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Abstract 
This paper proposes a foreground-extraction method 

from color image by statistically labeling the mosaics 
created by mean-shift. Under the assumption that a flexibly 
assigned mask region can provide a good statistical 
description for the background, we employ the multivariate 
normal distribution to model the over-segmented patches 
adaptively generated by mean-shift, estimate the statistical 
parameters and compute the background priors. The 
unlabelled patches are sorted and labeled gradually via 
statistical similarity computation. We propose two 
probability distances to do similarity measure in a 5D joint 
color-spatial feature space. Multiple hypotheses under 
different evaluation criteria are adopted to increase the 
chance of success. Accurate foreground extraction is 
achieved with low computational cost. Experiments show 
that our probabilistic formulation has obvious advantage 
for multi-connectivity, multi-hole foreground extraction. 

1. Introduction 
Foreground extraction in still images plays a key role in 

vision applications [1]. Popular approaches include 
interactive graph cut [2], random walk [3], geodesic [4], 
information theory [5], and variational solutions [6].  

The biggest problem we are facing might be how to 
effectively supervise the segmentation and make the 
routine as intelligent as possible. On the one hand, we are 
looking for better ways of providing a priori knowledge to 
guide segmentation by user interaction.  Bounding box 
assigning [7] and seed positioning [8] are two 
representative interactive methods.  On the other hand, we 
always desire simple models that free users from 
troublesome algorithm design. Current approaches suffer 
mainly from the uncertainty of model selection, feature 
organization [9, 10], parameter tuning [11] and goodness 
evaluation. Different models lead to different results and 
there exists no dominant winner [12]. Recent attempts like 
additional learning process and multiple hypotheses have 
reported encouraging results [13], although widely 
applicable solution in the absence of a priori knowledge 
remains a big challenge. 

                     
          (a)      (b)      (c)       (d) 
Figure 1. Adaptive figure-ground classification solving pipeline 

(a) original image & mask;     (b) initial ms patches(hs=7,hr=6.0) 
(c) adaptive ms patches(hs=15,hr=2.7); (d) DM and DK selections 

 
In this work, we present a weakly supervised foreground 

extraction framework that gives promising solutions to the 
above 3 questions in a broadly applicable environment. The 
pipeline of our framework is illustrated in Figure 1. Under 
the assumption that a carefully assigned mask region is able 
to provide sufficient statistical information about the 
background, we treat the task as a figure-ground (f-g) 
classification on the over-segmented patches generated by 
the mean-shift algorithm. We model all the region patches 
as multivariate normal distributions in a 5D joint 
color-spatial feature space. Two novel probability distances 
are defined to measure the similarities and new labels are 
assigned gradually by comparison with known priors. 
Multiple hypotheses are output to add the chance of success. 
This scheme avoids the trouble of parameter tuning and 
makes it possible to fully enjoy the favorable 
characteristics of the mean-shift algorithm in a direct and 
intuitive manner. It overcomes many drawbacks of 
state-of-the-art techniques and generates surprisingly good 
results for challenging images. The main contribution is a 
very simple model equipped with two powerful distance 
measures, which leads to efficient solving procedure and 
excellent results. 

2. A foreground-background classification 
framework 

We call our algorithm a weakly supervised one because 
it merely relies on interactive mask assigning and need no 
other a prior knowledge. The advantage of a tight bounding 
box in the context of foreground extraction is obvious as 
addressed in [14]. So we also take such a bounding box to 
help define the background priors. We further extend this 
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concept to treat different foreground and background 
positions. Briefly speaking, a mask bounding-box is 
interactively assigned by the user. Then either side of the 
box can be defined as the background mask. The 
complement of the background mask makes the foreground 
mask. This mask definition flexibly handles different cases 
of partially-inside foreground. This operation is illustrated 
in Figure 2. 

  
 (a1)       (a2)   (b1)    (b2) 

Figure 2. Bounding-box based mask definition. 
The background mask (striped region) is defined as the outside of 
the blue boxes (a) or the inside of the red boxes (b). 
The foreground mask (blank region) is defined as the inside of the 
blue boxes (a) or the outside of the red boxes (b). 

