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a b s t r a c t

Suppose that e is an edge of a graph G. Denote by me(G) the number of vertices of G that
are not equidistant from both ends of e. Then the vertex PI index of G is defined as the
summation ofme(G) over all edges e of G. In this paper we give the explicit expressions for
the vertex PI indices of four sums of two graphs in terms of other indices of two individual
graphs, which correct the main results in a paper published in Ars Combin. 98 (2011).
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1. Introduction

A topological index is a real number related to a molecular graph, which does not depend on the labeling or the pictorial
representation of a graph. Several indices have been defined and have found applications as means for modeling chemical,
pharmaceutical and other properties of molecules. TheWiener index, introduced in 1947 byWiener as the path number for
the characterization of alkanes, was the first topological index to be used in chemistry [18–20]. The Szeged index, introduced
byGutman [5], is closely related to theWiener index [6,10,11,14]. Since the Szeged index takes into account how the vertices
are distributed, it is natural to introduce an index that takes into account the distribution of edges. The PI index is a Szeged-
like index that takes into account the distribution of edges and a unique topological index related to parallelism of edges
too. The vertex PI index was introduced by Khalifeh et al. in [13]. Its definition is similar to that of the PI index, in that it
is additive, but now the distances of vertices from edges are considered. All indices mentioned above have many chemical
applications [1,3,7,9,16] and correlate with the physico-chemical properties and biological activities of a large number of
diverse and complex compounds [8,12].

Wiener indices, and hyper-Wiener indices and reverse Wiener indices for four new sums of two graphs were computed
in [4,17], respectively. Vertex PI indices of four sums of two graphs have been computed in [15], but the main results in [15]
are wrong. In this paper we deal with the errors in [15] and give the correct expressions for their vertex PI indices in terms
of other indices of two individual graphs.

2. Preliminaries

We first recall some operations on graphs in [2] (see Fig. 1).
Suppose that G = (V , E) is a connected graph, and refer to each vertex of V as a black vertex. Then we denote by S(G) the

graph obtained from G by inserting an additional vertex which is referred to as thewhite vertex in each edge of G. Two black
vertices in S(G) are related if they are adjacent in G; and two white vertices in S(G) are related if their corresponding edges
in G are adjacent. Denote by R(G) and Q (G) the graphs obtained from S(G) by joining every pair of related black vertices
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Fig. 1. A graph G and S(G), R(G),Q (G), T (G).

and every pair of related white vertices, respectively. Suppose that graphs X and Y have the same vertex set V . Then their
union is the graph X ∪ Y with vertex set V and edge set E(X) ∪ E(Y ); in particular, we denote by T (G) the union of R(G) and
Q (G).

Let G1 and G2 be two connected graphs. For convenience, in what followswe denote V (Gi) and E(Gi) by Vi and Ei, i = 1, 2,
respectively. Next we carry out further operations on these graphs.

Let F be one of the symbols S, R,Q or T . We denote by G1 +F G2 the F-sum of G1 and G2 for which the set of vertices
V (G1 +F G2) = (V1


E1) × V2 and two vertices (u1, u2) and (v1, v2) of G1 +F G2 are adjacent if and only if u1 = v1 ∈ V1

and u2v2 ∈ E2 or u2 = v2 and u1v1 ∈ E(F(G1)).
Note that G1 +F G2 has |V2| copies of the graph F(G1), and we may label these copies with vertices of G2. The vertices in

each copy have two situations: the vertices in V1 which are still referred to as black vertices and the vertices in E1 which are
still referred to as white vertices. Nowwe join only black vertices with the same name in F(G1) in which their corresponding
labels are adjacent in G2.

Suppose that x and y are two vertices of a connected graph G. Then the distance between x and y, d(x, y|G), is the length
of the shortest path between x and y. The following three lemmas are from Ref. [4] and will be used repeatedly in the proof
of our main results.

Lemma 2.1. Let G1 and G2 be two connected graphs and v = (v1, v2) be a vertex of G1 +F G2. Then:

(a) If v1 ∈ V1 (that is v is a black vertex), then for all u = (u1, u2) ∈ V (G1 +F G2) we have

d(u, v|G1 +F G2) = d(u1, v1|F(G1)) + d(u2, v2|G2).

