

CurveNetSurf: Creating Surfaces from Curve Networks

Leilei Gao Lifeng Zhu Guoping Wang
Graphics and Interactive Technology Lab, Peking University

Abstract

In conceptual design of models, designers usually

express their ideas in curve networks, without
generating final 3D surfaces. In this paper, we propose
a method to utilize the structures and properties of
curve networks to create mesh surfaces with
controllable sharp features. We demonstrated our
method on various curve networks, the created
surfaces are both visually plausible and faithfully
follow the input curve networks.

1. Introduction

3D computer modeling is becoming a common tool
for designers and artists, and even amateurs. However,
professional modeling packages, such as [1][2], are not
intuitive and usually require hours of tedious works to
create a simple surface. Artists and designers mainly
draw characteristic curves to express their ideas. Tools
that can directly create surfaces from such curves are
more preferred, such as FiberMesh [3]. Different from
those existing methods, which only use those curves as
local positional constraints, we utilize the structures
and differential properties of curve networks to create
surfaces, which smoothly interpolate differential
properties of curve networks.

Our key observation is that curve networks provide
most desired features of surfaces, the areas in between
them are often smooth blending of these curves.
Therefore, positions and properties of these curves,
such as normals, must be respected and used to guide
the creation of surface patches in between them.
Guided by this observation, we propose a method for
creating surfaces from curve networks. First, we
analyze the structure and properties of a curve network
and decompose it into a set of disconnected sub-
structures. Then, a coarse patch is created for each sub-
structure. At last, we construct the final surface from a
harmonic field defined by the analyzed or supplied
differential properties of the curve network.

In the remainder of this paper, we first discuss
related works and introduce relationships between
curve networks and respective surfaces. Then, an

algorithm is presented to create surfaces from curve
networks. We evaluate the results in Section 5.

2. Related Work

Sketch-based 3D modeling. A comprehensive

survey on sketch-based 3D modeling can be seen in
[4][5]. Here we only focus on methods most related to
our work. Popular sketch-based modeling systems
[3][6][7] can only create few bulbous 3D shapes, since
inflation methods are used. But our method can create
surfaces from curve networks for complex shapes.
FreeDrawer [8] approximate a network of spline curves
by a b-spline surface, using a complex fitting process.

Our method is also relevant to patching parametric
surfaces. In parametric surface modeling, surfaces are
mostly created from triangular or quadrilateral domains.
Additional requirements, such as the continuity
constraints across the patch boundaries, complicate the
construction [9]. However, our work interpolates and
blends the surface patches in a discrete way. The shape
of the network is not restricted to be triangular or
quadrilateral, and complicated constraint management
is avoided.

Surface Reconstruction. To recover a surface from

a curve network is similar to reconstruction from lower
dimensional data sets, because a 2D manifold has to be
constructed from a lower dimensional data set, i.e., a
set of curves. Recently, surface reconstruction from
point clouds are intensively studied for reverse
engineering or data acquisition [10][11][12]. Better
reconstruction results can be obtained when normals of
points are additionally supplied [13][14], or various
prior knowledge is provided [15][16]. Besides point
clouds, a set of projected contours can be obtained
from images [17]. A popular method to reconstruct
these surfaces is to find an implicit representation to
the data set, and then convert it into surface meshes
using standard techniques, e.g. marching cubes [18].
However, it is difficult to get an implicit representation
for curve networks, because the curve network
structure is sparser than point clouds or voxels from
the images. A similar work presented in [19]. [20]
reconstructs surfaces from cross-sections. However, for

2011 12th International Conference on Computer-Aided Design and Computer Graphics

978-0-7695-4497-7/11 $26.00 © 2011 IEEE

DOI 10.1109/CAD/Graphics.2011.29

244

most cases, it is hard to extract cross-sections from the
curve network abstraction.

