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Abstract—We propose a meshless method to simulate elastic
solids. Explicit integration methods are widely used in flu-
id/solid simulators for their efficiency, but these methods are
not unconditionally stable: without sufficient small timesteps,
simulated particles may move beyond range of each other,
resulting in simulation breakdown or other unexpected errors.
This problem which usually appears under large deformations
is called numerical fracture. We use anisotropic kernels to
reduce numerical fracture without resampling procedure. Dur-
ing each timestep, we update the anisotropic kernels from the
analysis of the strain tensor to capture the directions of the
deformation. Results illustrate that our method improves the
stability of the simulation with minimum computation cost.
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I. INTRODUCTION

Physically based solid simulation is an active topic in
computer graphics research and applications. Solid behavior
such as elasticity leads to many appealing visual effects
in animated films, virtual reality and video games. Since
the early work of [1], a large body of techniques has
been developed to simulate elastic objects. Among all the
methods, the Finite Element Method(FEM) is one of the
most popular techniques used in research and engineering
fields. However, the accuracy of FEM computation depends
on maintaining a high quality mesh which is sometimes
costly and difficult to maintain. Meshless methods were
developed with the objective of eliminating part of the
difficulties and have been applied to graphics successfully.
The unstructured scheme of meshless methods is quite
suitable for simulating topology changing phenomenon such
as running fluid, fluid-fluid fluid-solid interaction. Recent
years, it is also a appealing topic to simulate elastic solids
with meshless methods [2].

In meshless methods, objects are treated as a set of
particles, each of which has local influence only on nearby
neighbors(shown in figure 1), quantitively the influence
depends on kernel functions. To animate the object, implicit
methods and explicit methods are used. Implicit methods
are unconditionally stable, but are also complex to imple-
ment and computational expensive. Considering efficiency
and simplicity, explicit methods are used intensively in
fluid/solid simulators. However, explicit methods are not
unconditionally stable. Under large deformations, particles

may lose neighboring informations which are important for
computing elasticity, this leads to simulation breakdown
or other unexpected errors. This problem is referred to as
numerical fracture.

In this work, our main contribution is a meshless frame-
work using well-designed anisotropic kernels to reduce
numerical fracture. The simple but effective idea is that we
expand the kernels along the tensile directions, thus maintain
the neighboring information as much as possible. The exper-
imental results illustrate that our anisotropic kernels improve
the stability of elastic simulation. Moreover, the anisotropic
kernels we propose can be treated as a general technique,
which can be integrate into different meshless methods to
simulate more potential physical behaviors.

II. RELATED WORK

Our work is closely related to physically based solid
simulation and meshless methods in computer graphics.

To simulate elastic solids, a large variety of approaches
have been proposed by researchers. Some representative
work includes: Finite Difference Method[1], the Boundary
Element Method (BEM) [3], the Finite Element Method
(FEM) [4], the Finite Volume Method(FVM) [5], mass-
spring systems [6]. For details about physically based sim-
ulation techniques, we refer the interested readers to two
surveys [7], [8]. Here we pay more attention to meshless
techniques in computer graphics.

