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Abstract 

 
In conceptual design of models, designers usually 

express their ideas in curve networks, without 
generating final 3D surfaces. In this paper, we propose 
a method to utilize the structures and properties of 
curve networks to create mesh surfaces with 
controllable sharp features. We demonstrated our 
method on various curve networks, the created 
surfaces are both visually plausible and faithfully 
follow the input curve networks. 
 
 
1. Introduction 
 

3D computer modeling is becoming a common tool 
for designers and artists, and even amateurs. However, 
professional modeling packages, such as [1][2], are not 
intuitive and usually require hours of tedious works to 
create a simple surface. Artists and designers mainly 
draw characteristic curves to express their ideas. Tools 
that can directly create surfaces from such curves are 
more preferred, such as FiberMesh [3]. Different from 
those existing methods, which only use those curves as 
local positional constraints, we utilize the structures 
and differential properties of curve networks to create 
surfaces, which smoothly interpolate differential 
properties of curve networks. 

Our key observation is that curve networks provide 
most desired features of surfaces, the areas in between 
them are often smooth blending of these curves. 
Therefore, positions and properties of these curves, 
such as normals, must be respected and used to guide 
the creation of surface patches in between them. 
Guided by this observation, we propose a method for 
creating surfaces from curve networks. First, we 
analyze the structure and properties of a curve network 
and decompose it into a set of disconnected sub-
structures. Then, a coarse patch is created for each sub-
structure. At last, we construct the final surface from a 
harmonic field defined by the analyzed or supplied 
differential properties of the curve network.  

In the remainder of this paper, we first discuss 
related works and introduce relationships between 
curve networks and respective surfaces. Then, an 

algorithm is presented to create surfaces from curve 
networks. We evaluate the results in Section 5.  
 
2. Related Work 

 
Sketch-based 3D modeling. A comprehensive 

survey on sketch-based 3D modeling can be seen in 
[4][5]. Here we only focus on methods most related to 
our work. Popular sketch-based modeling systems 
[3][6][7] can only create few bulbous 3D shapes, since 
inflation methods are used. But our method can create 
surfaces from curve networks for complex shapes. 
FreeDrawer [8] approximate a network of spline curves 
by a b-spline surface, using a complex fitting process.  

Our method is also relevant to patching parametric 
surfaces. In parametric surface modeling, surfaces are 
mostly created from triangular or quadrilateral domains. 
Additional requirements, such as the continuity 
constraints across the patch boundaries, complicate the 
construction [9]. However, our work interpolates and 
blends the surface patches in a discrete way. The shape 
of the network is not restricted to be triangular or 
quadrilateral, and complicated constraint management 
is avoided.  

 
Surface Reconstruction. To recover a surface from 

a curve network is similar to reconstruction from lower 
dimensional data sets, because a 2D manifold has to be 
constructed from a lower dimensional data set, i.e., a 
set of curves. Recently, surface reconstruction from 
point clouds are intensively studied for reverse 
engineering or data acquisition [10][11][12]. Better 
reconstruction results can be obtained when normals of 
points are additionally supplied [13][14], or various 
prior knowledge is provided [15][16]. Besides point 
clouds, a set of projected contours can be obtained  
from images [17]. A popular method to reconstruct 
these surfaces is to find an implicit representation to 
the data set, and then convert it into surface meshes 
using standard techniques, e.g. marching cubes [18]. 
However, it is difficult to get an implicit representation 
for curve networks, because the curve network 
structure is sparser than point clouds or voxels from 
the images. A similar work presented in [19]. [20] 
reconstructs surfaces from cross-sections. However, for 
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most cases, it is hard to extract cross-sections from the 
curve network abstraction.  

 
Poisson Editing. Poisson editing is an efficient 

algorithm for performing geometric processing in the 
gradient domain. After it is introduced by Yu et al [21], 
it has been successfully used in wide varieties of 
geometric applications, include shape morphing[22], 
deformation transfer[23], paramerization[24], hole 
filling[25] and recently, remeshing for equivalent 
class[26]. In this paper, we adopt Poisson editing for 
the shape design from curve networks.  

