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Figure 1: Clothbone benchmark: a piece of cloth (108K) drops onto a bone of dinosaur (47K) causing large number of self-collision and
contact with the bone. The scene consists of 90 frames. We test self-collision of the cloth and collision between cloth and dinosaur. Our
method removes 99% of redundant elementary tests and gains almost 6.3x speedup compared with previous approaches on the elementary
tests.

Abstract

In this paper, we present a novel fast Continuous Collision De-
tection (CCD) method using SIMD capacity of CPU and idea of
dimension reduction. We apply a parallel linear filter culling per-
formed in one-dimensional subspace followed by a parallel planar
filter culling performed in two-dimensional subspace before each
elementary test, which simultaneously and conservatively tests the
relative motion of each primitive pairs in various selected subspace.
CPU’s SIMD capacity is utilized for parallelizing the projection and
filtering process in each subspace. Parallel filter culling in subspace
removes a large amount of redundant elementary tests with low
cost, and improves the overall performance of collision query. We
demonstrate the advantages of our approach when comparing with
previous alternatives in various dynamic scenes as benchmarks. In
experiments, we observe up to 99% removal of false positives, and
a huge magnitude of speed improvement on elementary tests (over
3x). Since our method only correlates the elementary test, it is scal-
able and can be easily integrated with various available single or
multicore CPU based CCD algorithm. In addition, the performance
of our method is less sensitive to varying step time.

Keywords: collision detection, deforming filter culling, SIMD,
subspace

1 Introduction

Continuous Collision detection (CCD) is a crucial and ubiquitous
step in physics based animation, haptic rendering and motion plan-
ning. CCD focuses on finding out the first time of contact (TOC)
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and respective contact position of primitive pairs. Generally speak-
ing figuring out exact contact information of two deforming tri-
angles needs 6 vertex-face (VF) and 9 edge-edge (EE) elemen-
tary tests. Each elementary test requires solving a cubic equa-
tion [Provot 1997] which is the most expensive step in CCD. On
the other hand, CPU’s SIMD capacity like Intelr SSE/SSE2/SSE3
and AMDr 3DNow! is widely used in various fields and brings re-
markable performance improvement, but it’s still not fully exploited
in CCD. In this paper we provide a novel SIMD based parallel ac-
celeration kernel for CCD which removes a large amount of unnec-
essary elementary tests with low filtering cost.

Accelerating the performance of CCD especially for deformable
objects has been extensively studied in the last decade. Most of
them use a bounding volume hierarchy (BVH) combined with self-
collision detection and culling method, to obtain the Potential Col-
lision Set (PCS) which contains potential collided triangle pairs.
Then the low culling approaches are applied in the purpose of re-
moving all the redundant elementary tests among primitive pairs
in PCS. After that we obtain Potential collided feature pairs (VF
and EE pairs) and continue pairwise elementary test for each of
them. However, the BVH and self-collision culling is not so effec-
tive in CCD especially for deformable objects, which results in very
high false positives (above 95% or more). And the computational
cost of elementary test is considerably high. Therefore most of the
query time is spent on elementary tests. Some methods try to use a
low cost approximation as a filter before performing each elemen-
tary test such as primitive based bounding volume culling [Hutter
and Fuhrmann 2007] [Curtis et al. 2008], and non-penetration filter
culling [Tang et al. 2010]. Plus, CPU’s SIMD capacity can also be
utilized to improve the performance of BVH (SIMD k-DOP) on tra-
verse and refitting, and primitive based bounding volume test [Tang
et al. 2010]. This approach is proved effective to reduce the average
cost of elementary test. The whole process is illustrated in Fig.2.

Problem: Intuitively, primitive based bounding volume culling is
simple and efficient, but it bounds the whole moving trajectory
which is over conservative especially for the simulation with large
step time. Non-penetration filter removes those VF and EE pairs
when they are never coplanar during the time interval. Neverthe-
less, this culling seems also over conservative since even VF or EE
reaches coplanarity at certain moment t where t ∈ [0, 1] they may
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Figure 2: General deformable CCD flow [Tang et al. 2010].

still miss colliding with each other, eg. vertex may penetrate the
plane of the triangle through outside of the triangle region. Fig.3(a)
gives an example about this. And the filer process is difficult to be
parallelized, this brings relatively high cost and restrains the overall
performance. In addition, both primitive bounding volume culling
and coplanarity culling are seriously sensitive to the simulation step
time. See Fig.3(b): as the time interval increases, there are more
probabilities for certain primitive to penetrate the the plane of the
other primitives, which may conduct severe drop of performance
when the step time increases.
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Figure 3: Various limitation on traditional filter method. (a) Fail
inside test: Adjacent vertex P moving from P0 to P1 penetrates the
plane of triangle Tt from outside of Tt. (b) Sensitivity on step time:
P0 to P1 indicates the moving trajectory of the vertex P within a
long time interval while P0 to P ′

1 indicates the moving trajectory
with a shorter step time.