Poisson Editing. Poisson editing is an efficient

algorithm for performing geometric processing in the
gradient domain. After it is introduced by Yu et al [21],
it has been successfully used in wide varieties of
geometric applications, include shape morphing[22],
deformation transfer[23], paramerization[24], hole
filling[25] and recently, remeshing for equivalent
class[26]. In this paper, we adopt Poisson editing for
the shape design from curve networks.

Curved Triangle. Curved triangles [27][28] are a

set of local operations, which refine the triangles
guided by the vertex normals. Cubic Bezier patches [27]
or quadratic patches [28][29] are used to interpolate the
vertex positions and its normals. They can be regarded
as techniques creating surfaces from triangular
networks. While curved triangles focus on improving
the visual smoothness for rendering meshes, our work
focuses on shape modeling. Moreover, our work is a
generalization of curved triangles. Polygonal networks,
rather than triangular networks, are interpolated to
create desirable shapes. Compared to triangular
networks, polygonal networks provide more
possibilities to create complex shapes with only a few
curves.

3. Curve networks and respective surfaces

We focus on curve networks used in concept design,
which outline 3D shapes through a set of feature
curves. In such curve networks, curves are served as
potential features, and the outlined shape can be
regarded as a smooth blending of these curves.
Considering curve networks for different shapes may
be very different, we make a constraint about input
curve networks that they should be able to be
decomposed into a set of curve loops. For few shapes,
some curves need to be added to conform to this
constraint. This assumption is minor, because good
structural curves always contain a lot of curve loops.

Based on the assumption, we propose a method to
decompose a curve network into a set of curve loops.
In-between of these curve loops forms a set of surface
patches, and its assembly approximates the shape
characterized by the curve network. Thus, the problem
is reduced to how to design a surface patch from its
boundary loop and how to smoothly blend them.

Considering various 3d curve networks either
created by artists [30] or extracted from shape analysis

algorithms [31], we find that a good curve network
abstraction locates the curves around the surface
features where the normals are either discontinuous or
changing rapidly, and normals of the surface patches
bounded by curves do not change vastly, as shown in
Figure 1. Noises in the scanned vase cause few red
points in dark blue regions, which rarely exist in
conceptual design models. Because the surface patches
have various shapes, the vertex normals are not always
linearly or quadratic distributed on the surface. We
make a more general assumption that the vertex
normals’ distribution is harmonic. Note that, if the
distribution of the normals is harmonic, the variance of
the normals is minimized locally, which can be
guaranteed by a good curve network abstraction.

Figure 1: The color map of normal variations.

 (Values near zero are in dark blue).

4. Algorithm

From the discussion in section 3, we can formulate
our algorithm to create surfaces from input curve
networks now.

4.1. Curve Network Decomposition & Analysis

To deal with various representations for curve

networks, a uniform re-sampling is performed to
convert an input curve network into a connected vertex
graph G, as shown in Figure 2. Arc parameterization
and chord parameterization is used for parametric
curves and discrete curves respectively.

In a graph G, each vertex connected to more than
two vertexes is identified as a cross point. To identify
loops in G, each edge is split into two opposite half
edges. All half edges form a set E’. Based on our
assumption about G, it is easy to find that each half
edge must exist in only one loop, and all half edges in
all loops form E’.

We find all curve loops in G as follows. When there
is still a half edge in E’, we pick it out, and follow it to
find a loop in a counter clock wise way. Encountering

245

a cross vertex, we select the one with smallest angle of
the former edge. When a loop is identified, all its half
edges are deleted from E’. When E’ becomes an empty
set, all loops are identified. Note that extra boundary
loops are also identified, if a curve network is for a
non-closed shape. They can be removed interactively.

Figure 2: A curve network. Cross points (pink), ordinary

points (green) and a bottom loop (blue).

If the vertex normals on the curve network are not
provided, we estimate the vertex normals for each loop
respectively. Each curve of a loop is labeled as a
smooth feature by default, unless it is labeled as a
sharp feature by designers explicitly. The normals of
its two neighboring cross vertices of a curve are
calculated first. For a smooth curve, they are defined as
angle weighted average of their normals in all loops.
For a sharp curve, the normal of each neighboring
cross point v is defined as cross product of the vectors
pointing from v to its neighboring vertices in the loop.
Then, normals of non-cross vertices on the curve are
linearly interpolated from its neighboring cross
vertices.

