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Abstract 

1. Introduction 
Foreground extraction in still images plays a key role in 

vision applications [1]. We present a weakly supervised 
foreground extraction framework that gives promising 
solutions in a broadly applicable environment. The pipeline 
is illustrated in Figure 1. Under the assumption that a 
bounding-box mask is able to provide sufficient statistical 
information about the background, we treat the task as a 
figure-ground (f-g) classification on the over-segmented 
patches generated by the adaptive mean-shift algorithm [2]. 
We model all the region patches as multivariate normal 
distributions in a 5D joint color-spatial feature space. Two 
novel probability distances are defined to measure the 
similarities and new labels are assigned progressively by 
statistical distance comparison. Multiple hypotheses are 
output to add the chance of success. This scheme avoids the 
trouble of parameter tuning and makes it possible to fully 
enjoy the favorable characteristics of the mean-shift 
algorithm in a direct and intuitive manner. It overcomes 
many drawbacks of state-of-the-art techniques and 
generates surprisingly good results for challenging images. 
The main contribution is a very simple model equipped with 
two powerful distance measures, which leads to efficient 
solving procedure and excellent results. 

2. A figure-ground classification framework 
We call our algorithm a weakly supervised one because it 

merely relies on interactive mask assigning and need no 
other a prior knowledge. Briefly speaking, a mask 
bounding-box is interactively assigned by the user as [1]. 
Either side of the box can be defined as the background 
mask. The complement of the background mask makes the 
foreground mask. This mask definition flexibly handles 
different cases of partially-inside foreground. Some 
example bounding-boxes are illustrated in Figure 1 and 2. 

2.1. Patch making: adaptive mean-shift 
Defining the segmentation as the grouping of 

non-overlapping regions instead of pixels has become a 
popular approach due to its advantages in information 
transfer and computational efficiency. We choose 
mean-shift as our super-pixel generator because mean-shift 
patches are easier to describe statistically. The two 
bandwidth parameters hs/hr are adaptively initialized using 
the relationship between the bandwidth parameters and the 
covariance matrix of the multivariate distribution [3]. 
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Figure 1. Adaptive figure-ground classification solving pipeline 
(a) original image & mask;     (b) initial ms patches(hs=7,hr=6.0) 
(c) adaptive ms patches(hs=15,hr=2.7); (d) DM and DK selections 

We directly adopt the mean-shift 5D space as our feature 
space for similarity measure. In other words, we treat the 
3D color features and the 2D spatial features identically and 
do not give any priority to spatially adjacent patches. A 
feature vector in the 5D feature space is given by 

( )yxbaLf ,,,,=                 (1) 
where (x y) are the 2D pixel coordinates and (L a b) are the 
pixel values in the Lab color space. We model each 
mean-shift patch pi as a multivariate normal distribution 

),( iiN Σμ  in the 5D feature space. The 5D mean vector iμ  
and the 5*5 covariance matrix iΣ  are estimated using patch 
statistics. For accuracy all the patches are eroded with a 
radius-1 disk structuring element to avoid border effects. 

2.2. Similarity measure: statistical distance 
After the adaptive mean-shift, we label the patches 

overlapping with the background mask region as the 
background priors, and obtain an initial foreground map. 
The final foreground is obtained by gradually refining the 
initial foreground map via statistical distance comparison. 

The multivariate Gaussian model makes it easy to 
measure the probability distance between two mean-shift 
patches. It is well known that there exists a closed-form 
Kullback-Leibler(KL) divergence between two Gaussians 
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Equation (2) is not symmetric and thus inconvenient in 
similarity comparison. To overcome this drawback we 
suggest the following minimum KL-divergence to measure 
the statistical distance. 

)),(),,(min(),( 122121 NNKLNNKLNNDK =           (3) 
Equation (3) is a symmetrized variation of the KL 

divergence between two Gaussians. It has an intuitive 
interpretation that the two patches should be grouped 
together if either of them can be well described by the other. 

The computation of the logarithm term of Equation (2) is 
sometime numerically instable due to unreliable covariance 
matrixs 1Σ  or 2Σ  caused by singular patches. To remove 
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such instability we also define a more conservative 
minimum Mahalanobis distance. 
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Equation (4) can be deemed as a variation of the 

minimum KL divergence by retaining only the dominant 
mode comparison term. Both DM and DK treat the mutual 
“belong to” relationship well and the background holes can 
be reliably identified. Roughly speaking, there is no 
guarantee one of them is better than the other. But they 
indeed provide beneficial complements to each other. 
Therefore, in our approach we take both similarity 
measures and output multiple hypotheses. 

Provided a similarity measure D (either DM or DK), we 
can define the distance from a single patch p to a region set 
R by equation (5), and the distance between two region sets 
R1 and R2 by equation (6). 
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2.3. Binary classification: gradual labeling 
A full classification trial is composed of the following 

steps. First, the patches sufficiently far from the 
background priors are labeled as foreground patches. 
Second, the unlabeled patches are gradually merged into 
the foreground or the background group by comparing their 
distances to the existing foreground patches and 
background priors. Finally, an evaluation score is 
optimized to select the most promising solutions by 
maximizing the global distance (5) or (6) between 
background and foreground patches. 

3. Experiments 
We test our method on three popular datasets (100 

Weizmann 1-obj, 100 Weizmann 2-obj, and 50  grabcut test 
images) . Some examples are given in Figure 2. 

     

     

    

    
original(with mask)  ground truth         DM selection         DK selection 

Figure 2. Some Weizmann image set results. The blue boxes enclose 
foreground mask and the red box encloses the background mask. 

The algorithm outputs all candidates selected by both DM 
and DK and leaves the final decision to the user. It is 
powerful in labeling background holes or multiple 
connected components, which are sometime even missed in 
the manual-made truths. Table 1 reports the comparison 
with the grabcut algorithm [1] in terms of the 95% 
confidence intervals of the F-measure, F=2PR/(P+R), 
where P and R are the precision and recall values. 

Table 1. F-measure comparison of grabcut and f-g classification 
set(num) Weizmann 1obj(100) Weizmann 2obj(100) Grabcut dataset(50) 
grabcut 0.85± 0.035 0.80± 0.046 0.89± 0.036 
f-g classi. 0.93± 0.010 0.90± 0.021 0.94± 0.016 

We also evaluate the method on the Berkeley 
segmentation dataset. Figure 3 gives some results. The 
adaptive initialization works well and generates good 
mean-shift patches. The minimum KL divergence DK and 
the minimum Mahalanobis distance DM make beneficial 
complements and greatly raise the chance of finding good 
segmentations. 

     
117054(DM)  361084(DM)  370036(DK)   361010(DK) 
Figure 3. Some segmentation results of the Berkeley image set. 

The experiments reveal that the algorithm robustly 
propagates the background priors into the foreground mask 
region and reliably treats multi-connectivity, multi-hole 
scenes. As a typical example, almost all connected 
components and all holes in image 370036 are successfully 
identified. Such scenes are difficult for other schemes 
unless additional efforts are involved. 

4. Conclusion 
An adaptive figure-ground classification algorithm is 

proposed to do foreground extraction from bounding-box 
based background priors. The similarity measure is defined 
as the probability distance between adaptively generated 
mean-shift patched in a 5D feature space. Multiple 
hypotheses are employed to add the chance of success. This 
method achieves great success for multi-connectivity, 
multi-hole scenes. 

A full paper with more details is given in reference [5]. 
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