(b) If v1 ∈ E1, then for all u = (u1, u2) ∈ V (G1 +F G2) with u2 ≠ v2, u1 = u1
1v

1
1 ∈ E1 and u1

1, v
1
1 ∈ V1 (that is v and u are

white vertices in different copies of F(G1)), we have

d(u, v|G1 +F G2) = 1 + d(u2, v2|G2) + min{d(u1
1, v1|F(G1)), d(v1

1, v1|F(G1))}.

(c) If v1 ∈ E1, then for all u = (u1, u2) ∈ V (G1 +F G2), where u2 = v2 and u1 ∈ E1 (that is v and u are white vertices in the
same copy of F(G1)), we have

d(u, v|G1 +F G2) = d(u1, v1|F(G1)).

Lemma 2.2. Let G1 and G2 be two connected graphs, u1, v1 ∈ E1, u2, v2 ∈ V2 and F = S or R. Then for u = (u1, u2) and
v = (v1, v2) in G1 +F G2 with u2 ≠ v2, we have

d(u, v|G1 +F G2) =


2 + d(u2, v2|G2) if u1 = v1,
d(u1, v1|F(G1)) + d(u2, v2|G2) if u1 ≠ v1.

Lemma 2.3. Let G1 and G2 be two connected graphs, u1, v1 ∈ E1, u2, v2 ∈ V2 and F = Q or T . Then for u = (u1, u2) and
v = (v1, v2) in G1 +F G2 with u2 ≠ v2, we have

d(u, v|G1 +F G2) =


2 + d(u2, v2|G2) if u1 = v1,
1 + d(u1, v1|F(G1)) + d(u2, v2|G2) if u1 ≠ v1.
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3. The main results

Let e = uv be an edge of a connected graphG. Thenwedenote byMeu(e|G) (orMev(e|G)) the set of vertices ofG lying closer
to the vertex u (or v) than to v (or u). If we denote by |A| the cardinality of a set A, and suppose that meu(e|G) = |Meu(e|G)|
and mev(e|G) = |Mev(e|G)|, then the vertex PI index of G, PIv , is defined as the summation of meu(e|G) + mev(e|G) over all
edges e of G. We denote by Me(G) the set of vertices of G that are not equidistant from both ends of the edge e and suppose
thatme(G) = |Me(G)|. Thenme(G) = meu(e|G) +mev(e|G) and PIv =

∑
e∈E(G) me(G). In this section we will give the explicit

expressions for PIv(G1 +F G2) in terms of other indices of F(G1) and G2.
For convenience, we introduce the following notation. Set

A := {e = uv ∈ E(G1 +F G2) : u = (u1, u2), v = (v1, v2) ∈ V1 × V2}

B := {e = uv ∈ E(G1 +F G2) : u = (u1, u2) ∈ V1 × V2, v = (v1, v2) ∈ E1 × V2}

C := {e = uv ∈ E(G1 +F G2) : u = (u1, u2), v = (v1, v2) ∈ E1 × V2}.

Then E(G1 +F G2) = A ∪ B ∪ C . Suppose that A =
∑

e∈A me(G1 +F G2), B =
∑

e∈B me(G1 +F G2) and C =
∑

e∈C
me(G1 +F G2). Then PIv(G1 +F G2) = A + B + C.

Suppose that e is an edge of a graph G. Then we denote by Me(G) the set of vertices of G that are equidistant from both
ends of e, and suppose that me(G) = |Me(G)| and m(G) =

∑
e∈E(G)

me(G).

Theorem 3.1. Let G1 and G2 be two connected graphs. Then

PIv(G1 +S G2) = (|V1| + |E1|)(|V1|PIv(G2) + 2|E1| |V2|
2).

Proof. By the definition of the S-sum, we know that C = ∅, and soC = 0. Next we only need to computeA andB to obtain
PIv(G1 +S G2).

Suppose that e = uv ∈ A . Then, by the definition of the S-sum, we know that u1 = v1 and e2 = u2v2 ∈ E(G2). For any
w = (w1, w2) ∈ V (G1 +S G2), by Lemma 2.1(a), we have

d(w, u|G1 +S G2) = d(w1, u1|S(G1)) + d(w2, u2|G2);

d(w, v|G1 +S G2) = d(w1, v1|S(G1)) + d(w2, v2|G2).