4.2. Initial Surface Generation

We adopt the advancing front mesh method [32] to
create a surface patch for each loop. All initial surface
patches form an initial surface altogether.

4.3. Harmonic field guided surface refinement

We compute the harmonically-distributed normals
of the initial surface to refine it. Our surface refinement
can be thought as an ingredient to [21], a basic mesh
editing framework.

General Differential setting. In the harmonic field

construction and surface refinement, we considering
the steady-state elliptic equation ଶu ൌ f (1)

with appropriate boundary conditions. If f ≡ 0, it is the
Laplace equation. Otherwise, it is the Poisson equation.
The discrete format is well-known and can be solved
by a sparse linear system Aܠ ൌ (2) ，܊
where the coefficient matrix A represents the discrete
Laplace-Beltrami operator matrix [33][34].

Harmonic normal distribution. Given the normals

on a loop, we interpolate them in a smooth way over
the loop surface patch by using harmonic fields. A
harmonic function f satisfies the Laplace equation ଶf ൌ 0. Three harmonic fields are constructed, each
for one dimension of the normals. We then solve the
Laplace equation Af ൌ 0 for each harmonic field f,
with the boundary conditions defined by the vertex
normals of the loop. Each normal is normalized after
its three coordinates are obtained.

Surface refinement. Based on the results of

[35][36], the discrete Poisson equation on a triangular
meshes is formulated as follows. A discrete potential
scalar field is defined as a piecewise linear function

 fሺvሻ ൌ ∑ f୧Φ୧ሺvሻ୧ ,
with Φ୧ሺvሻ being the piecewise linear basis function
valued 1 at vertex vi and 0 at all other vertices, and f୧
being the value of f at vi. Its discrete gradient is fሺvሻ ൌ ∑ f୧Φ୧ሺvሻ୧ , (3)
which is a piecewise constant vector field, e.g., inside
each triangle the gradient is constant vector. For such a
piecewise constant vector field ܟ , the discrete
divergence at vertex vi is defined as ሺDiv ܟሻሺv୧ሻ ൌ ∑ Φ୧୩ · NTሺ୴ሻג୩ |T୩|Tౡܟ , (4)
where NTሺv୧ሻ is the set of all triangles immediately
adjacent to the vertex i, Φ୧୩ is the gradient of basis
function at vertex i in triangle T୩, ܟ୩ is the constant
vector in T୩ , |T୩| is the area of triangle. Then, the
discrete Laplacian operator is formulated as

Δf ൌ Divሺfሻ.
The well-known cotangent weights Laplacian operator
for triangular surface mesh, e.g.,

Δfሺv୧ሻ ൌ ∑ ଵଶ ቀcotα୨ cotβ୨ቁ ൫f୧ െ f୨൯,TגNTሺ୴ሻ (5)
where α୨ and β୨ are the two angles opposite to the edge ൫v୧ , v୨൯ [37]. f୧ is one dimensional of the coordinates
of the vertex indexed i on our initial surface. Finally,
the discrete Poisson equation is expressed as

Δf ؠ divሺfሻ ൌ div (6) .ܟ
To utilize the harmonic normals calculated above,

each triangle is rotated around its center separately, to
be consistent with its calculated normal. Then, a

246

fragmented, discontinuous mesh is yielded, which
provide a guidance vector field for Poisson equation.

With the guidance vector field, the initial surface
can be refined based on the Poisson equation. Use Eq.
(3) to calculate gradients of each vertex on its adjacent
triangles. Then the divergence of each vertex on the
input curve network is calculated, according to Eq. (4).
Matrix A can be computed using Eq. (5) and ܊ is
initialized by divergences of all points on the input
curve network. Finally, we solve the Poisson equation
to obtain the new vertex coordinates, which defines the
geometry of the optimized surface.

