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Abstract Poisson disk sampling has been widely used in many applications such as remeshing, procedural

texturing, object distribution, illumination, etc. While 2D Poisson disk sampling is intensively studied in recent

years, direct Poisson disk sampling on 2-manifold surface is rarely covered. In this paper, we present a novel

framework which generates approximate Poisson disk distribution directly on mesh, a discrete representation of

2-manifold surfaces. Our framework is easy to implement and provides extra flexibility to specified sampling

issues like feature-preserving sampling and adaptive sampling. We integrate the tensor voting method into

feature detection and adaptive sample radius calculation. Remeshing as a special downstream application is

also addressed. According to our experiment results, our framework is efficient, robust, and widely applicable.
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1 Introduction

Recently, Poisson disk distributions are used frequently in computer graphics. One of the most important

applications is sampling. Since Poisson disk sampling was first introduced by Dippé and Wold into

computer graphics to solve problems of image anti-aliasing [1], it is now accepted as one of the best

sampling patterns for a wide range of applications due to its blue noise properties, such as image anti-

aliasing [1–3], primitive distribution for illumination [2,4–6], object distribution [7,8], etc.

While there are intensive studies of 2D plane Poisson disk sampling in recent years [9], direct Poisson

disk sampling on 2-manifold surface is rarely covered [10]. Mesh as a discrete surface representation is

widely used in many fields such as CAD, FEA, computer graphics, etc. Therefore, it becomes significant

to perform Poisson disk sampling on mesh.

Efficiency and robustness are the major concerns of direct sampling algorithm on mesh. This paper

presents a robust and efficient algorithm to generate Poisson disk distribution on mesh directly. It avoids

distortions, such introduced by the parameterization because it manipulates manifold surface directly.

We leverage the tensor voting method in the specified Poisson disk samplings, including feature preserving

sampling and adaptive sampling(see Section 4).
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Figure 1 Possion disk distribution.(a) 2-D;(b) 3-D(Gamito [1]).

2 Related work

2.1 Basic concepts of Poisson disk sampling

Poisson-disk sampling(Figure 1) is a process of distributing uniform random samples on a domain em-

bedded in an n-dimensional space based on a minimum distance criterium between samples. We propose

an efficient Poisson-disk sampling method for generating samples on the domain D = [0, 1]n, involving a

unit hypercube in n-dimensional space. The outcome of the method is a sample set X = {xi|xi ∈ D, i =

1, 2, 3, ..., N} for which the sampling conditions can be expressed as follows [10]:

∀xi ∈ X, ∀S ⊆ D : P (xi ∈ S) =

∫
S

dx, (1)

∀xi, xj ∈ X : ‖xi − xj‖ � 2r, (2)

where the parameter r is called the distribution radius. P (xi ∈ S) is the probability of xi falling inside a

subset S of D. Condition (1) ensures uniform distribution, and Condition (2) helps to combat clustering

by preventing samples from getting closer than some given value 2r. The process of generating this

Poisson disk distribution is called Poisson disk sampling. Poisson disk distribution meets blue noise

properties. More details of its spectrum properties will be given in Subsection 5.1.

2.2 Poisson disk sampling in 2 dimensions and high dimensional European space

Poisson-disk sampling for image anti-aliasing was introduced to computer graphics by Dippé and Wold

[1] in 1985. From then on, Poisson disk distribution has attracted great attention. The researches can

roughly be divided into three categories:

The traditional approach is the Dart Throwing [1], which is one of the simplest techniques to generate

Poisson-disk distribution. It iteratively refines an existing point set by generating random point locations

in the sampling domain. A point is discarded if there already exists another point within a disk with

certain radius r of it(Condition (2)). One drawback of this approach is that it cannot guarantee algorithm

convergence since the available sampling area shrinks gradually. Meanwhile, it hardly leads to maximal

Poisson-disk distribution. To alleviate this problem and make the approach more efficient, Jones [11] used

a Voronoi diagram to keep track of empty spots in the sampling domain. Dunbar and Humphreys [12]

described a modified Poisson disk algorithm to generate isotropic point distribution with good spectral

quality in O(n) time. White et al. [13] employed a quadtree structure to exclude covered areas from dart

throwing. Wei [14] performed parallel dart throwing on the GPU, using a multi-resolution grid structure.