From the above two equations, we know that w ∈ Me(G1 +S G2) if and only if w2 ∈ Me2(G2). Therefore, me(G1 +S G2) =

(|V1| + |E1|)(|V2| − me2(G2)), and further we obtain

A = |V1|(|V1| + |E1|)PIv(G2).

Suppose that e = uv ∈ B. Then, by the definition of the S-sum, we know that u2 = v2 and u1 is an end vertex of v1 in
G1. If w = (w1, w2) ∈ V1 × V2 then, by Lemma 2.1(a), we have

d(w, u|G1 +S G2) = d(w1, u1|S(G1)) + d(w2, u2|G2);

d(w, v|G1 +S G2) = d(w1, v1|S(G1)) + d(w2, v2|G2).

Since u1 is an end vertex of v1 in G1, d(w1, u1|S(G1)) ≠ d(w1, v1|S(G1)). Note that u2 = v2. From the above two equations,
we know that w ∉ Me(G1 +S G2).

If w ∈ E1 × V2 then, by Lemmas 2.1(a) and 2.2, we have

d(w, u|G1 +S G2) = d(w1, u1|S(G1)) + d(w2, u2|G2);

d(w, v|G1 +S G2) =


2 + d(w2, v2|G2) if w1 = v1,
d(w1, v1|S(G1)) + d(w2, v2|G2) if w1 ≠ v1.

Note once more that u1 is an end of v1 in G1. We know that d(w1, u1|S(G1)) = 1 if w1 = v1, and d(w1, u1|S(G1)) ≠

d(w1, v1|S(G1)) otherwise. Since u2 = v2, from the above two equations, we can see that w ∉ Me(G1 +S G2).
From the above argument we know that Me(G1 +S G2) = φ if e ∈ B. Therefore,

B = |V2|(|V1| + |E1|) · 2|E1| |V2|

= 2|E1| |V2|
2(|V1| + |E1|).

Hence we obtain

PIv(G1 +S G2) = A + B = (|V1| + |E1|)(|V1|PIv(G2) + 2|E1| |V2|
2). �

Theorem 3.2. Let G1 and G2 be two connected graphs. Then

PIv(G1 +R G2) = |V1|(|V1| + |E1|)PIv(G2) + |V2|
2PIv(R(G1)).

Proof. By the definition of the R-sum, we know that C = ∅, and soC = 0. Next we only need to computeA andB to obtain
PIv(G1 +R G2).
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Suppose that e = uv ∈ A . Then we further set

A1 := {e = uv : u = (u1, u2), v = (v1, v2) ∈ V1 × V2, u1 = v1 and e2 = u2v2 ∈ E(G2)};

A2 := {e = uv : u = (u1, u2), v = (v1, v2) ∈ V1 × V2, u2 = v2 and e1 = u1v1 ∈ E(R(G1))}.

Then A = A1 ∪ A2. Suppose that A1 =
∑

e∈A1
me(G1 +R G2) and A2 =

∑
e∈A2

me(G1 +R G2). Then A = A1 + A2.
As in the former proof of Theorem 3.1, we can see that A1 = |V1|(|V1| + |E1|)PIv(G2).
For any e = uv ∈ A2 and w = (w1, w2) ∈ V (G1 +R G2), by Lemma 2.1(a), we have

d(w, u|G1 +R G2) = d(w1, u1|R(G1)) + d(w2, u2|G2);

d(w, v|G1 +R G2) = d(w1, v1|R(G1)) + d(w2, v2|G2).

Since u2 = v2, we can easily see that w ∈ Me(G1 +R G2) if and only if w1 ∈ Me1(R(G1)). Therefore, me(G1 +R G2) =

|V2|(|V1| + |E1|) − |V2|me1(R(G1)), and we further have

A2 = |E1| |V2|
2(|V1| + |E1|) − |V2|

2
−

e1∈E(R(G1))

me1(R(G1)).