Some curves on the curve network represent sharp
features on the surface. We allow users to adjust the
vertex normals on a curve network where the vertices
or curves are required to be a corner or sharp edge. By
assigning desirable normals for a vertex in different
loops, a sharp feature can be created.

5. Results & Discussion

We test on curve networks of various models.
Figure 3 gives an illustration about the whole process.

(a) (b) (c)

 (d) (e)

Figure 3: CurveNetSurf. An input curve network (a),
normals on the curve network(b), the initial surface (c),
harmonic distributed normals (d), the final surface (e).

To test whether the refined surface obeyed the

normal harmonic fields, we measure the angle
variations between the face normals of the refined
surface and their respective normals defined by the

harmonic fileds, as shown in Figure 4. Besides some
variations near the top and bottom sharp feature curves,
almost no variations exist, the refined surface smoothly
blends the curve network within each loop and over the
smooth curves.

Figure 4: Normal variation color maps.

In Figure 5, we show a comparison with Fiber

Mesh. Because Fiber Mesh uses a global optimization
to create surfaces, sharp curves can’t guarantee to
produce sharp features. However, sharp features of
surfaces can be easily created using our method, as
shown in Figure 5d. More examples are shown in
Figure 7.

(a) (b)

(c) (d)

Figure 5: A comparison to Fiber Mesh. A telephone
listener model created by FiberMesh, with the blue curves as
smooth constraints (a), two top curves are changed into sharp

constraints (b). A curve network (c) is manually extracted
from (a), and used by CurveNetSurf to create a surface (d).

The proposed method has been implemented with

VC++9.0, using the LAPACK library [38] to do
numerical computing. All experimental results in this
paper were obtained on a 2.66GHz Intel Core2 Duo
CPU with 4.0GB memory. The complexity and
creation time is summarized in Table 1. For a local

247

editing, those equations can be solved in less than one
second for the curve networks we used.

Table1. Computing time

Model triangles vertices Laplace
Eq.

Poisson
Eq.

Chair 732 1460 0.0176s 0.1493s
Vase 4690 2347 0.0358s 0.2694s
Phone 2090 4176 1.4129s 1.3833s

Dolphin 6886 13768 42.2257s 40.154s
Bird 6706 13408 41.0531s 39.221s

Donut 2557 5114 1.4736s 1.4234s

Figure 6: Curve networks of a handle.

(left: non-valid, right: valid)

Limitations. This work is just a first step, and it
has some limitations. For example, we assume each
input curve network is manifold and made up of a set
of loops. For few shapes, some curves need to be
added to conform to this constraint, as shown in Figure
6. However, these added are actually needed, since
they characterized the slope of the blending surface
between the two loops. Another issue relates to the
normal interpolation on a curve. Although the linear
interpolation is enough for most examples we used, for
a long arc curve with many normal variations, it may
fail. We resolve this problem by labeling some non-
cross vertices on such a curve as cross points to cut the
curve into segments with less variation.

 6. Conclusion

In this paper, we introduced a simple and efficient

algorithm for creating surfaces from curve networks.
The algorithm produces plausible surfaces that satisfy
the characterizations of curve networks. In addition,
the final surface can be interactively modified in a
simple way by few adjustments, to obtain surfaces with
different sharp features. In terms of future work, we
would like to investigate curve networks in a more
general structure.

Acknowledgement

This work is supported by the National Basic
Research Program of China (GrantNo.
2010CB328002) and the National Natural Science
Foundation of China (Grant No. 90915010, 60925007,
60833007).

Figure 7: Surfaces created using CurveNetSurf.
(left: curve networks, right: created surfaces)

248

References

[1] 3DS MAX, 2010, Autodesk,
http://usa.autodesk.com/3dsmax.

[2] MAYA, 2010, Autodesk, http://usa.autodesk.com/maya.

[3] Andrew Nealen, Takeo Igarashi, Olga Sorkine and Marc
Alexa, “FiberMesh: Designing Freeform Surfaces with 3D
Curves”, ACM Transactions on Computer Graphics, ACM
SIGGRAPH 2007, San Diego, USA, 2007.