Meshless methods such as smooth particle hydrodynam-
ics is quite popular in fluid simulation [9], fluid-solid
interaction[10], [11] and granular material simulation [12],
[13]. The unstructured nature of meshless methods makes
them good choices for simulating frequently topology-
changing objects such as fluid. In recent years, researchers
also try to simulate solid with meshless methods. [14]
models soft inelastic material using particle systems. [15]
introduces SPH method to model deformable solids and
later extended it to handle space and time adaptive sampling
[16]. By extending fluid simulation with viscoelasticity and
viscoplasticity, toothpaste-like solid can be simulated in
[17], [18], [19]. More realistic animation is achieved using
computational mechanics[20], [21], [22]. [21] uses a Moving
Least Square method to compute deformation gradient. Their
method is capable of simulating a wide range of elastically
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and plastically deformable objects, however, the method de-
mands that each particle had at least three neighbors in non-
degenerate locations. [23] couples meshless finite element
formulation and keyframe targeting, motion control of the
simulated deformable objects is achieved at interactive rates.
[24] replaces [21]’s MLS method by SPH formation, which
has the advantage of handling coarsely sampled or even
coplanar particle configuration. However, their formation is
not rotationally invariant, which leads to erroneous rotation.
[25] solves the incorrect rotation problem in [24] from a
co-rotational point of view, that is the similar idea which
has been proposed in [26]. [27] introduces an interactive
technique called shape matching which is later improved by
[28] and [29]. [30] also propose a novel method to compute
deformation gradient and no rest configuration is required.
As they diagonalize the elastic deformation using singular
value decomposition, the forces computed are rotationally
invariant. More recently, [2] developes an accurate unified
treatment of elastica. They derive a new quadrature rule for
volumetric deformation fields which offers unified treatment
when simulating spanning rods, shells, and solids. [31]
presents a new method to reconstruct smooth surface from
particles, their method is able to reduce surface blobbing
using anisotropic kernels. For more general techniques about
meshless methods, we refer the readers to [32].

Technically, our method is most related to [33], [34].
[34] defines the kernels from geometric features, but their
kernels are still isotropic. [33] derives the anisotropic kernels
in rate form, but their method depends on accurate time
integration which is computational expensive. Our method
directly updates the anisotropic kernels according to analysis
of the strain tensors, no accurate kernel integration is needed.

Figure 1. The elasticity for a specific particle is computed by nearby
neighboring particles in the range of the kernel(shown in read circle).

III. OVERVIEW

Figure 2 shows the pipeline of our meshless simulation
framework. In each timestep, particles are moved to new po-
sitions by explicit time integration. Unlike previous method,
we add ’Update Kernel’ step to compute anisotropic kernels
according to current strain tensor. Then stress and external
forces(gravity, collision force) are computed to accelerate the

particles. We show the implementation details and results in
section V.

Figure 2. The overview of our simulation pipeline. We dynamically update
the anisotropic kernels for elastic computation.

IV. MESHLESS ELASTICITY USING ANISOTROPIC
KERNELS

In computer graphics, meshless methods receive a lot
of attention due to its potential in eliminating the costly
effort of mesh generation, which is a common operation
in finite element analysis. After success application in fluid
simulation, recent research is active in exploring ways to
simulate solids with meshless methods. Comparing to tradi-
tional finite element methods, elastic solids simulated with
meshless methods can be more easily to extended to simulate
phenomenon such as elastoplasticity, viscoelasticity, fracture
and fluid-solid interaction.

To validate our anisotropic kernels, we implemented an
elastic simulator based on Corotated SPH[25]. Other simu-
lator frameworks such as MLS([21]) can use our anisotropic
kernels in a similar way.

A. Anisotropic Kernels

The Smooth Particle Hydrodynamics takes the object as
discrete particles pi with position xi, mass mi, volume Vi
and material density ρi = mi/Vi. Continuous property A
(such as force, pressure) and its corresponding gradient is
computed from the discrete particles using SPH formation:

A(x) =
∑
j

mj

ρj
AjW (r, h) (1)

where j is the index of the neighboring particle pj
at distance below h from x, r = x− xj is the distance
vector. Choice can be made from many different kernel
functions according to specific application, for more detail
on W (x− xj, h), see [35], [36]. Although it is free to
choose from different kernels, the computation of elastic
forces need more consideration. When particles move closer
to each other, a larger elastic force is needed to repel the
particles from each other. So the kernel function must have
non-zero gradient value when distance between particles fall
to zero. For this reason, we choose the Spiking kernel used
in [15] for elastic force computation.

W (r, h) =
15

πh3
(1− ‖r‖

h
)3 (2)
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To construct the anisotropic kernels, we replace the scalar
smoothing length h in equation (1) by a 3 by 3 tensor G.