Hence, we obtain A = (|V1| + |E1|)(|V1|PIv(G2) + |E1| |V2|
2) − |V2|

2 ∑
e1∈E(R(G1))

me1(R(G1)).
Suppose that e = uv ∈ B. Then, by the definition of the R-sum, we know that u2 = v2,e1 = u1v1 ∈ E(R(G1)) and u1 is

an end vertex of v1 in G1. If w = (w1, w2) ∈ V1 × V2 then, by Lemma 2.1(a), we have

d(w, u|G1 +R G2) = d(w1, u1|R(G1)) + d(w2, u2|G2);

d(w, v|G1 +R G2) = d(w1, v1|R(G1)) + d(w2, v2|G2).

Since u2 = v2 and u1 is an end of v1 in G1, from the above equations, we know that w ∈ Me(G1 +R G2) if and only if
w1 ∈ Me1(R(G1)).

If w ∈ E1 × V2 then, by Lemmas 2.1(a) and 2.2, we have

d(w, u|G1 +R G2) = d(w1, u1|R(G1)) + d(w2, u2|G2);

d(w, v|G1 +R G2) =


2 + d(w2, v2|G2) if w1 = v1,
d(w1, v1|R(G1)) + d(w2, v2|G2) if w1 ≠ v1.

Since u2 = v2, from the equations, we observe that if w1 = v1 then d(w1, u1|S(G1)) = 1, and so w ∉ Me(G1 +R G2);
and if w1 ≠ v1 then we have w ∈ Me(G1 +R G2) if and only if w1 ∈ Me1(R(G1)). Hence, me(G1 +R G2) = |V2|(|V1| + |E1|) −

|V2|me1(R(G1)), which shows that

B = 2|E1| |V2|
2(|V1| + |E1|) − |V2|

2
−

e1∈E(R(G1))

me1(R(G1)).

Therefore, we have

PIv(G1 +R G2) = A + B = |V1|(|V1| + |E1|)PIv(G2) + |V2|
2PIv(R(G1)). �

Suppose that x and e = uv are a vertex and an edge of a connected graph G, respectively. Then the distance from e to x is
the smaller of d(u, x|G) and d(v, x|G). Denote by Neu(e|G) (or Nev(e|G)) the set of edges in G lying closer to the vertex u (or
v) than the vertex v (or u), and suppose that neu(e|G) = |Neu(e|G)| and nev(e|G) = |Nev(e|G)|. Recall that the Padmakar–Ivan
index of a graph G, PI(G), is the summation of neu(e|G) + nev(e|G) over all the edges e = uv of G. In this definition, edges
equidistant from both ends of the edge e are not counted. One of the oldest graph invariants is the first Zagreb index, which
was introduced by Gutman and Trinajstić [8], and is defined asM1(G) =

∑
v∈V (G) deg(v)2 for a graph G.

Theorem 3.3. Let G1 and G2 be two connected graphs. Then

PIv(G1 +Q G2) = |V1|(|V1| + |E1|)PIv(G2) − 2|V2|(|V2| − 1)PI(G1) + |V2|
2PIv(Q (G1)) + 2|E1|2|V2|(|V2| − 1)

− |V2|(|V2| − 1)M1(G1).

Proof. Suppose that e = uv ∈ A . Then, as in the former proof of Theorem 3.1, we can obtain

A = |V1|(|V1| + |E1|)PIv(G2).

Suppose that e = uv ∈ B. Then, by the definition of the Q -sum, we know that u2 = v2, e1 = u1v1 ∈ E(Q (G1)) and u1 is
an end of v1 in G1. If w = (w1, w2) ∈ V1 × V2 then, by Lemma 2.1(a), we have

d(w, u|G1 +Q G2) = d(w1, u1|Q (G1)) + d(w2, u2|G2);

d(w, v|G1 +Q G2) = d(w1, v1|Q (G1)) + d(w2, v2|G2).

Since u2 = v2, from the above equations, we observe that w ∈ Me(G1 +Q G2) if and only if w1 ∈ Me1(Q (G1)). �
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Claim 1. Suppose that v1 = u1u′

1 is an edge of a connected graph G1, and suppose that e1 = u1v1 ∈ E(Q (G1)). Then, for
w1 ∈ V1, we have w1 ∈ Me1(Q (G1)) if and only if w1 ∈ Mv1u1(v1|G1) \ {u1} or w1 ∈ Mv1(G1).