[4] Matthew T. Cook, and Arvin Agah, “A survey of sketch-
based 3-D modeling techniques”, Interacting with
Computers, Volume 21, Issue 3, July 2009, Pages 201-211.

[5] Olsen, L., Samavati, F.F., Sousa, M.C., and Jorge, J.A.,
“Sketch-based modeling: A survey”, Computer & Graphics,
Volume 33, Issue 1, Feb 2009, Pages 85-103.

[6] Igarashi, Takeo, Matsuoka, Satoshi, Tanaka, Hidehiko,
“Teddy: a sketching interface for 3D freeform design”, In:
ACM SIGGRAPH 1999, ACM, Los Angels, California.

[7] Schmidt, R., Wyvill, B., Sousa, M., Jorge, J.,
“ShapeShop: Sketchbased solid modeling with blobtrees”, In
Eurographics Workshop on Sketch-Based Interfaces and
Modeling, 2005, pp. 53–62.

[8] Wesche, Gerold, Seidel, Hans-Peter, “FreeDrawer: a free-
form sketching system on the responsive workbench”, In:
Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, ACM Press, 2001, pp. 167–174.

[9] G.Farin, J.Hoschek and M.-S. Kim, Handbook of
computer aided geometric design, Elisevier Science B.V.
2002.

[10] Carr J. C., Beatson R. K., Cherrie J. B., Mitchell T. J.,
Fright W. R., Mccallum B. C., Evans T. R, “Reconstruction
and representation of 3D objects with radial basis functions”,
In Siggraph (2001), pp. 67–76.

[11] Hornung A., Kobbelt L., “Robust reconstruction of
watertight 3D models from non-uniformly sampled point
clouds without normal information”, In Eurographics
Symposium on Geometry Processing (2006), pp. 41–50.

[12] Andrei Sharf, Thomas Lewiner, Gil Shklarski, Sivan
Toledo, and Daniel Cohen-Or, “Interactive topology-aware
surface reconstruction”, ACM Transactions on Graphics
(TOG), Volume.26 No.3, July 2007.

[13] Michael Kazhdan , Matthew Bolitho , Hugues Hoppe,
“Poisson surface reconstruction”, Proceedings of the fourth
Eurographics symposium on Geometry processing, Cagliari,
Sardinia, Italy, June 26-28, 2006.

[14] J. Schreiner, C. Scheidegger, S. Fleishman, and C. Silva,
“Direct (Re)Meshing for Efficient Surface Processing”,
Computer Graphics Forum (Proceedings of Eurographics
2006), Volume 25, Issue 3, 2006, pp.527—536.

[15] Liangliang Nan, Andrei Sharf, Hao Zhang, Daniel
Cohen-Or, Baoquan Chen, “SmartBoxes for Interactive
Urban Reconstruction”, ACM Trans. Graph., Volume 29,
Issue 4, July 2010, pp. 93:1--93:10.

[16] Ran Gal and Ariel Shamir and Tal Hassner and Mark
Pauly and Daniel Cohen-Or, D., “Surface reconstruction
using local shape priors”, In Proc. of Eurographics Symp. on
Geometry Processing, 2007, pp. 253–262.

[17] Seitz S. M., Curless B., Diebel J.,Szeliski D. S. R., A
comparison and evaluation of multi-view stereo
reconstruction algorithms, CVPR 2006, Vol. 1, pp. 519-526.

[18] Lorensen W, Cline H., “Marching cubes: a high
resolution 3D surface construction algorithm”, Computer
Graphics, 21(4), 1987, pp. 163–9.

[19] T. Ju, J. Warren, J. Carson, G. Eichele, C. Thaller, W.
Chiu, M. Bello and I. Kakadiaris, “Building 3d surface
networks from 2d curve networks with application to
anatomical modeling”, Proceedings of Pacific Graphics 2005,
21(8-10), pp.764-773.