2.1. Patch making: mean-shift segmentation 
Defining the segmentation as the grouping of 

non-overlapping regions instead of pixels has become a 
popular approach due to its advantages in information 
transfer and computational efficiency [15]. To perform a 
pre-segmentation there are a lot of candidate algorithms, 
from the conventional watershed transform to modern 
over-segmentation schemes like mean-shift [16], GBIS [17] 
and normalized cut (NCut) [18]. We choose mean-shift as 
our super-pixel generator because mean-shift patches are 
easier to describe statistically in comparison to GBIS or 
NCuts [19]. Moreover, mean-shift is known as an 
edge-preserving smoothing filter that makes the 
over-segmentation with detailed boundaries. This makes it 
possible to focus on the color-spatial features in later 
processing. In addition, this technique for finding clusters 
does not require all the points in a cluster to lie within any 
fixed distance. This is a very useful property that benefits 
our multi-connectivity, multi-hole oriented segmentation. 

The output of the mean-shift preprocessing is a partition 
of the original image, I, into a set of region patches R={p1, 
p2, ...,pn}  

Φ=∩= jii ppIp ,U               (1) 

Our objective is to group these patches into a foreground 
category F and a background category B. That is, for every 
patch pi we perform a binary classification so that 
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We directly adopt the mean-shift 5D space as our feature 
space for similarity measure. In other words, we treat the 
3D color features and the 2D spatial features identically and 
do not give any priority to spatially adjacent patches. We 
take such a joint organization because we expect that, the 
feature modes close in position in some dimension within a 

low-dimensional space may become more sparsely 
distributed and easier to separate by other dimensions in a 
high-dimensional space.  

Under this formulation, a feature vector in the 5D feature 
space is given by 

( )yxbaLf ,,,,=                 (3) 
where (x y) are the 2D pixel coordinates and (L a b) are the 
pixel values in the Lab color space. We use the Lab color 
space because Lab is in general better modeled by normal 
distribution in comparison to RGB [20]. Mean-shift is a 
hill-climbing algorithm capable of finding cluster modes in 
this joint color-spatial feature space by kernel density 
estimate [21]. Therefore, we model every mean-shift patch 
as a multivariate normal distribution in the 5D feature space. 
That is to say, each patch pi is treated as a Gaussian 
distribution ),( iiN Σμ . The 5D mean vector iμ  and the 5*5 
covariance matrix iΣ  are estimated using patch statistics. 
Before the estimate all the patches are eroded with a 
radius-1 disk structuring element to avoid border effects. 

The result of the mean-shift algorithm relies heavily on 
the two bandwidth parameters, hs and hr. Different initial 
settings may lead to totally different super-pixel sets and 
only some of them are suitable for the subsequent 
classification routine [22]. For instance, for the example 
image in Figure 1, the default setting hs=7, hr=6 fails to 
identify the weak edge on the lower right part of the jug and 
causes the foreground region to “leak” into the background. 
A desired over-segmentation should generate a reasonable 
patch set that prevents such leaking effect between 
foreground and background patches. A good patch set 
generally corresponds to some appropriate mean-shift 
bandwidth parameters, which are not known at the 
beginning of the algorithm but have to be determined by 
some intelligent module. 

Fortunately, the multivariate normal distribution 
assumption allows us to adaptively guess the bandwidth 
parameters from some initial distribution statistics. The 
idea originates from the following theorem proved in [23]: 

Theorem: Assume the true distribution of a mean-shift 
patch is ),( iiN Σμ  and the fixed-bandwidth mean shift is 
computed with a normal kernel KH. The bandwidth 
normalized norm of the mean shift vector is maximized 
when the analysis bandwidth H is equal to Σ. 

This theorem characterizes the relationship between the 
bandwidth parameters and the covariance matrix of the 
multivariate distribution. This makes it possible to coarsely 
guess one of them if the other is known. Starting from this 
idea, we put forward the following method to initialize the 
mean-shift bandwidth parameters hs and hr. 

With the default bandwidths hs=7 and hr=6 we do an 
initial mean-shift segmentation. Then we collect all patches 
overlapped with the foreground mask region and compute 
their covariance matrices by patch statistics. The 5*5 
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covariance matrix Σ of a patch has the form of equation (4). 
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The upper-left 3*3 submatrix rrΣ  corresponds to the 
covariance matrix in the (L,a,b) subspace, and the 
lower-right 2*2 submatrix ssΣ  corresponds to the 
covariance matrix in the (x,y) subspace. Then, we employ 
the following equation to initialize hs and hr. 

