormap(gray(255));

```
gauss3D = gauss2D' * gauss2D;
```

```
tic ; smooth = conv2(bw,gauss3D, 'same'); toc
```

Slide credit: Marc Pollefeys

Example of Blurring

Image

Blurred Image

Edge Detection With Smoothed Images

figure(4); [dx,dy] = gradient(smooth); gradmag = sqrt(dx.^2 + dy.^ gmax = max(max(gradmag)); imshow(gradmag); colormap(gray(gmax));

Increased smoothing

- Eliminates noise edges.
- Makes edges smoother and thicker.
- Removes fine detail.

The Edge Normal

$$S = \sqrt{dx^2 + dy^2}$$

$$\alpha = \arctan \frac{dy}{dx}$$

Displaying the Edge Normal

```
figure(5);
hold on;
image(smooth);
colormap(gray(255));
[m,n] = size(gradmag);
```



```
edges = (gradmag > 0.3 * gmax);
inds = find(edges);
[posx,posy] = meshgrid(1:n,1:m); posx2=posx(inds); posy2=posy(inds);
gm2= gradmag(inds);
sintheta = dx(inds) ./ gm2;
costheta = - dy(inds) ./ gm2;
quiver(posx2,posy2, gm2 .* sintheta / 10, -gm2 .* costheta / 10,0);
hold off;
```

Separable Kernels

$$f[m,n] = I \otimes g = I \otimes g_X \otimes g_Y$$

Combining Kernels / Convolutions

($(I \otimes$	<i>g</i>)@	$\otimes h$	= I	$\otimes (g \otimes$	(h)	
0.0030 0.0133 0.0219 0.0133 0.0030	0.0133 0.0596 0.0983 0.0596 0.0133	0.0219 0.0983 0.1621 0.0983 0.0219	0.0133 0.0596 0.0983 0.0596 0.0133	0.0030 0.0133 0.0219 0.0133 0.0030	\otimes	\ [1	_1

Effect of Smoothing Radius

1 pixel

3 pixels

7 pixels

$$S = |I(x, y) - I(x+1, y+1)| + |I(x, y+1) - I(x+1, y)|$$

or

S =
$$\sqrt{[I(x, y) - I(x+1, y+1)]^2 + [I(x, y+1) - I(x+1, y)]^2}$$

Robert's Cross Operator

Edge Magnitude =
$$\sqrt{S_1^2 + S_1^2}$$

Edge Direction =
$$\tan^{-1}\left(\frac{S_1}{S_2}\right)$$

The Sobel Kernel, Explained

Sobel kernel is separable!

Sobel Edge Detector

figure(6) edge(bw, 'sobel')

Robinson Compass Masks

Claim Your Own Kernel!

1	1	1		5	5	5		-1	-√2	-1
1	-2	1		-3	0	-3		0	0	0
-1	-1	-1		-3	-3	-3		1	$\sqrt{2}$	1
Prewitt 1 K			Kirsch Frei &			ei & C	hen			
1	1	1		1	2	1				
0	0	0		0	0	0				
-1	-1	-1		-1	-2	-1				
Prewitt 2			Sobel							

Comparison (by Allan Hanson)

- Analysis based on a step edge inclined at an angle q (relative to y-axis) through center of window.
- Robinson/Sobel: true edge contrast less than 1.6% different from that computed by the operator.
- Error in edge direction
 - Robinson/Sobel: less than 1.5 degrees error
 - Prewitt: less than 7.5 degrees error
- Summary
 - Typically, 3 x 3 gradient operators perform better than 2 x 2.
 - Prewitt2 and Sobel perform better than any of the other 3x3 gradient estimation operators.
 - In low signal to noise ratio situations, gradient estimation operators of size larger than 3 x 3 have improved performance.
 - In large masks, weighting by distance from the central pixel is beneficial.

Image Pyramids(图像金字塔)

Sometimes We want Many Resolutions

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)

- Known as a Gaussian Pyramid [Burt and Adelson, 1983]
 - In computer graphics, a *mip map* [Williams, 1983]
 - A precursor to *wavelet transform*
- Gaussian Pyramids have all sorts of applications in computer vision
 - We'll talk about these later in the course

"Gaussian" Pyramid

"Laplacian" Pyramid

 Created from Gaussian pyramid by subtraction
 L_I = G_I - expand(G_{I+1})

Octaves in the Spatial Domain Lowpass Images

Bandpass Images

Pyramids

- Many applications
 - small images faster to process
 - good for multiresolution processing
 - compression
 - progressive transmission
- Known as "MIP-maps" in graphics community
- Precursor to wavelets
 - Wavelets also have these advantages

Pyramid Blending

 Burt, P. J. and Adelson, E. H., <u>A multiresolution spline with applications to image</u> mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

Questionnaire

- I want simpler and more intuitive explanations
- I want more technique details
- The current method is good to me
- Other comments on the lectures or the assignments?