Main Results: In this paper we propose a novel efficient parallel
method for continuous collision detection problem performed by
SIMD capacity of CPU and dimension reduction. We found the re-
moval for redundant elementary test is more efficient and feasible in
subspace, and CPU’s SIMD capacity can be fully exploited to paral-
lelize the process in each subspace. We present a fast parallel linear
filter in one-dimensional subspace considering relative motion on
each primitive pair (VF and EE pair), and a conservative parallel
planar filter test in two-dimensional subspace considering relative
motion on each vertex-edge(VE) pair of those primitive pairs for a

further culling. CPU’s SIMD capacity is utilized for parallelizing
projection and filtering in subspace. Parallel filter test in subspace
removes a large amount of false positives and elementary tests with
low cost, and improves the overall performance of collision query.
We gain a huge magnitude of speed improvement on elementary
tests (over 3x) compared to previous ones (Fig.1). Our method has
high scalability and can be easily integrated with available single
or multicore CPU based CCD algorithm. Plus, the performance of
our method maintains stable and outstanding performance in vari-
ous dynamic scenes with no obvious restraint, and is less sensitive
to varying step time.

Organization: The rest of paper is organized as follows. First we
present the background (Section 2), and an overview about the mo-
tivation and principle of parallel filter method proposed by us (Sec-
tion 3). Next we give an explicit and elaborate description of the
parallel linear filter (1D reduced filter, Section 4) and the parallel
planar filter (2D reduced filter, Section 5) respectively. Finally we
exhibit the experimental statistics and analysis on the overall per-
formance (Section 6).

2 Background

Continuous Collision Detection (CCD) has been extensively stud-
ied in various fields including robotics, computational geometry
and simulation in the last decade. Approaches for rigid bodies,
articulated system and deformable objects involve algebraic equa-
tion solving [Canny 1984] [Kim and Rossignac 2003] [Redon et al.
], swept volume formulations [Abdel-Malek et al. 2006], adap-
tive bisection approach [Redon et al. 2002], kinetic data struc-
tures (KDS) [Agarwal et al. 2001] [Kim et al. 1998] [Kirkpatrick
et al. 2000], conservative advancement [Lin and Canny 1993] [Mir-
tich 1996] [Zhang et al. 2006] [Zhang et al. 2007] [Tang et al.
2009b], recent deformable CCD approach [Hutter and Fuhrmann
2007] [Curtis et al. 2008] [Tang et al. 2009a] [Tang et al.
2010], GPU and multi-core CPU architecture [Govindaraju et al.
2005] [Sud et al. 2006] [Lauterbach et al. 2010] [Kim et al. 2009].

Deformable CCD needs to figure out the first time of contact be-
tween pairwise features, including vertex-face (VF) and edge-edge
(EE) elementary tests, which always reduces to solve a cubic equa-
tion [Provot 1997]. Due to the complexity of DOF (degree of free-
dom) of primitives of surface, eg. cloth simulation [Volino and
Thalmann 1994] [Bridson et al. 2002], traditional culling approach
performs poor on deformable CCD and produce large fraction of
false positives. Most recent deformable CCD follows the order of
high level culling, low level culling, filter culling and finally ele-
mentary test.

High level culling performs triangle-level overlap tests for the pur-
pose of reducing the potential collided pair-wise set (PCS), the
most common used approach to build a bounding volume hierar-
chy (BVH) on the object, and test the BVH against itself. Common
bounding volume choices include spheres, axis aligned bounding
boxes (AABB), oriented bounding boxes (OBB), and discrete ori-
ented polytopes (k-DOP). To reduce overlap tests in BVH traversal,
self collision detection (SCD) method are used to remove large re-
gions with no collided triangle pairs, such as curvature tests [Volino
and Thalmann 1994], normal bounds [Provot 1997] [Grinspun
and Schroder 2001], its extension on continuous collision detec-
tion [Tang et al. 2009a], normal trees [Schvartzman et al. 2009],
contour self-intersection [Schvartzman et al. 2010], SCD for re-
duced deformable models [Barbič and James 2010].

Low level culling removes redundant primitive pairs (VF or EE
pair)and reduces elementary tests from PCS. These involve bound-
ing volumes of the primitives to avoid performing elementary tests
between different features [Hutter and Fuhrmann 2007] [Curtis



et al. 2008], representation triangle (R-triangle) using masking
schemes to remove the redundant elementary tests [Curtis et al.
2008], procedural representation triangles (PR-triangle) for fea-
ture pair removal of non-adjacent triangles and orphan set for
feature pair removal of adjacent triangles [Tang et al. 2009a],
non-penetration filter culling which reduce both false positives
and elementary tests by using coplanarity condition of elementary
test [Tang et al. 2010]. Low level culling correlates feature pairs and
elementary tests only, with no assumption on hierarchy of CCD or
previous culling stages. A general low culling process order before
pairwise elementary test follows the sequence of removing redun-
dant feature pair, primitive based bounding volume culling, filter
culling.

3 Motivation and Principle

In this section, we introduce the notation used in the rest of the
paper and give an overview of our approach.