⎣ ⎦ )))((max(,)2/)(( rrrsss diagmeanhtracemeanh Σ=Σ=  (5) 

In brief, under the multivariate Gaussian model hs and hr 
are estimated from the mean square root of the 
corresponding variance values. The slight difference 
between hs and hr is due to the observation that the 
variances of the three color components are not of equal 
importance in the Lab space. The biggest one of the three is 
in general more dominant. 

Although equation (5) is only a coarse estimate it can 
give a reliable initialization of hs and hr in the context of 
foreground extraction. This estimate can be done iteratively 
for better performance. However, our experiments show 
that the iteration is not necessarily convergent and one trial 
is generally good enough to give a reasonable initialization. 

2.2. Similarity measure: a statistical computation 
Our framework is established on the assumption that a 

pre-assigned mask provides sufficient background statistics. 
In light of this assumption, we do mean-shift again with the 
adaptive bandwidths, label the patches overlapping with 
the background mask region as the background priors, and 
obtain an initial foreground map. The final foreground 
region is obtained by gradually refining the initial 
foreground through statistical similarity comparison. 

           
a) original image    (b) mean-shift patches    (c) correct result 
Figure 3. An example foreground object with multiple holes.  

Patch A is a local sample of the global patch B. The two patches 
should be grouped together even if they are not spatially adjacent. 

 
Bhattacharyya distance can be used to quantify the 

proximity between two statistical samples by estimating the 
amount of overlap in terms of mean and covariance 
comparison [24]. In our binary classification context it is 
not a good choice. Figure 3 illustrates a simple but common 
example, where a densely distributed patch A (the hole) is a 
local sample of a sparsely distributed patch B. Perceptually 
A and B should be grouped together even if they are not 
adjacent. However, the Bhattacharyya distance may be 
large due to big covariance difference. Therefore, we need 
some other similarity measures treating such cases well. 

The multivariate Gaussian model makes it very easy to 
measure the probability distance between two mean-shift 
patches. It is well known that there exists a closed-form 
Kullback-Leibler(KL) divergence between two Gaussians 

),( 11 ΣμN and ),( 22 ΣμN  [25].   
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Equation (6) is not symmetric and thus inconvenient in 
similarity comparison. To overcome this drawback we 
suggest the following minimum KL-divergence to measure 
the statistical distance. 

)),(),,(min(),( 122121 NNKLNNKLNNDK =           (7) 
Equation (7) is a symmetrized variation of the KL 

divergence between two Gaussians. It has an intuitive 
interpretation that the two patches should be grouped 
together if either of them can be well described by the 
other. 

The computation of the logarithm term of Equation (6) is 
sometime numerically instable due to unreliable covariance 
matrixs 1Σ  or 2Σ  caused by singular patches. To remove 
such instability we also define a more conservative 
minimum Mahalanobis distance. 

))()(),()min((),( 12
1

11221
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22121 μμμμμμμμ −Σ−−Σ−= −− TT
M NND   (8) 
Equation (8) can be deemed as a variation of the 

minimum KL divergence by retaining only the dominant 
mode comparison term. Both DM and DK treat the mutual 
“belong to” relationship well and the background holes 
demonstrated in Figure 3 can be reliably identified. 
Roughly speaking, there is no guarantee one of them is 
better than the other. But they indeed provide beneficial 
complements to each other. Therefore, in our framework 
we take both similarity measures and output multiple 
hypotheses. 

Provided a similarity metric D (either DM or DK), we can 
define the distance from a single patch p to a region set R as 
equation (9), and the distance between two region sets R1 
and R2 as equation (10). 
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In Figure 4, we use non-metric multidimensional scaling 
(MDS) to compare patch dissimilarities under several 
different feature and distance configurations. We can see 
that the sample scatter of the KL divergence and the 
Mahalanobis distance are similar. Moreover, the 
foreground and the background patches are better separated 
with the 5D DM and DK similarity measures. The figure also 
reveals that under DM and DK the background priors indeed 
form a statistical representation of the background. This 
gives a visual validation for the plausibility of our 
formulation. 
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(a) KL-divergence, 5D                 (b) KL-divergence, 3D 

 
(c) Mahalanobis, 5D                      (d) Mahalnobis, 3D 

 
(e) Bhattacharyya, 5D                 (f) Bhattacharyya, 3D 

Figure 4. MDS results of six different feature and distance 
configurations for the row-2 image of Figure 7 (68 patches). 

2.3. Binary classification: gradual labeling 
With the probability distances defined in Section 2.2 we 

build our figure-ground classification algorithm. For 
simplicity all discussions in this subsection are based on 
DM. The DK based framework can be similarly established. 