Proof. Suppose that w1 ∈ Me1(Q (G1)). If w1 ∈ Mv1u′
1
(v1|G1) and we let Pt = x1x2 · · · xt be the shortest path between

w1 and u′

1 in G1, then Pt+1 = x1x2 · · · xtxt+1 is the shortest path between w1 and u1 in G1, where x1 = w1, xt = u′

1 and
xt+1 = u1. Thus, by the definition of Q (G1), we can see that P ′

t+1 = w1y1y2 · · · yt−1v1 is the shortest path between w1
and v1 in Q (G1) and that P ′

t+2 = w1y1y2 · · · yt−1v1u1 is the shortest path between w1 and u1 in Q (G1), where yi = xixi+1

∈ E1, i = 1, 2, . . . , t − 1. This contradicts w1 ∈ Me1(Q (G1)), and so w1 ∈ Mv1u1(v1|G1) \ {u1} or w1 ∈ Mv1(G1).
If w1 ∈ Mv1u1(v1|G1) \ {u1}, and we let Pk = q1q2 · · · qk be the shortest path between w1 and u1 in G1, then Pk+1 =

q1q2 · · · qkqk+1 is the shortest path between w1 and u′

1 in G1, where q1 = w1, qk = u1 and qk+1 = u′

1. Thus, by the definition
of Q (G1), we can see that P ′

k+1 = w1z1z2 · · · zk−1u1 is the shortest path between w1 and u1 in Q (G1) and that P ′′

k+1 =

w1z1z2 · · · zk−1v1 is the shortest path between w1 and v1 in Q (G1), where zi = qiqi+1 ∈ E1, i = 1, 2, . . . , k− 1. This implies
that w1 ∈ Me1(Q (G1)). Similarly, if w1 ∈ Mv1(G1), then we can prove that w1 ∈ Me1(Q (G1)). Hence, Claim 1 is complete.

If w = (w1, w2) ∈ E1 × V2 and w2 = v2 then, by Lemma 2.1(a) and (c), we have

d(w, u|G1 +Q G2) = d(w1, u1|Q (G1));

d(w, v|G1 +Q G2) = d(w1, v1|Q (G1)).

These two equations show that w ∈ Me(G1 +Q G2) if and only if w1 ∈ Me1(Q (G1)). �

Claim 2. Suppose that v1 = u1u′

1 is an edge of a connected graph G1, and suppose that e1 = u1v1 ∈ E(Q (G1)). Then, for
w1 ∈ E1, we have w1 ∈ Me1(Q (G1)) if and only if w1 ∈ Nv1u1(v1|G1) or w1 ∈ Nv1(G1) \ {v1}, whereNv1(G1) is the set of edges
of G1 that are equidistant from both ends of v1.

Proof. By a method similar to that of the proof of Claim 1, we can prove that Claim 2 is true.
If w = (w1, w2) ∈ E1 × V2 and w2 ≠ v2 then, by Lemmas 2.1(a) and 2.3, we have

d(w, u|G1 +Q G2) = d(w1, u1|Q (G1)) + d(w2, u2|G2);

d(w, v|G1 +Q G2) =


2 + d(w2, v2|G2) if w1 = v1,
1 + d(w1, v1|Q (G1)) + d(w2, v2|G2) if w1 ≠ v1.

Since u1 is an end of v1 in G1, if w1 = v1 then d(w1, u1|Q (G1)) = 1, and so w ∉ Me(G1 +Q G2); and if w1 ≠ v1 then,
by the definition of Q (G1), we have d(w1, u1|Q (G1)) = d(w1, v1|Q (G1)) or d(w1, u1|Q (G1)) = 1 + d(w1, v1|Q (G1)). This
implies that w ∈ Me(G1 +Q G2) if and only if w1 ∈ Me1(Q (G1)).