Notation: We use the symbols P , E and T to represent vertices,
edges, and triangles, respectively. We denote the time interval,
in which we perform CCD, to be [0, 1]. We use t0 and t1 to de-
note the start and end moments of the time interval. Assume we
know the start and end positions of each vertex during each time
interval. The position of each vertex between time steps, is de-
fined as interpolation function F (t). We use symbols Pt, Et, Tt

to denote the positions of specific vertex, edge and triangle at a
certain time t where t ∈ [0, 1], and symbols at, bt, ct to denote
the corresponding vertices of the edge and triangle at time t, eg.
Et = atbt, Tt = △atbtct. Most available CCD algorithms sim-
plify F (t) as linear interpolation, so that each elementary test is
reduced to solve a cubic equation [Provot 1997].
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Figure 4: VF elementary test. (a) shows the VF contact in object
space. (b) shows the vertex’s relative trajectory in respect to the
triangle when it misses contacting the triangle (Up Image: fails the
coplanarity condition. Bottom Image: fails the inside condition.)

Each elementary test can be actually broken into two parts: copla-
narity test and inside test. Coplanarity test figures out the exact con-
tact time t by finding the root of a cubic equation. Inside test checks
the validity of t by testing whether the contact position is inside the
triangle for VF test or inside each edge for EE test. In order to ac-
quire high culling efficiency, we must consider the relative motion
of feature pairs and bounds both coplanarity and inside conditions
tightly. However, although the movement of primitives is simplified
as linear transformation, the relative motion trajectory of vertex is
always considerably complicated. Fig. 4(a) shows the VF contact
in object space and Fig. 4(b) shows the vertex’s relative trajectory

in respect to the triangle when it misses contacting the triangle. It’s
clear that bounding the elementary test in R3 is difficult. In this
paper we exploit bounding the relative motion of feature pairs in
subspace. We found the process in subspace is more feasible and
bounds both coplanarity and inside test tightly. Furthermore, the
process is very suitable for utilizing CPU’s SIMD capacity. We
can complete the projection and culling process of various different
subspaces independently and simultaneously in order to obtain high
culling ratio.

Dimension reduction means representing a vector in high dimen-
sional space u ∈ Rn with a corresponding vector in a much lower
dimensional space r ∈ Rm,m < n. While necessarily approx-
imate, such a representation can be quite useful for compressing
redundant information in u. To transform between the two spaces
we need a projection operator ψ : u 7→ r. Reduction is an increas-
ingly important technique in computer graphics and has been ex-
tensively used for optimization in a wide range of problems [Barbič
and James 2005] [Treuille et al. 2006] [Barbič et al. 2009] [Barbič
and James 2010].

In this paper, we solve CCD problem in subspace of R3. We orthog-
onally project primitives in elementary test (vertex, edge, triangle)
from R3 into one of its subspaces which is actually a plane (or a
line) through the origin. The projected position is represented in a
two-dimensional (or one-dimensional) Euclidean space defined on
the plane (or on the line). We call the whole process projection from
R3 to lower dimensional space (R2 or R1), we use ψ to denote the
projector. Orthogonal projection has the property that if deforming
vertex pt ∈ R3 does linear deformation, its projection ψ(pt) in R2

or R1 also does linear deformation. Our method is based on the
theorem below:
Theorem 1. Subspace Culling: For any specific projection ψ to
subspace, if there’s no contact for two deforming primitives in the
subspace defined by ψ during a time interval, there’s no contact
between the two primitives in their original space.

We provide a fast parallel deforming linear and planar filter follow-
ing Theorem 1 for the purpose of removing redundant elementary
tests in 1D and 2D subspace. In the following we give an explicit
and elaborate representation of the parallel linear filter (1D filter)
and the parallel planar filter (2D filter).

4 Parallel Linear Filter (1D Filter)

Parallel linear filter is based on the extension of Theorem 1 in one-
dimensional subspace:
Corollary 2. Linear Bounding Test: For a specific one-
dimensional subspace with the projection operator ψ : R3 7→ R1,

Reduced VF bounding: For a vertex Pt and a triangle Tt in R3, if
ψ(Pt) is always on the left (or right) of each vertex of ψ(Tt) during
the time interval, there’s no contact between Pt and Tt (Fig.5(a)).

Reduced EE bounding: For two edges E1
t , E2

t , its projection in R1

is ψ(E1
t ), ψ(E

2
t ), if the two vertices in ψ(E1

t ) is always on the
left (or right) of the two vertices in ψ(E2

t ) during the time interval,
there’s no contact between E1

t , E2
t (Fig.5(b)).

Because each primitive in R3 does linear deformation in preas-
sumption, the projection of the corresponding vertices in one-
dimensional subspace moves with constant velocity. Therefore for
any two vertices in the one-dimensional subspace, if one vertex
stays at the same side of the other vertex at the start and end of
the interval respectively, there’s no contact during the entire time
interval.
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Figure 5: Linear filter in one-dimensional subspace.

VF Test of Linear Filter: Given a specific one-dimensional sub-
space with the projection operator ψ : R3 7→ R1, a moving vertex
Pt, Pt ∈ R3 and a deforming triangle Tt = △atbtct ∈ R3, sup-
posing their projection through ψ is P ′

t , a
′
t, b

′
t, c

′
t respectively. If

the scaler values: A, B, C, D, E, F have the same sign, there’s no
contact between Pt and Tt during the interval.