A full classification trial is composed of two steps. First, 
we label the patches sufficiently far from the background 
priors as foreground patches. Second, we gradually merge 
the unlabeled patches into the foreground or the 
background group by comparing their distances to the 
existing foreground patches and background priors. 

For the first step, we use a threshold to determine 
whether a patch statistic is sufficiently far from the 
background priors. Namely, we set a patch p as foreground 
if its distance to the background priors B is greater than a 
threshold Dt. This is formulated by equation (11). 

tDBpDifpL >= ),( ,1)(             (11) 
Equation (8) has an intuitive interpretation that two 

patches are judged as sufficiently far if and only if none of 
their center modes is within a confidence interval of the 
other. Equation (11) extends this concept to say that a patch 
is unlikely to be a background mosaic if it is sufficiently far 
from all known background distributions. 

After the first step we already have a foreground patch 
group F and a background priors group B, together with the 

well defined inter-patch similarity matrix. Therefore an 
energy-minimization framework, such as graph-cut, can be 
easily organized to accomplish the second step [26]. 
However, graph constructing and parameter tuning is not 
easy and brings much uncertainty to the result. Here we 
take a more straightforward strategy. The unlabeled 
patches are first sorted in descending order by their 
distances from the background priors. Then, they are 
handled in turn by comparing their similarities to the 
background and the foreground. A label is assigned to the 
patch according to the comparison result. This is described 
by equation (12). 
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During the labeling procedure, the foreground group F 
keeps updating on-the-fly whereas the background group B 
remains fixed to avoid undesired error propagation. This is 
again based on the assumption that the original B is already 
a good enough representation of the background statistics. 

The above routine relies on a predefined threshold Dt. for 
our statistical measure defined in a 5D feature space there 
often exist more than one appropriate threshold. This 
leaves much freedom to us to find them. 

Multi-segmentation aided parameter tuning is adopted 
by recent studies and promising results are reported [22]. 
We take a similar approach and suggest the following 
method to find a good threshold Dt. Based on the fact that 
the statistical measure of the closeness from a sample of the 
multivariate normal population to the center mode is 
subject to a chi-square distribution [27], we can convert a 
confidence interval of this chi-square distribution, say, 
50.0%~99.9%, to the corresponding probability distance 
interval [Dl, Du]. This gives a lower bound and an upper 
bound for the threshold Dt. Then we exhaustively try the 
interval [Dl,Du], compute an evaluation score from every 
segmentation result, and output the most promising 
solutions. Since our model is a discrete one and the 
threshold Dt is the only parameter to tune, this 1D 
brute-force search is within the tractable range and the 
computational cost is in fact very low. 

One final question still remains in the above scheme: 
How to define the evaluation score that judges the 
goodness of a solution? Taking into account the fact that 
the perceptually meaningful segmentation may correspond 
to different cost functions in different cases, we adopt 
multi-hypotheses to determine the final output with no 
priori knowledge needed. Currently our evaluation criteria 
set contains three score functions that can be easily 
computed from a candidate solution. They are, respectively, 
sum-cut, average-cut and maxmin-cut (abbreviated as s-cut, 
a-cut, and m-cut). Other score functions, like the ones 
based on edge/shape cues or semantic priors, can be 
feasibly incorporated to enclose any available prior 
knowledge [13]. 
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The sum-cut score function is defined as the sum of 
D(f,B) for all foreground patches f. In other words, we 
select the threshold Dt that maximizes the following 
equation. 

∑
∈∈ )(],[

))(,(maxarg
tult DFf

t
DDD

DBfD                    (13) 

where F(Dt) and B(Dt) are respectively the foreground and 
the background groups computed from the threshold Dt. 

By replacing the sum value with the average value in 
(13), we get the average-cut score function (14):  
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Similarly we define the maxmin-cut score function by 
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The combinatorial property of the formulation 
determines that the curves of the score functions (13-15) 
within the interval [Dl,Du] are not smooth, but piecewise 
constant. Put it another way, the optimal value generally 
occurs in a full interval instead of a single point. This fact 
eases the exhaustive search to a discrete one and we need 
merely check some key points within the interval [Dl,Du]. 
We propose the following Dt-solving algorithm. First we 
sort all values of D(p,B) in ascending order. 

unnl DdddddD =<<<<<= +1210 ...       (16) 
where n is the number of distances within [Dl,Du] in D(p,B) 
and di is the i-th smallest value. Then we define a Dt-testing 
set 

tDS  that contains all Dt to be tested by 

}2/){( 1..0 ++∪= iinD ddS
t

             (17) 

This method greatly reduces the computational cost in 
comparison to the exhaustive search. 