A(x) =
∑
j

mj

ρj
AjW (r,G), (3)

with anisotropic version of equation (2) as

W (r,G) =
15

π
‖G‖(1− ‖Gr‖)3 (4)

Obviously the isotropic kernel can be treated as a special
case of the anisotropic kernel by G = h−1I where I is
Identity matrix. The anisotropic tensor G can be thought of
as a transform matrix that transform distance vector r to Gr.
We also normalize A(x) to satisfy the unity property for a
specific G. We show how G is defined in section IV-C.

B. Continuum Equations for Elastic Solid

In this section, we introduce the basic equations for elastic
force computation.

When a solid object deforms, each point in the ma-
terial space moves from the original position x0 to a
new position x. The displacement field can be derived as
u = x− x0 = [u,v,w]T. The Jacobian of the transform is
given by J = uT + I with I standing for the identity matrix.
The strain can be computed via the non-linear Green-Staint-
Venant strain tensor

ε =
1

2
(JTJ− I) (5)

or its linearized Cauchy-Green tensor

ε =
1

2
(JT + J− I) (6)

for isotropic materials, the stress is computed through the
Hooke constitutive law σ = Cε which indicates the stress
and strain is linearly related. C is a 6 by 6 matrix which
only depends on Young’s Modulus and Poisson Ratio.

For each particle i with its strain and stress, we can
calculate its strain energy Ui as

Ui = Vi
1

2
(εi · σi) (7)

where Vi represent the volume of particle i such that
Vi = mi/ρi. The elastic force that particle i exerts on its
neighboring particle j can then be defined as the negative
of the strain energy with respect to displacement.

Fji = −∇uj
Ui = −Vi(I+∇ui

T )σidij (8)

and dij is defined by

dij = Vj∇W (xij,G) (9)

To compute the ∇uT so as to compute elastic force,
several meshless methods exist. [21], [37] use a MLS
mothod to get the deformation gradient, but the method will
fail when the particles are scatterd in a coplanar or collinear

configuration. [24] instead use a SPH formation, but they did
not take rigid rotation into consideration when computing
deformation gradient, so erroneous forces arise and prevent
the solid from correct rotation. [25] derive the method from
[24] and solve the rotation problem in a corotational way.
We will follow the method of [25], but with our anisotropic
kernel G.

∇ui =
∑
j

Vjuji∇W (xij,G) (10)

where uji is the vector between neighboring particles i
and j

uji = uj − ui = R−1(xj − xi)− (x0
j − x0

i ) (11)

The rotation matrix R which indicates the rigid rotation
between the particle configuration and the rest configuration.
R is computed as

Apqi
=
∑
j

(xj − xi)(x
0
j − x0

i )
T (12)

Apqi
is computed according to the local neighboring

particles of particle i. Apq has one rotation part R and one
symmetric part S such that Apq = RS and R can be ex-
tracted by stable SVD[25], [30] or polar decomposition[27].
We compute Apqi

using the initial neighboring particles by
the a initial neighbor table which is stored when simulation
starts.

Finally the elastic force Fi for each particle is computed
in a symmetrized form

Fi =
∑
j

−Rifji +Rjfij
2

(13)

C. Updating Anisotropic Kernels

The basic idea of constructing the anisotropic kernels is
to expand the kernels along tensile directions. Under large
stretch deformation, the new constructed kernel can still
cover the original neighboring particles to some extent, this
reduces the chance of numerical fracture.

Supposing we are computing some quantity for the red
particle shown in Figure 3, under large stretch deformation
along the axis, the red particle’s neighbors(green particles)
move away from itself. For isotropic kernels(figure in the
middle), the contributions from the green particles drop
to very small values which are not sufficient to compute
accurate values of the red particle. While for anisotropic
kernels(figure at the bottom), the kernel expand along the
stretch direction and there are still sufficient contribution
from green particles to the red particle.