A = P ′
0 − a′0, B = P ′

1 − a′1 (1)

C = P ′
0 − b′0, D = P ′

1 − b′1 (2)

E = P ′
0 − c′0, F = P ′

1 − c′1 (3)

EE Test of Linear Filter: Given a specific one-dimensional sub-
space with the projection operator ψ : R3 7→ R1, two deforming
edges E1

t = atbt and E2
t = ctdt ∈ R3, supposing their projection

through psi is P ′
t , a

′
t, b

′
t, c

′
t respectively. If the scaler values: A, B,

C, D, E, F, G, H have the same sign, there’s no contact between E1
t

and E2
t during the interval.

A = a′0 − c′0, B = a′1 − c′1 (4)

C = a′0 − d′0, D = a′1 − d′1 (5)

E = b′0 − c′0, F = b′1 − c′1 (6)

G = b′0 − d′0, H = b′1 − d′1 (7)

The test process in each subspace is independent and highly paral-
lel. If there’s no contact between the feature pair in any selected
subspace, there’s no contact in original space. We use SIMD k-
DOP [Tang et al. 2010] as basic Bounding Volume structure in
BVH. Unlike traditional k-DOP, the minimum and maximum co-
ordinates of primitive along each axis in SIMD k-DOP is stored
in SIMD vector so that we can use the SIMD instruction to par-
allelize k-DOP operation (merging, intersection test) and acceler-
ate the BVH traversal and refitting performance [Tang et al. 2010].
18-DOP is proved effective in CCD [Tang et al. 2009a]. Here
we use SIMD 16-DOP which only contains 8 different axes since
most CPU’s SIMD instructions wrap 4 floating points. Each ver-
tex also maintains a group of coordinates of its start and end posi-
tion along each k-DOP axis. The coordinates of vertex are stored
as SIMD vector and used for refitting BVH and computing prim-
itives’ projection in linear and planar filters. eg. A possible pro-
jected coordinate of vertex Pt along each axis can be ψi(Pt) =
{xt, yt, zt, xt+yt, xt+zt, yt+zt, xt−yt, yt−zt}, i = 1, 2 . . . 8.
Note that, in SIMD k-DOP or SIMD vector of vertex the order of
elements inside each SIMD vector is not random (Specific order
constraint is discussed in Section 5.1). This is different from tra-
ditional k-DOP and SIMD optimized k-DOP in [Tang et al. 2010].
Since SIMD filtering process is highly sensitive to the cost of data
loading and projection, we use each axis in SIMD k-DOP as se-
lected one-dimensional subspace in parallel linear filter so that we

can reuse the wrapped coordinates of vertex. In parallel linear filter,
the scaler values above in each subspace are calculated and com-
pared simultaneously according to the SIMD instructions of CPU.
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Figure 6: Relative motion between vertex and edge.

5 Parallel Planar Filter (2D Filter)

Only projection along fixed axis like linear filter is difficult to re-
move those accompanied feature pairs who are moving together
with rotation or have complicated motion trajectory. The drawback
can be ameliorated by considering the relative motion of vertex-
edge(VE) pair contained in primitive pairs and using a parallel pla-
nar filter test as a post culling stage after performing the parallel
linear filter test (Fig.6). The parallel planar filter is based on the
extension of Theorem 1 in two-dimensional subspace as follows:
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Figure 7: Conservative Planar Filter Test in two-dimensional sub-
space.

Corollary 3. Conservative Planar Filter Test: For a specific two-
dimensional subspace with the projection operator ψ : R3 7→ R2,

1. Reduced VF bounding: for a moving vertex Pt and a deforming
triangle Tt, if there exists one edge of ψ(Tt), ψ(Pt) is always on
the same side of ψ(Tt) separated by the edge during the entire time
interval, there’s no contact between Pt and Tt (Fig.7(a)).

2. Reduced EE bounding: For two edges E1
t , E2

t , if there exists
one edge E′

t = atbt of them that ψ(at) and ψ(bt) is always on the
same side of the other edge ψ(E′′

t ) during the time interval, there’s
no contact between E1

t and E2
t . (Fig.7(b))



The conservative planar filter test above bounds both coplanarity
and inside test tightly with low cost.

X Y Y+Z X+Z Z X+Y Y-Z X-Yx:

y:

Wrapped SIMD Vector Wrapped SIMD Vector

Planar Coordinates{x, y}

rotation rotation

Figure 8: Projection and data wrapping: The SIMD vectors on the
top are the 1D coordinates used in the linear filter. The planar co-
ordinates is obtained directly from the original SIMD vector. The
X and Y of planar coordinates come from the original and the ro-
tated SIMD vector respectively. The illustration gives a possible
order of projection result inside the SIMD vector which creates 8
independent planes.

5.1 Projection and Data Wrapping

In order to obtain planar coordinates in each 2D subspace,we reuse
the group of 1D projected coordinates of each vertex. We rotate the
two SIMD vectors of each vertex respectively and combine them
with the original ones, to create the wrapped planar coordinates in
each subspace (Fig.8). The two components of each planar coor-
dinate come from the original and newly created SIMD vector re-
spectively. Note that the order of components in SIMD vector is
important. Only few specific orders are able to produce 8 different
planes (subspace) by such rotation. Fig.8 gives a possible projection
and its corresponding order. Rotating the SIMD vector is very effi-
cient using CPU’s SIMD instructions. So we can obtain and wrap
the planar coordinates effectively from the wrapped 1D coordinates
of each vertex.