 
Curved Triangle. Curved triangles [27][28] are a 

set of local operations, which refine the triangles 
guided by the vertex normals. Cubic Bezier patches [27] 
or quadratic patches [28][29] are used to interpolate the 
vertex positions and its normals. They can be regarded 
as techniques creating surfaces from triangular 
networks. While curved triangles focus on improving 
the visual smoothness for rendering meshes, our work 
focuses on shape modeling. Moreover, our work is a 
generalization of curved triangles. Polygonal networks, 
rather than triangular networks, are interpolated to 
create desirable shapes. Compared to triangular 
networks, polygonal networks provide more 
possibilities to create complex shapes with only a few 
curves. 
 
3. Curve networks and respective surfaces  
 

We focus on curve networks used in concept design, 
which outline 3D shapes through a set of feature 
curves. In such curve networks, curves are served as 
potential features, and the outlined shape can be 
regarded as a smooth blending of these curves. 
Considering curve networks for different shapes may 
be very different, we make a constraint about input 
curve networks that they  should be able to be 
decomposed into a set of curve loops. For few shapes, 
some curves need to be added to conform to this 
constraint. This assumption is minor, because good 
structural curves always contain a lot of curve loops.  

Based on the assumption, we propose a method to 
decompose a curve network into a set of curve loops. 
In-between of these curve loops forms a set of surface 
patches, and its assembly approximates the shape 
characterized by the curve network. Thus, the problem 
is reduced to how to design a surface patch from its 
boundary loop and how to smoothly blend them. 

Considering various 3d curve networks either 
created by artists [30] or extracted from shape analysis 

algorithms [31], we find that a good curve network 
abstraction locates the curves around the surface 
features where the normals are either discontinuous or 
changing rapidly, and normals of the surface patches  
bounded by curves do not change vastly, as shown in 
Figure 1. Noises in the scanned vase cause few red 
points in dark blue regions, which rarely exist in 
conceptual design models. Because the surface patches 
have various shapes, the vertex normals are not always 
linearly or quadratic distributed on the surface. We 
make a more general assumption that the vertex 
normals’ distribution is harmonic. Note that, if the 
distribution of the normals is harmonic, the variance of 
the normals is minimized locally, which can be 
guaranteed by a good curve network abstraction.  

 
Figure 1: The color map of normal variations. 

 (Values near zero are in dark blue). 
 

4. Algorithm 
 

From the discussion in section 3, we can formulate 
our algorithm to create surfaces from input curve 
networks now.  

 
4.1. Curve Network Decomposition & Analysis 

 
To deal with various representations for curve 

networks, a uniform re-sampling is performed to 
convert an input curve network into a connected vertex 
graph G, as shown in Figure 2. Arc parameterization 
and chord parameterization is used for parametric 
curves and discrete curves respectively.  

In a graph G, each vertex connected to more than 
two vertexes is identified as a cross point. To identify 
loops in G, each edge is split into two opposite half 
edges. All half edges form a set E’. Based on our 
assumption about G, it is easy to find that each half 
edge must exist in only one loop, and all half edges in 
all loops form E’.  

We find all curve loops in G as follows. When there 
is still a half edge in E’, we pick it out, and follow it to 
find a loop in a counter clock wise way. Encountering 
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a cross vertex, we select the one with smallest angle of 
the former edge. When a loop is identified, all its half 
edges are deleted from E’. When E’ becomes an empty 
set, all loops are identified. Note that extra boundary 
loops are also identified, if a curve network is for a 
non-closed shape. They can be removed interactively. 

 
Figure 2: A curve network. Cross points (pink), ordinary 

points (green) and a bottom loop (blue). 
 

If the vertex normals on the curve network are not 
provided, we estimate the vertex normals for each loop 
respectively. Each curve of a loop is labeled as a 
smooth feature by default, unless it is labeled as a 
sharp feature by designers explicitly. The normals of 
its two neighboring cross vertices of a curve are 
calculated first. For a smooth curve, they are defined as 
angle weighted average of their normals in all loops. 
For a sharp curve, the normal of each neighboring 
cross point v is defined as cross product of the vectors 
pointing from v to its neighboring vertices in the loop. 
Then, normals of non-cross vertices on the curve are 
linearly interpolated from its neighboring cross 
vertices.  
 