 
Figure 5. Three Dt-score curves for the row-4 image of Figure 7. 
 

We bound the threshold interval loosely with Dl=5.0, 
Du=50.0, which correspond to 0.5841 and 1-10-9 critical 
values of the 5-dof chi-square distribution. The three score 
functions are illustrated by the Dt-score curves in Figure 5. 
Roughly speaking, s-cut is a decreasing function and gives 
a conservative estimate of the solution near Dl, whereas 

a-cut and m-cut tend to choose larger and more reasonable 
Dt. Particularly, as addressed in [28] the solutions to m-cut 
may not be unique (Two m-cut solutions for Figure 5, note 
the two steps of the s-cut curve within the optimal m-cut 
interval). Fortunately, Different m-cut solutions in general 
have similar appearance. Therefore, if this happens, we 
output only the two m-cut solutions at the left and the right 
terminals of the solution interval. 

3. Experiments 
We carry out experiments on three popular datasets to 

test our segmentation method and report both objective and 
subjective evaluations. The platform is Intel(R) core(TM) 
i5 CPU, 2 core processor, 2.8GHz with 8GB RAM, running 
windows 7 64bit operating system. 

3.1. The Weizmann dataset 
For the Weizmann evaluation dataset with ground truth 

segmentations, the results are reported by F-measure 
criterion, F = 2PR/(P+R), where P and R are the precision 
and recall values [29]. The algorithm outputs all the 
selections made by the score functions (13-15) under both 
DM and DK similarity measures, and leaves the final 
decision to the user. The initial bandwidth parameters are 
set as hs=7,hr=6. An example output is illustrated in Figure 
6, where the DK a-cut and 2nd m-cut give the best results 
among eight candidates and are selected by the user. 

 
Figure 6. An example output for the row-1 image or Figure 7 
 
The results in Figure 7 and Table 1 discover that the 

adaptive f-g classification can fit different scenes well. 
Although the adaptive bandwidths may be significantly 
different from the initial values, the output is competitive to 
the best manual initialization. For the 100 1-object images, 
the best performances reached by DM and DK are 
respectively 76 and 72. The corresponding values for the 
100 2-object images are, respectively, 83 and 79. As a 
whole DM and DK are equally good and act as beneficial 
complements. For both DM and DK, all the three score 
functions defined in Equations (13-15) report surprisingly 
good results. The selections of DM and DK are mostly 
similar but not always the same. Either of them can be 
slightly better than the other with almost equal chance. In 
the absence of a priori knowledge, we suggest outputting 
all candidates and letting the user make the final decision. 
The user decision is simulated by F=max(FM,FK) in Table 1. 
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    original            ground truth      DM selection     DK selection 
Figure 7. Weizmann test examples. Rows 1-4 are 1-obj examples. 
Rows 5-9 are 2-obj examples. DM performs better for rows 2,3,8; 
DK performs better for rows 1,5,6; they are equally good for rows 
4,7,9,10. All masks are plotted as blue or red boxes in the original 
image. Row 10 is an example of the unusual type-b mask. 

 
Equipped with two complementary distance measures 

DM and DK, the adaptive f-g classification is very powerful 
in labeling background holes or multiple connected 
components. It even identifies many details missed in the 
manual-made truths (rows 1, 2, 3, 8, 9 of Figure 7). 
Therefore, the actual F-measures should be slightly higher 
than the data in the table. 

Table 1. F-measures on the Weizmann and grabcut images [30,31]. 
F=max(Fs,Fa,Fm) for individuals. 

  Weizmann 1-obj Weizmann 2-obj Grabcut images 

sF (votes) DM

DK

0.90± 0.015 
0.90± 0.014 

0.84± 0.027 
0.83± 0.029 

0.88± 0.029 
0.86± 0.032 

aF (votes) DM

DK

0.88± 0.032 
0.88± 0.037 

0.87± 0.029 
0.85± 0.033 

0.88± 0.048 
0.87± 0.060 

mF (votes) DM

DK

0.88± 0.036 
0.88± 0.040 

0.88± 0.028 
0.88± 0.029 

0.90± 0.048 
0.88± 0.061 

F (votes) DM

DK

0.93± 0.010(76) 
0.93± 0.010(72) 