5.2 Planar VE Test

In Corollary 3, we must decide whether a vertex will penetrate a
line during the time interval on plane. Exact VE (vertex-edge) pen-
etration test is costly. We use the following conservative planar VE
test to judge whether there’s penetration between vertex and edges
on plane.

Collinearity Theorem for Planar VE Test: For a given plane, and
an edge Et = atbt, at, bt ∈ R2 and a vertex Pt ∈ R2 defined by
the start and end positions on one plane during the interval [0, 1],
these positions are linearly interpolated in the interval with respect
to the time variable, t (Fig.9(a)). If the three scalar values: A, B,
C have the same sign, Et and Pt will not be collinear during the
interval. Furthermore, if the corresponding sign is positive, Pt is
always inside the left half space ofEt during the interval, otherwise
if the corresponding sign is negative, Pt is always inside the right
half space of Et during the interval.(Fig.9(b))

A = (P0 − a0) · (b0 − a0)⊥ (8)

B = (P0 − a0) · (b1 − a1)⊥ + (P1 − a1) · (b0 − a0)⊥ (9)

C = (P1 − a1) · (b1 − a1)⊥ (10)

where ⊥ denotes the 90 degree counter-clock wise rotation of a
vector. eg. assuming a = {ax, ay}, b = {bx, by}, there is a · b⊥ =
−ax ∗ by + ay ∗ bx.
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Figure 9: Planar VE test. (a)Pt is a moving vertex and atbt is a
deforming edge on plane during the time interval. (b)The sign of
(Pt − at) · Et

⊥ is used to indicate which half space the planar
vertex Pt stays.

Proof. We define δP = P1−P0, δa = a1− a0, δb = b1− b0, For
the moving vertex Pt = P0+δP ∗t and deforming edgeEt = atbt
where at = a0+δa∗ t, bt = b0+δb∗ t. Which half space Pt stays
depends on the sign of projection along the normal ofEt (Fig.9(b)).
The projected distance is:

(Pt − at) ·
−→
Et

⊥ = (Pt − at) · (bt − at)⊥

= ((P0 − a0) + (δP − δa) ∗ t)
·((b0 − a0) + (δb− δa) ∗ t)⊥

= (P0 − a0) · (b0 − a0)⊥

+((P0 − a0) · (δb− δa)⊥

+(δP − δa) · (b0 − a0)⊥) ∗ t
+(δb− δa) · (δP − δa)⊥ ∗ t2 (11)

On the other hand, Equation(11) can be represented as

(Pt − at) ·
−→
Et

⊥ = A ∗B2
0(t) +B ∗B2

1(t) +C ∗B2
2(t) (12)

where B2
i (t) is the ith basis function of Bernstein polynomials.

That meansB2
0(t) = (1− t)2, B2

1(t) = 2∗ t∗ (1− t), B2
2(t) = t2

By comparing the coefficient of t in Equations(11)-(12), we obtain
the representation of symbols A, B and C in Equations(8)-(10)

The scaler values A, B, C in Equations(8)-(10) are actually the con-
trol points of quadratic curve created by Equation(11), indicates the
relative distance between vertex and the edge. If A, B, C maintain
the same sign, Pt can not be collinear with Et depending on the
convex hull property associated with control points of the Bernstein
basis. The conservative approximation bounds the result tightly
and is more efficient compared with directly solving the root of the
equation and checking its validity.

5.3 Planar VF Filter

Both planar VF and EE filter test can be reduced to at most two
planar VE tests. We use SIMD instruction to parallelize the projec-
tion (Section 5.1) and filtering process in each subspace. Planar VF
filter test is as follows:
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Process: After projection and data preparation, we do filter culling
process in different subspace simultaneously using SIMD instruc-
tions. Assume the projection of vertex Pt and triangle Tt is ψ(Pt)
and ψ(Tt) in planar VF test. Firstly we decide whether the triangle
will turn over during the time interval by selecting one vertex and
its opposite edge from the triangle and testing VE penetration us-
ing the method described in Section 5.2. If the triangle never turns
over, we continue to figure out the cutting edge (the edge which
separates the triangle and vertex at the start moment) by comparing
the sign of scaler value A of VE test between Pt and each edge of
Tt, with the sign of scalar value A of the triangle. In most cases
there’s only one cutting edge existing for a specific vertex and tri-
angle pair, but occasionally two. Fig. 10 shows the space parti-
tion and each area’s corresponding cutting edge. We select the first
one we find. The whole process in one subspace is illustrated in
Algorithm(1). In parallel implementation, we use a SIMD vector to
trace the status. Only when all subspace routines return true, or at
least one subspace routine returns false in Algorithm(1), the SIMD
filter terminates and returns the result whether to go on executing
the elementary test.