[20] Liu, L., Bajaj, C., Deasy, J. O., Low, D. A., and Ju, T.,
Surface Reconstruction From Non-parallel Curve Networks,
Computer Graphics Forum, Blackwell Publishing Ltd, Vol.
27, 2008, pp. 155-163.

[21] Yu, Y., Zhou, K., Shi, X., Bao, H. Guo, B., Shum, H.,
“Mesh editing with Poisson-based gradient field
manipulation”, In: processing of SIGGRAPH, Los Angeles,
California, USA, 8–12 August 2004, pp. 644–651.

[22] Xu, D., Zhang, H., Wang, Q., and Bao, H., “Poisson
shape interpolation”, In SPM ’05: Proc. ACM Symp. on
Solid and Physical Modeling, 2005, pp. 267–274.

[23] Robert W. Sumner and Jovan Popovic, “Deformation
transfer for triangle meshes”, ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH), 23(3), 2004, pp. 399–
405.

[24] Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, Steven
J. Gortler, “A Local/Global Approach to Mesh
Parameterization”, Computer Graphics Forum (Proc.
Eurographics Symposium on Geometry Processing (SGP)),
27(5), 2008, pp. 1495-1504,

[25] Zhao, Wei and Gao, Shuming and Lin, Hongwei, “A
robust hole-filling algorithm for triangular mesh”, Visual
Computer, Volume 23, Issue 12, 2007, pp. 987—997.

249

[26] Mayank Singh and Scott Schaefer, “Triangle surfaces
with Discrete Equivalence Classes”, ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH), 29(4) 2010.

[27] Vlachos, A., Peters, J., Body, C., and Mitchell, J.,
Curved PN triangles. Proceedings of ACM Symposium on
Interactive 3D, 2001, pp.159–166.

[28] Boubekeur, T., and Alexa, M., “Phong tessellation,
ACM Trans. Graph. 27, 5, 2008, pp.1–5.

[29] Boubekeur, T., and Schilick, C., “QAS: Real-time
quadratic approximation of subdivision surfaces”, In
Proceedings of Pacific Graphics 2007, pp. 453–456.

[30] Schmidt, Ryan and Khan, Azam and Singh, Karan and
Kurtenbach, Gord, “Analytic drawing of 3D scaffolds”,
ACM Trans. Graph, Volume 28, Issue 5, December 2009, pp.
112-121.

[31] Fernando de Goes, Siome Goldenstein, Mathieu
Desbrun, Luiz Velho, “Exoskeleton: Curve network
abstraction for 3D shapes”, Computers & Graphics, Volume
35, Issue 1, pp. 112-121.

[32] George, L.P., Seveno, E., “The advancing-front mesh
generation method revisited”, Int. J. Numer. Methods Eng.
37(7), 1994, pp.3605–3619.

[33] Pinkall, U., Polthier, K., “Computing discrete minimal
surfaces and their conjugates”, Comput. Aided Des, Volume
25, Issue 4, 1993, pp.225–232.

[34] Meryer, M., Desbrun, M., Schr -Oder, P., and Barr, A.,
“Discrete differentialgeometry operators for triangulated 2-
manifolds”, In Proc. Vis-Math, 2002, pp. 35–57.

[35] K. Polthier and E. Preuss, “Identifying Vector Fields
Singularities Using a Discrete Hodge Decomposition,”
Visualization and Math., Springer Verlag, 2002.

[36] Tong, Y., Lombeyda, S., Hirani, A. N., and Desbrun,
“Discrete multiscale vector field decomposition”, ACM
Trans. Graph., Volume 21, Issue 3, July 2003, pp.445-452.

[37] Hirani, Anil N., “Discrete exterior calculus”,
Dissertation (Ph.D.), California Institute of Technology,
2003.

[38] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J.
Demmel, Jack J. Dongarra, J. Du Croz, S. Ham-marling, A.
Greenbaum, A. McKenney, and D. Sorensen, “LAPACK
Users' guide (third ed.)”, Societyfor Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1999.

250