Suppose thatnv1(G1) = |Nv1(G1)|. Then, by Claims 1 and 2, we have for e ∈ B

me(G1 +Q G2) = |V2|(|V1| + |E1|) − |V2|(mv1u1(v1|G1) − 1 + mv1(G1)) − (nv1u1(v1|G1) +nv1(G1) − 1)
− (|V2| − 1)(|E1| − nv1u1(v1|G1) −nv1(G1))

= |V1| |V2| + |V2| + |E1| + 1 − |V2|(mv1u1(v1|G1) + mv1(G1)) + (|V2| − 2)(nv1u1(v1|G1) +nv1(G1)).

Therefore, by the definition of PI(G1), we obtain

B = 2|E1| |V2|(|E1| |V2| + |V2| − |E1| + 1) + |V2|
2PIv(G1) − |V2|(|V2| − 2)PI(G1).

Suppose that e = uv ∈ C . Then by the definition of the Q -sum, we have u2 = v2, and e1 = u1v1 is an edge of Q (G1).
If w = (w1, w2) ∈ V1 × V2 then, by Lemma 2.1(a), we have

d(w, u|G1 +Q G2) = d(w1, u1|Q (G1)) + d(w2, u2|G2);

d(w, v|G1 +Q G2) = d(w1, v1|Q (G1)) + d(w2, v2|G2).

We can easily see that w ∈ Me(G1 +Q G2) if and only if w1 ∈ Me1(Q (G1)).
If w = (w1, w2) ∈ E1 × V2 and w2 = u2 then, by Lemma 2.1(c), we have

d(w, u|G1 +Q G2) = d(w1, u1|Q (G1));

d(w, v|G1 +Q G2) = d(w1, v1|Q (G1)).

These two equations show that w ∈ Me(G1 +Q G2) if and only if w1 ∈ Me1(Q (G1)).
If w = (w1, w2) ∈ E1 × V2 and w2 ≠ u2, then we distinguish the following three cases.
Case 1. Suppose that w1 = u1. Then, by Lemma 2.3, we have

d(w, u|G1 +Q G2) = 2 + d(w2, u2|G2);

d(w, v|G1 +Q G2) = 1 + d(w1, v1|Q (G1)) + d(w2, v2|G2).

Note that d(w1, v1|Q (G1)) = 1 since w1 = u1. So, in this case, w ∈ Me(G1 +Q G2).
Case 2. Suppose that w1 = v1. Then, as in the proof of Case 1, we can see that w ∈ Me(G1 +Q G2).
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Case 3. Suppose that w1 ≠ v1 and w1 ≠ u1. Then, by Lemma 2.3, we have

d(w, u|G1 +Q G2) = 1 + d(w1, u1|Q (G1)) + d(w2, u2|G2);

d(w, v|G1 +Q G2) = 1 + d(w1, v1|Q (G1)) + d(w2, v2|G2).

We can easily see that w ∈ Me(G1 +Q G2) if and only if w1 ∈ Me1(Q (G1)).
Thus, by the above argument, we know that for e ∈ C

me(G1 +Q G2) = |V2|(|V1| + |E1|) − 2(|V2| − 1) − |V2|me1(Q (G1)).

Therefore, by the definitions ofM1(G1) and PI(G1), combining Claims 1 and 2 we obtain

C = |V2|
−

e1∈E(Q (G1))

(|V2|(|V1| + |E1|) − 2(|V2| − 1)) − |V2|
2

−
e1∈E(Q (G1))

me1(Q (G1))

= |V2|
2

−
e1∈E(Q (G1))

me1(Q (G1)) − 2|V2|(|V2| − 1)

1
2
M1(G1


− |E1|)

= |V2|
2(PIv(Q (G1)) − PI(G1) − PIv(G1) − 4|E1|) − |V2|(|V2| − 1)(M1(G1) − 2|E1|).

Hence, we finally obtain

PIv(G1 +Q G2) = A + B + C = |V1|(|V1| + |E1|)PIv(G2) − 2|V2|(|V2| − 1)PI(G1) + |V2|
2PIv(Q (G1))

+ 2|E1|2|V2|(|V2| − 1) − |V2|(|V2| − 1)M1(G1). �

Theorem 3.4. Let G1 and G2 be two connected graphs. Then

PIv(G1 +T G2) = |V1|(|V1| + |E1|)PIv(G2) − 2|V2|(|V2| − 1)PI(G1) + |V2|
2PIv(T (G1)) − |V2|(|V2| − 1)M1(G1)

+ 2|E1|2|V2|(|V2| − 1).