Algorithm 1 Single Thread Planar VF Test: For a given two-
dimensional subspace, a moving vertex Pt ∈ R2 and a deforming
triangle Tt = △atbtct, at, bt, ct ∈ R2 on the plane, we decide
whether there’s a potential penetration between the vertex and the
triangle. We use the form v ⇒ e to denote VE test between vertex
v and edge e. A(v ⇒ e) ∼ C(v ⇒ e) indicates the results of
Eq.8∼Eq.10 on the VE test between v and e

A0 ← A(at ⇒ btct)
B0 ← B(at ⇒ btct)
C0 ← C(at ⇒ btct)
if A0, B0, C0 have different sign then

return true \\ Tt turns over
end if
for E ← atbt, btct, ctat do
\\ test each edge of Tt respectively
A1 ← A(Pt ⇒ E)
if A0 and A1 have different sign then
B1 ← B(Pt ⇒ E)
C1 ← C(Pt ⇒ E)
if A1, B1, C1 have the same sign then

return false \\ no penetration found, should be culled
end if
return true \\ Pt penetrates E

end if
end for
return true \\ no cutting edge found

5.4 Planar EE Filter

The process of EE filter test follows the same way. Firstly we figure
out the cutting edge (the edge that two endpoints of the other edge
are always on the same side of it at the start moment). Then we
do VE test between the two vertices and the cutting edge to see if
there’s penetration between them during the time interval as illus-
trated in Algorithm (2).

Algorithm 2 Single Thread Planar EE Test: For a given two-
dimensional subspace, two deforming edges E1

t = a1t b
1
t , E

2
t =

a2t b
2
t , a

i
t, b

i
t ∈ R2, i = 1, 2 on the plane, we decide whether there’s

a potential penetration between E1
t and E2

t .

for i← 1 to 2, j ← 3− i do
\\ test two edges a1t b

1
t , a

2
t b

2
t respectively

A0 ← A(ajt ⇒ aitb
i
t)

A1 ← A(bjt ⇒ aitb
i
t)

if A0 and A1 has the same sign then
B0 ← B(ajt ⇒ aitb

i
t)

C0 ← C(ajt ⇒ aitb
i
t)

if A0, B0, C0 have different sign then
return true \\ ajt penetrates aitb

i
t

end if
B1 ← B(bjt ⇒ aitb

i
t)

C1 ← C(bjt ⇒ aitb
i
t)

if A1, B1, C1 have different sign then
return true \\ bjt penetrates aitb

i
t

end if
return false \\ no penetration found, should be culled

end if
end for
return true \\ no cutting edge found
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Figure 11: New flow of CCD: After previous high-level/low level
culling, we obtain potential contact feature pair set. Then for each
feature pair, we perform the linear and planar filter culling respec-
tively and finally elementary test.

5.5 Overall Flow for CCD Algorithm

Our method makes no restriction or assumption about previous
high-level/low-level culling. After all previous culling stages, we
obtain the Potential Contact Feature Pair Set. For each feature pair,
the parallel linear filter is applied as the 1st level culling, and the
parallel planar filter is performed as the 2nd level culling. At last
we do exact elementary test. The whole process is illustrated in
Fig.11. Since our method is only concerned with the elementary
test, it can accelerate most of current available CPU-based CCD al-
gorithm. Compared with previous methods, our approach maintains



higher culling efficiency while relatively low cost, thus significantly
improves the overall performance of CCD algorithm.

6 Result and Analysis

In this section we provide the implementation, theoretical and ex-
perimental analysis about our method compared against previous
approaches on various dynamical scenes.

Implementation: We have implemented all the algorithms on a
standard 2.3GHz Intel Duo Core machine with 2GB RAM on 32-
bit Windows/XP platform. For clear and explicit comparison, we
use a base implementation without filter culling. We use two level
DT-BVH as basic hierarchy, 18-DOP as bounding volumes, Contin-
uous Normal Cone (CNC) as high-level culling [Tang et al. 2009a],
and representative triangle [Curtis et al. 2008] as low-level culling
to remove all redundant feature pairs. The k-DOP operation and
primitive BV test is accelerated by SSE2 instruction [Tang et al.
2010]. Linear and planar filters are also implemented by intrinsic
SSE2 instructions. We use non-penetration filter [Tang et al. 2010]
implementation available at1 and standard UNC dynamics bench-
mark2 for comparison. In order to highlight the acceleration effect
for elementary test and exclude the influence of previous basic im-
plementation, we only record the execution time and culling ratio
of the last stage after we obtain the potential contact feature pairs.

We compare the performance of different CCD methods on the
benchmarks Fig.1, Fig.12(a)∼Fig.12(d). Note that we give two dif-
ferent comparison versions on N-body (the surface has slight de-
formation). In N-body 1⃝ we only record the inter-collision (colli-
sion between different objects), while in N-body 2⃝ we make gen-
eral collision query (involving self-collision). We provide two ver-
sions of comparison in order to highlight the performance of inter-
collision and also overall collision query on slightly deformable
objects, since sometimes it is difficult to pre-determine the defor-
mation property of the surface (whether there’s self-collision) in
complex dynamic scenes. Our method performs well on both of the
two choices.