4.2. Initial Surface Generation 
 

We adopt the advancing front mesh method [32] to 
create a surface patch for each loop. All initial surface 
patches form an initial surface altogether. 

 
4.3. Harmonic field guided surface refinement 
 

We compute the harmonically-distributed normals 
of the initial surface to refine it. Our surface refinement 
can be thought as an ingredient to [21], a basic mesh 
editing framework. 

 
General Differential setting. In the harmonic field 

construction and surface refinement, we considering 
the steady-state elliptic equation ׏ଶu ൌ  f                                   (1) 

with appropriate boundary conditions. If f ≡ 0, it is the 
Laplace equation. Otherwise, it is the Poisson equation. 
The discrete format is well-known and can be solved 
by a sparse linear system Aܠ ൌ  (2)                             ，܊
where the coefficient matrix A represents the discrete 
Laplace-Beltrami operator matrix [33][34]. 

 
Harmonic normal distribution. Given the normals 

on a loop, we interpolate them in a smooth way over 
the loop surface patch by using harmonic fields. A 
harmonic function f  satisfies the Laplace equation ׏ଶf ൌ 0. Three harmonic fields are constructed, each 
for one dimension of the normals. We then solve the 
Laplace equation Af ൌ 0  for each harmonic field f, 
with the boundary conditions defined by the vertex 
normals of the loop. Each normal is normalized after 
its three coordinates are obtained. 

 
Surface refinement. Based on the results of 

[35][36], the discrete Poisson equation on a triangular 
meshes is formulated as follows. A discrete potential 
scalar field is defined as a piecewise linear function 

 fሺvሻ ൌ  ∑ f୧Φ୧ሺvሻ୧ , 
with Φ୧ሺvሻ  being the piecewise linear basis function 
valued 1 at vertex vi and 0 at all other vertices, and f୧ 
being the value of f at vi. Its discrete gradient is ׏fሺvሻ ൌ  ∑ f୧׏Φ୧ሺvሻ୧ ,                       (3) 
which is a piecewise constant vector field, e.g., inside 
each triangle the gradient is constant vector. For such a 
piecewise constant vector field ܟ , the discrete 
divergence at vertex vi is defined as  ሺDiv ܟሻሺv୧ሻ ൌ  ∑ Φ୧୩׏ · NTሺ୴౟ሻג୩ |T୩|Tౡܟ ,       (4) 
where NTሺv୧ሻ  is the set of all triangles immediately 
adjacent to the vertex i, ׏Φ୧୩ is the gradient of basis 
function at vertex i in triangle T୩, ܟ୩  is the constant 
vector in T୩ , |T୩|  is the area of triangle. Then, the 
discrete Laplacian operator is formulated as 

Δf ൌ Divሺ׏fሻ. 
The well-known cotangent weights Laplacian operator 
for triangular surface mesh, e.g.,  

Δfሺv୧ሻ ൌ  ∑ ଵଶ ቀcotα୨ ൅  cotβ୨ቁ ൫f୧  െ  f୨൯,TגNTሺ୴౟ሻ    (5) 
where α୨ and β୨ are the two angles opposite to the edge ൫v୧ , v୨൯ [37]. f୧  is one dimensional of the coordinates 
of the vertex indexed i on our initial surface. Finally, 
the discrete Poisson equation is expressed as 

Δf ؠ divሺ׏fሻ ൌ  div (6)                    .ܟ 
To utilize the harmonic normals calculated above, 

each triangle is rotated around its center separately, to 
be consistent with its calculated normal. Then, a 

246



 

fragmented, discontinuous mesh is yielded, which 
provide a guidance vector field for Poisson equation.  