To get the directions of the deformation for particle Pi,
we pick the strain values {λ1, λ2, λ3} on the diagonal of
the Pi’s strain tensor. The values on the diagonal of strain
reflect the deformation along each axis(x,y and z). If λk > 0
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Figure 3. This 1D example shows the isotropic and anisotropic kernels
under large stretch deformation. Particles(red and green circles) are set
apart from each other under deformation. Our anisotropic kernels evolve
according to the deformation direction.

(k = 1, 2, 3), the object is stretching along axis k, we set
entry Gkk of G as

Gkk =
1

(1 + ηs)h
(14)

where h is kernel length in rest state, s is a scale factor
indicating how much the kernel expands, η is a constant
parameter indicates the maximum or minimum scaling com-
pared with h. We set η to be 1.0, meaning that the kernel
can expand as much as 2h in length along axis k. The scale
factor s is related to the physical fracture threshold εmax of
the material, which is constant in isotropic materials with

s =

{
1 εkk ≥ εmax
εkk

εmax
εkk < εmax

(15)

where εkk is the item from Pi’s stain ε.
The reason why s is defined by physical fracture threshold

εmax is simple: under ideal conditions, the anisotropic
kernels will keep the neighboring particles together until
physical fracture happens. This setting prevents the situa-
tion when anisotropic kernels erroneously hold together the
particles, which should have been torn apart by physical
fracture.

V. IMPLEMENTATION AND RESULTS

Particles in our implementation are arranged into a spatial
hash grid [9] to accelerate neighbor finding. At the beginning

of each time step, we insert the particles into the spatial grid
for later use. Anisotropy is handled when finding neighbors
by transform the distance vector by the anisotropic kernel
G.

Collision detection is handled for particle-particle and
particle-obstacle interaction. We use penalty forces as the
collision response. The penalty force experts on a particle
is determined by the relative velocity and distance to the
particle. Collision forces between particles are computed
only for non-neighboring particles, these forces prevent the
object from penetrate itself under large deformations.

To move the particles to new positions, we use Leap-
Frog integration which is computationally efficient as well as
accurate. We choose the timestep smaller than the threshold
δt = h

‖Vmax‖ to avoid self-penetration, where h stands for
the minimum kernel dimension and Vmax is the maximum
particle velocity.

For rendering, the point based rendering technique [38],
[39] can be applied to our framework. However, to take
advantage of off-the-shelf high quality ray-tracing tools,
we embed a detailed triangle surface into the particles
using barycentric coordinates and the surface vertices move
by interpolating its corresponding particles’ positions. The
surfaces are then rendered by POV-Ray(www.povray.org).

Figure 4 and Figure 5 show elastic bars under tensile
and twisting forces. We use same models and parameters
for isotropic(top) and anisotropic(bottom) kernels. Under
small deformations, both bars are stable. While deformation
accumulates, the bar with isotropic kernels begin to break
down with particles falling apart, while at the same time,
bars with anisotropic kernels can still hold the particles
together to advance the simulation.

Figure 6 shows our test case of a elastic plant. At the
beginning of the simulation, the top of the plant is dragged
by a instant force, then the whole plant starts to shake. This
model has detailed small features such as thin sheet and
long rod. Result shows that our method can handle complex
models like this one.

Figure 8 shows a elastic fish drops onto floor and bounces
back. Figure 7 shows a swimming fish in sea. Notice the
large deformation of the fishes’ tail fins, our method is able
to keep the simulation stable. Figure 9 shows another drop
sequence(topleft,topright,downleft,downright) of a armadillo
model.

Table I shows the geometry complexity and timing of
our method. The geometry statistics shows that detailed
triangle surfaces can be embedded in particles of much lower
resolution. ’Building Grid’ represents the cost of building the
spatial hash. ’Integration&Collision’ measures the time of
time integration and collision handling. ’Elastic Calculation’
is the most time consuming part of our method. Perfor-
mance comparison between isotropic kernels([25]) and our
anisotropic kernels implementation is shown in Figure 10.
As our method add minimum computation cost(such as 3

352



Figure 4. A Bar is tested under tensile force to show its stability with
isotropic kernels(top) and anisotropic kernels(bottom). Anisotropic kernels
prove to be more stable compared to isotropic kernels. Particles with
isotropic kernels break down early than those with anisotropic kernels.