Performance Analysis: The principle of filter culling is to use low
costly culling tests to replace part of the high costly elementary tests
in order to acquire overall performance advance. The performance
of filter algorithm only has relations with its cost and culling effi-
ciency. We use the proportion of cost reduction on elementary test
after being optimized with the filter culling method (Creduction)
to measure the performance of a particular filter method. Suppose
Celem is the cost of a single elementary test, Cfilter and CavElem

indicate the cost of filter test and the cost of average elementary
test after optimized with the filter test respectively. α denotes the
culling ratio.

Creduction = (Celem − CavElem)/Celem

= (Celem − (Cfilter + (1− α)Celem))/Celem

= α− β where β = Cfilter/Celem (13)

From Eq.13 we see, it’s only when the culling ratio α is higher
than culling cost proportion β can the filter culling method accel-
erate the overall performance of the elementary test. The larger the
difference is, the more remarkable the acceleration effect appears.
Next we will analyze the performance of the linear filter, planar
filter, overall performance and the performance with different time
intervals respectively.

1http://gamma.cs.unc.edu/DNF/
2http://gamma.cs.unc.edu/DYNAMICB

(a) N-body

(b) Dragonbun

(c) Cloth ball (d) Lion

Figure 12: BenchMarks: (a)(146K, 96 frames) This benchmark
consists of hundreds of moving balls that can be slightly de-
formable. They collide with each other and the ground. (b)(252K,
64 frames) The bunny penetrates the dragon and breaks it into a
high number of colliding pieces. (c)(92K, 94 frames) The cloth
drops onto a ball with rotation and a high number of self-collisions.
(d)(1.6M, 90 frames) The lion gradually breaks into a high number
of colliding pieces.

Parallel Linear Filter Performance: Table.1 shows the culling
ratio comparison between combination of SIMD primitive based
BV test and parallel deforming filter on various scenes. It’s ob-
vious that the culling efficiency of the parallel linear filter is much
higher than that of SIMD primitive based bounding volume culling.
Although the cost of the linear filter consisting of several substrac-
tion appears more expensive than the primitive based bounding vol-
ume overlapping test, the cost is considerably low compared with
the elementary test. So the the difference between the cost pro-
portion β in respect to the elementary test and the culling ratio α
is large, which makes the parallel linear filter much more efficient
than SIMD primitive based bounding volume test. Fig.13 illustrates
the contrast of the overall performance of various combinations of
filters and non-filtering elementary test. It’s clear that the overall
executed time of the final stage with parallel linear test is even less
than the total executed time using the combination of SIMD prim-
itive based bounding volume test and non-penetration filter culling
method.

Parallel Planar Filter Performance: As shown in Table.1 you
can easily find that the culling ratio of parallel planar filter seems
lower than that of non-penetration filter. This is mainly because
the culling ratio of the first step (parallel linear filter) is too high,
which removes most of the redundant elementary tests before par-
allel planar filter test. It’s clear from the table and Fig.13(a)-(c)
that the overall culling ratio of parallel filter is much higher than
that of the traditional combination, and parallel planar filter culling
provide a further performance improvement on performance after
the linear filter culling. In addition, the non-penetration has some
restraint. See the contrast between Fig.13(b) and Fig.13(c). The



Table 1: Culling Ratio Comparison

Method clothball N-body 1⃝5 N-body 2⃝6 clothbone dragon lion

PrimBV1 53% 25% 26% 38% 37% 24%
linear2 95% 81% 96% 99% 90% 89%

NonPen3 77% 29% 82% 93% 55% 85%
planar4 63% 39% 39% 75% 41% 72%

PrimBV+NonPen 89% 46% 87% 96% 72% 87%
linear+planar 98% 89% 97% 99% 94% 97%
1 SIMD Primitive BV test.
2 Parallel linear filter
3 Non-penetration filter.
4 Parallel planar filter
5 not include self-collision detection on each ball.
6 include self-collision detection on each ball.

Table 2: Performance Comparison on Executed Time (ms)

Method clothball N-body 1⃝ N-body 2⃝ clothbone dragon lion

PrimBV+ NonPen1 326 1111 1946 188 680 23489
linear+planar2 65 329 513 30 221 1545

acceleration 5x 3.4x 3.8x 6.3x 3x 15x
1 SIMD Primitive BV + Non-penetration filter.
2 Parallel linear filter + parallel planar filter

balls in N-body are slightly deformable so that non-penetration fil-
ter may achieve high culling efficiency on self-collision, but the
lack of motion coherence on N-body makes non-penetration filter
perform poor on inter-collisions with low culling ratio (Table.1)
and slows down the overall performance. But parallel planar fil-
ter method does not have such problem and performs well in both
inter-collision and self-collision.

Overall Performance: Table.2 shows the overall speed improve-
ment compared with traditional non-penetration filter and primitive
based bounding volume culling. Combined with parallel deforming
filter, we observed over 90% elementary test removal and at least
3x performance improvement.