0.89± 0.021(83) 
0.89± 0.021(79) 

0.93± 0.017(33) 
0.94± 0.017(34) 

),max( KM FF  0.93± 0.010 0.90± 0.021 0.94± 0.016 

3.2. The grabcut dataset 
For the 50 grabcut test images, we compare our method 

to the grabcut algorithm under the same bounding box 
settings. For the adaptive f-g classification the mean-shift 
bandwidth parameters are initialized by hs=7, hr=6. The 
F-measures are reported in the last column of Table 1. The 
grabcut vs. f-g classification scatter plots for the 50 
individual F-measures are given in Figure 8. The results 
show that f-g classification slightly outperforms grabcut.  

 
Figure 8. The scatter plot for individual F-measure comparison 

 
Some images in the grabcut image set have very 

cluttered background but relatively simple foreground. For 
these images it is not easy to fully describe the background 
by a single bounding box. We solve this problem by 
switching the roles of foreground and background. Namely, 
at the initialization stage we take the foreground region as 
the background and assign a bounding box fully enclosed 
by the foreground region. After the segmentation we 
reverse the foreground and the background and obtain the 
final result. This operation can also be adopted by the 
grabcut algorithm. Figure 9 gives an example image that 
can be well treated by the switch operation. This example 
gives a rule of thumb for mask selection. That is, the 
background mask should be statistically simple and easily 
characterized by a bounding box.  
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(a) Original image (b) f-g classification result (c) grabcut result 

Figure 9. A figure-ground switching example.  
The green box is a type-c mask indicating figure-ground switch.  

 
Table 2 compares the execution time and the mean 

F-measures between the grabcut algorithm and the adaptive 
f-g classification for all the three image sets of section 3.1 
and 3.2. Clearly the adaptive f-g classification performs 
better in both segmentation quality and executing speed. 

 
Table 2. Performance comparison of grabcut and f-g classification 

  Weizmann 1-obj Weizmann 2-obj Grabcut dataset
grabcut  6.53 s 4.86 s 16.53 s tim

e f-g classification 3.54 s 2.54 s 11.56 s 
grabcut[7] 0.85± 0.035 0.80± 0.046 0.89± 0.036 

F  
f-g classification 0.93± 0.010 0.90± 0.021 0.94± 0.016 

3.3. The Berkeley segmentation dataset 
In this part we evaluate our method on the Berkeley 

segmentation dataset [32]. Figure 10 gives the 
segmentation results of some challenging images in the 
Berkeley dataset (rows 1,2) and the grabcut dataset (row 3). 
The adaptive bandwidth parameters [hs,hr] computed by 
Equation (5) are given for the Berkeley examples. The 
adaptive initialization works well and reliably treats 
multi-connectivity, multi-hole scenes. The minimum KL 
divergence DK and the minimum Mahalanobis distance DM 
make beneficial complements and greatly raise the chance 
of finding good segmentations. 

The experiments reveal that the f-g classification method 
robustly propagates the boundary priors into the 
foreground mask region and reliably treats 
multi-connectivity, multi-hole scenes. As a typical example, 
almost all connected components and all holes in image 
370036 are successfully identified. Such scenes are 
difficult for other schemes unless additional efforts are 
involved. 

3.4. Future work 
The adaptive figure-ground classification is a highly 

automatic foreground extraction framework and is able to 
reach a reasonable solution in many scenes. However, for 
some cluttered scenes the automatically estimated 

bandwidths might not be optimal. This can be solved by 
adding some texture or shape constraints in feature 
organization and similarity measure. Moreover, even a 
good mean-shift initialization may still leave some 
boundary spikes. This can be remedied by additional 
morphological or matting operations [33], which is another 
direction of future work. Finally, currently only color and 
spatial cues are used in our classification framework. How 
to expand the framework to effectively contain other 
features, like edges or textures, for problem formulation or 
goodness evaluation, remains an open question. 

4. Conclusion 
An adaptive figure-ground classification algorithm is 

proposed to automatically do foreground extraction from 
bounding-box based background priors. The similarity 
measure is defined as the probability distance between 
adaptively generated mean-shift patched in a 5D feature 
space. The background statistics defined by a mask box is 
conveniently propagated through the region of interest. 
Multiple hypotheses based on different score functions are 
employed to add the chance of success. The experiments 
show that this method is very promising by achieving great 
success for multi-connectivity, multi-hole scenes. 
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