Figure 5. A Bar is twisted from its two ends to show its stability with
isotropic kernels(top) and anisotropic kernels(bottom). Anisotropic kernels
prove to be more stable compared to isotropic kernels. Particles with
isotropic kernels break down early than those with anisotropic kernels.

by 3 transform) to the original isotropic implementation,
our method is very fast with little performance dropoff.
The efficiency of our method can be used in interactive
applications. Please refer to our accompanied video for
detailed results.

General physical parameters are shown in Table II. Our
un-optimized C++ code runs on PC with 2.93GHz CPU,
NVIDIA GT240 graphics card and 3G RAM memory.

VI. FURTHER DISCUSSION

Meshless Framework. Different meshless methods have
diverse approaches to compute elasticity, but share the same
concept that quantity for a position is computed by con-
tributions from nearby particles through a kernel function.

Table II
GENERAL PHYSICAL PARAMETERS.

Parameters Value
Timestep (1 → 3)E−4

Gravity -9.8m/s2

Kernel Range(h) 0.008m
Initial Spacing 0.0048m

Young’s Modulus/Poisson Ratio 9.0E8/0.33
particle mass 4.0E−3kg

Figure 6. The top of the plant is dragged by a instant force. Leaves and
flowers moves with it. This complex model include detailed features of thin
sheet and rod.

Figure 7. A fish swims in the water with its tail fin moves in large
deformation. Please refer to our accompanied video for more details.

Although our implementation is build on Corotated-SPH
[25], the anisotropic kernels we propose can be viewed as
a general technique which is not limited by any specific
meshless method, so they can be integrated into other
meshless framework such as MLS [21].

Relation with Resampling. Another technique to reduce
numerical fracture is resampling. In areas with large defor-
mations, the distribution of particles become sparse, new
particles can be inserted into these areas to maintain the
accuracy of the simulation. We don’t resample the particles
in our method because in interactive applications, changing
the number of simulated nodes will cause frame-rate jitter,
which is an undesirable artifact. Luckily, our method focus
on the local neighborhood adjustment for a particle instead
of global distribution, and get no conflict with resampling.
Under some circumstances, these two techniques can be
combined to gain better stability.

VII. CONCLUSION AND FUTURE WORK

We presente a meshless method to simulate elastic solid-
s. Meshless simulation with isotropic kernels may cause
numerical fracture under large deformation due to loss of
neighboring particles’ contributions. We capture the defor-
mation direction using novel anisotropic kernels to better
maintain neighboring particles’ contributions. Results show
that our method is applicable to large deformations in varied
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Table I
GEOMETRY COMPLEXITY AND TIMING OF THE TEST MODELS.

Model #Triangles #Particles Building Grid Integration&Collision Elastic Calculation Rendering
Bar 11618 792 14ms 4ms 7ms 2s/frame

Swimming Fish 6628 1835 18ms 14ms 20ms 1s/frame
Plant 25656 2352 19ms 16ms 22ms 3s/frame

Dropping Fish 8874 3711 26ms 29ms 43ms 2s/frame
Armadillo 25273 4152 26ms 27ms 44ms 2s/frame

Figure 8. A dropping fish hits the floor and bounces back.

Figure 9. The figure sequence(topleft, topright, downleft, downright) show
armadillo model drop to the floor with its leg under itself.

cases, with improved stability at the cost of acceptable
performance dropoff.

In addition, our method can be coupled with resampling
techniques to support more stable simulations. As our work
focus on improving the kernel functions, it is not limited
to specific meshless implementation and can be applied to
different meshless frameworks.

Future work includes applying the anisotropic kernels
to simulate more solid behaviors such as elastoplasticity,
viscoelasticity and physically-based fracture. As our method
is targeted at the numerical fracture, only stretch deforma-
tion is considered, it is also interesting to investigate the
compression stability problem with anisotropic kernels.
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