Performance with Different Time Intervals: Table.3 and Table.4
illustrate the performance on N-body 1⃝ (Collision between differ-
ent objects) and clothball (self-collision) with varying step time.
We simulate varying time interval by increasingly interpolating the
original dynamic scenes. From Table.3, it’s clear that the culling
ratio of the non-penetration filter in N-body system is considerably

Table 3: Performance on Nbody 1⃝ with Varying Time Interval

Method 1x5 1/2x 1/3x 1/4x 1/5x

PrimBV1 25% 38% 47% 53% 57%
linear2 81% 78% 78% 78% 78%

NonPen3 29% 32% 35% 38% 41%
planar4 39% 39% 40% 42% 43%

PrimBV+NonPen 47% 58% 65% 70% 74%
linear+planar 89% 87% 87% 87% 87%

speed of PrimBV+NonPen 1111ms 201ms 83ms 47ms 32ms
speed of linear+planar 329ms 83ms 41ms 26ms 19ms
1 SIMD Primitive BV test.
2 Parallel linear filter
3 Non-penetration filter.
4 Parallel planar filter
5 Time interval, 1x indicates the time interval of the original dynamic scene. 1/nx

means the model is increasingly interpolated with more frames, and the interval
time between each frame is only 1/n of the original one.
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Figure 13: Overall performance and executed time of each step on
various combination of filters.

low especially when the time interval is large. This is mainly due
to the fact that the motion coherence and connection of primitive
pair in different objects is weak. As the time interval decreases, the
culling ratio rises up. While, on the other hand, the culling ratio
of parallel filter is less variable with varying time interval. When it
comes to the self-collision (Table.4), the problem is not so obvious
in the non-penetration filter, since there’s strong coherence for fea-
ture pairs on the same surface. However, the overall culling ratio
is still much lower than the parallel filter and more sensitive to the
time interval. Therefore parallel filter seems more stable with vary-
ing time interval. Further more, from the executed time statistics



Table 4: Performance on Clothball with Varying Time Interval

Method 1x 1/2x 1/3x 1/4x

PrimBV 53% 65% 71% 75%
linear 95% 94% 93% 93%

NonPen 77% 85% 89% 91%
planar 63% 73% 77% 79%

PrimBV+NonPen 89% 95% 97% 98%
linear+planar 98% 98% 98% 98%

speed of PrimBV+NonPen 326ms 74ms 43ms 30ms
speed of linear+planar 65ms 29ms 21ms 17ms

in Table.3 and Table.4, it’s apparent that our method is much faster
than non-penetration method with any time interval.

Comparison with Other CCD Algorithm: There are lots of other
CCD algorithms available which effectively removes a large frac-
tion of redundant elementary test in high and low levels. Or-
phan Set [Tang et al. 2009a] is quite effective in removing re-
dundant elementary tests between adjacent triangles. Continu-
ous normal cone [Tang et al. 2009a] is widely used to remove
large flat area from self-collision detection. Representative trian-
gles [Curtis et al. 2008] can remove all the redundant elementary
tests through pre-computed feature connectivity. Bounded nor-
mal trees [Schvartzman et al. 2009] bounds the normal trees more
tightly and improves the culling ratio of self-collision detection.
Star-Contours [Schvartzman et al. 2010] gives an effective means
to solve the boundary problems in self-collision detection. Since
filtering method is executed after all these high/low culling method
and correlates elementary test only, it is effective to improve the
overall performance by filtering the elementary test. [Tang et al.
2010] gave a elaborate comparison between filtering and non-
filtering performance. You can also observe the huge improvement
between filtering and non-filtering performance in Fig. 13. We pro-
vide a compensation for these available method.

Many other approaches try to use multi-core CPU [Tang et al.
2009c] or CPU and GPU hybrid architecture [Kim et al. 2009] to
decompose tasks and put them into different cores (or prepare to
send data to GPU). Since each core of CPU maintains independent
SIMD capacity, SIMD based filter may also benefit such CCD al-
gorithm and helps to remove unnecessary elementary tests with low
cost.

7 Limitation

Low costly culling tests by parallel filter are used to replace part of
high costly elementary tests in order to obtain overall performance
improvement. The performance is dominated by the culling ratio
and the cost of elementary test. So the advantage of our methods
may not be so distinctive or even shrink when the cost of elementary
test declines.

8 Conclusion and Future Work

In this paper we have proposed a novel fast parallel deforming fil-
ter culling method for continuous collision detection (CCD) prob-
lem performed by dimension reduction in subspace and exploiting
SIMD capacity of CPU. We have presented a fast parallel linear fil-
ter considering relative motion on primitive pairs(VF and EE) and a
parallel planar filter test performed after linear filter considering rel-
ative motion on each vertex-edge(VE) pair of those primitive pairs.
CPU’s SIMD capacity has been utilized for parallelizing the projec-
tion and filtering in subspace. filter culling in subspace removes a
large amount of false positives and elementary tests with low cost,

and improves the overall performance of collision query. By the
combination of linear and planar filter, we get up to 99% removal
of redundant elementary tests, and a huge magnitude of speed im-
provement on elementary tests (over 3x). Our method also has such
characteristic that it can be integrated with currently available sin-
gle or multicore CPU based CCD algorithm easily.

We will optimize our reduced filter and apply our methods to multi-
core CCD algorithm. We will also exploit high level culling algo-
rithm such as solving self-collision detection problem in subspace
in the future.
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BARBIČ, J., DA SILVA, M., AND POPOVIĆ, J. 2009. Deformable
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