With the guidance vector field, the initial surface 
can be refined based on the Poisson equation. Use Eq. 
(3) to calculate gradients of each vertex on its adjacent 
triangles. Then the divergence of each vertex on the 
input curve network is calculated, according to Eq. (4). 
Matrix A can be computed using Eq. (5) and ܊ is 
initialized by divergences of all points on the input 
curve network. Finally, we solve the Poisson equation 
to obtain the new vertex coordinates, which defines the 
geometry of the optimized surface. 

Some curves on the curve network represent sharp 
features on the surface. We allow users to adjust the 
vertex normals on a curve network where the vertices 
or curves are required to be a corner or sharp edge. By 
assigning desirable normals for a vertex in different 
loops, a sharp feature can be created. 
 
5. Results & Discussion 
 

We test on curve networks of various models. 
Figure 3 gives an illustration about the whole process. 

  
(a)               (b)                 (c) 

      
  (d)                             (e) 

Figure 3:  CurveNetSurf.  An input curve network (a), 
normals on the curve network(b), the initial surface (c), 
harmonic distributed normals (d), the final surface (e). 

 
To test whether the refined surface obeyed the 

normal harmonic fields, we measure the angle 
variations between the face normals of the refined 
surface and their respective normals defined by the 

harmonic fileds, as shown in Figure 4. Besides some 
variations near the top and bottom sharp feature curves, 
almost no variations exist, the refined surface smoothly 
blends the curve network within each loop and over the 
smooth curves.  

 
Figure 4: Normal variation color maps. 

 
In Figure 5, we show a comparison with Fiber 

Mesh. Because Fiber Mesh uses a global optimization 
to create surfaces, sharp curves can’t guarantee to 
produce sharp features. However, sharp features of 
surfaces can be easily created using our method, as 
shown in Figure 5d. More examples are shown in 
Figure 7. 

 
(a)                         (b) 

 
(c)                                (d) 

Figure 5: A comparison to  Fiber Mesh. A telephone 
listener model  created by FiberMesh, with the blue curves as 
smooth constraints (a), two top curves are changed into sharp 

constraints (b). A curve network (c) is manually extracted 
from (a), and used by CurveNetSurf to create a surface (d). 

 
The proposed method has been implemented with 

VC++9.0, using the LAPACK library [38] to do 
numerical computing. All experimental results in this 
paper were obtained on a 2.66GHz Intel Core2 Duo 
CPU with 4.0GB memory. The complexity and 
creation time is summarized in Table 1. For a local 
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editing, those equations can be solved in less than one 
second for the curve networks we used. 

 
Table1. Computing time 

Model triangles vertices Laplace 
Eq.  

Poisson 
Eq. 

Chair 732 1460 0.0176s 0.1493s 
Vase 4690 2347 0.0358s 0.2694s 
Phone 2090 4176 1.4129s 1.3833s 

Dolphin 6886 13768 42.2257s 40.154s 
Bird  6706 13408 41.0531s 39.221s 

Donut 2557 5114 1.4736s 1.4234s 
 

 
Figure 6: Curve networks of a handle. 

(left: non-valid, right: valid) 
 

Limitations.  This work is just a first step, and it 
has some limitations. For example, we assume each 
input curve network is manifold and made up of a set 
of loops. For few shapes, some curves need to be 
added to conform to this constraint, as shown in Figure 
6. However, these added are actually needed, since 
they characterized the slope of the blending surface 
between the two loops. Another issue relates to the 
normal interpolation on a curve. Although the linear 
interpolation is enough for most examples we used, for 
a long arc curve with many normal variations, it may 
fail. We resolve this problem by labeling some non-
cross vertices on such a curve as cross points to cut the 
curve into segments with less variation.  

 
  6. Conclusion 

 
In this paper, we introduced a simple and efficient 

algorithm for creating surfaces from curve networks. 
The algorithm produces plausible surfaces that satisfy 
the characterizations of curve networks. In addition, 
the final surface can be interactively modified in a 
simple way by few adjustments, to obtain surfaces with 
different sharp features. In terms of future work, we 
would like to investigate curve networks in a more 
general structure.  
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Figure 7: Surfaces created using CurveNetSurf.  
(left: curve networks, right: created surfaces) 
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