Proof. Suppose that e = uv ∈ A , and suppose that e1 = u1v1. Then, as in the former proof of Theorem 3.2, we have

A = (|V1| + |E1|)(|V1|PIv(G2) + |E1| |V2|
2) − |V2|

2
−

e1∈E(T (G1))

me1(T (G1))

= |V1|(|V1| + |E1|)PIv(G2) + |V2|
2

−
e1∈E(T (G1))

me1(T (G1)).

Suppose that e = uv ∈ B. If w = (w1, w2) ∈ V1 × V2, then, like in the middle part of the proof of Theorem 3.3, we can
observe that w ∈ Me(G1 +T G2) if and only if w1 ∈ Me1(T (G1)). �

Claim 3. Suppose that v1 = u1u′

1 is an edge of a connected graph G1, and suppose thate1 = u1v1 ∈ E(T (G1)). Then, for w1 ∈ V1,
we have w1 ∈ Me1(T (G1)) if and only if w1 ∈ Mv1u′

1
(v1|G1).

Proof. By a method similar to that of the proof of Claim 1, we can prove that Claim 3 is true.
If w = (w1, w2) ∈ E1 × V2 and w2 = v2, then like in the middle part of the proof of Theorem 3.3, we can see that

w ∈ Me(G1 +T G2) if and only if w1 ∈ Me1(T (G1)). �

Claim 4. Suppose that v1 = u1u′

1 is an edge of a connected graph G1, and suppose thate1 = u1v1 ∈ E(T (G1)). Then, for w1 ∈ E1,
we have w1 ∈ Me1(T (G1)) if and only if w1 ∈ Nv1u1(v1|G1) or w1 ∈ Nv1(G1) \ {v1}.

Proof. By a method similar to that of the proof of Claim 1, we can prove that Claim 4 is true.
Suppose that w = (w1, w2) ∈ E1 × V2 and w2 ≠ u2. Like in the middle part of the proof of Theorem 3.3, we can obtain

w ∉ Me(G1 +T G2) if w1 = v1, and otherwise w ∈ Me(G1 +T G2) if and only if w1 ∈ Me1(T (G1)).
Thus, by Claims 3 and 4, we have for e ∈ B

me(G1 +T G2) = |V2|(|V1| + |E1|) − |V2|mv1u′
1
(v1|G1) + 1 + nv1u′

1
(v1|G1) − (|V2| − 1)nv1u′

1
(v1|G) − |E1|

= |V2|(|V1| + |E1|) − |E1| + 1 − |V2|mv1u′
1
(v1|G1) − (|V2| − 2)nv1u′

1
(v1|G1).

Therefore, by the definition of PI(G1), we obtain

B = 2|E1| |V2|(|V1| |V2| + |E1| |V2| − |E1| + 1) − |V2|
2PIv(G1) − |V2|(|V2| − 2)PI(G1).

Suppose that e = uv ∈ C , and suppose that e1 = u1v1. Then, as in the last part of the proof of Theorem 3.3, we have

C = |V2|
2

−
e1∈E(T (G1))

me1(T (G1)) − |V2|(|V2| − 1)(M1(G1) − 2|E1|).
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Hence, we finally obtain

PIv(G1 +T G2) = A + B + C

= |V1|(|V1| + |E1|)PIv(G2) − 2|V2|(|V2| − 1)PI(G1) + |V2|
2PIv(T (G1)) − |V2|(|V2| − 1)M1(G1)

+ 2|E1|2|V2|(|V2| − 1). �

4. Postscript

The draft manuscript of a paper was published in Ars Combin. 98 (2011) without the present authors being aware of
this. Nowwe give a simple example to show that the main results in [15] are wrong. Let G1 and G2 be the paths on three and
two vertices, respectively. Then, by the definition of the vertex PI index, we can easily see that PIv(G1 +Q G2) = 106 and
PIv(G1 +T G2) = 122. But using the corresponding formulae in [15], we have PIv(G1 +Q G2) = 110 and PIv(G1 +T G2) = 222.
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