Gamito [10] leveraged a tree structure to achieve Poisson disk distribution in high dimension space.

The second category is relaxation-based method or energy minimization technique, which initially

places a point set on the surface and then improves the placement through point relocation to achieve

Poisson disk distribution. The classic Lloyd iteration method presented by Lloyd [15] in 1982 falls into

this category. However, excessive iteration will severely influence the blue noise properties of points.
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Balzer [16] made some improvements by fixing area in iterative process but with less efficiency. Liu [17]

proved a C2 continuity of the energy function on a convex regional, and applied quasi-Newton method

to accelerate Lloyd method.

For large-scale Poisson disk distribution, many tile-based methods are advanced to improve sampling

performance. But the tiling structure destroys blue noise properties of sampling results. Ostromoukhov et

al. [18,19] successively introduced Penrose and Polyomino structure to generate Poisson disk distribution.

Wang Tiling and its variants were widely used too [20–22]. In the preprocessing stage, dart throwing or

relaxation-based method is commonly used to generate Poisson disk distribution on initial templates.

2.3 Poisson disk sampling on mesh

While there are intensive studies of 2D Poisson disk sampling in recent years, direct Poisson disk sampling

on 2-manifold mesh surface is rarely covered.

Fu [23] implemented the Dunbar’s [12] sampling algorithm on 2-manifold surface and achieved the

Poisson disk sampling on mesh. In order to fit 2-manifold mesh, it replaced the sampling boundary

in Euclidean space with Iso-geodesic boundary. Since all points lay on the original mesh surface, high

quality remeshing has turned out to be another contribution. But the process to calculate geodesic

distance isoline is challenging, making the algorithm with less efficiency.

Cline [24] applied dart throwing algorithm on 2-manifold surface. It established index structure ac-

cording to the area to satisfy Condition (1). Meanwhile, Cline extended the algorithm to the sampling

of other surface types, including spheres, NUBRS, subdivision surface and implicit surfaces. He imple-

mented his method to work with geodesic distance rather than Euclidean distance. But it couldn’t avoid

inherent problems of the dart throwing algorithm such as inefficiency and difficulty in getting maximal

Poisson-disk distribution.

Li et al. [25] modified tile-based method on 2-manifold surface. It calculated the dual graph of the

parametric surface and then tiled the templates on the dual graph. It reduced the complexity of the

required templates. One fatal problem of the method is the distortions introduced in the process of

parameterization.

3 Algorithm framework

The input of our sampling scheme is a 2-manifold mesh surface. In this section, the uniform sampling

process will be discussed in detail.

3.1 Algorithm process

Inspired by Cline [24], we adopt similar index structure in this paper. In addition, a mesh clipping method

is used to ensure the efficiency of the index structure, and collision detection frame based on Isophotic

distance metric is introduced in order to satisfy the distance condition. Figure 2 shows basic steps of the

algorithm:

a) In the pre-processing stage, subdivide the large triangles.

b) Establish area based triangle index structure. See Subsection 3.2 for more details.

c) Pick an active triangle T = {pa, pb, pc} from index structure. See Subsection 3.2 for more details.

d) Get a random sampling point p in T by bilinear interpolation using two stochastic parameters

α, β ∈ [0, 1):

p = pa ∗ α+ (pb ∗ β + pc ∗ (1− β)) ∗ (1− α). (3)

e) If there is no conflict after collision detection, add the point p to sampling point set and go to next

step; otherwise, go back to c).

f) Cut the mesh locally using a ball with center p and radius 2r. Remove the part inside the ball and

add the new triangles into index structure. Update the index structure.

g) Return if the index structure is empty; otherwise, go back to c).
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Figure 2 The algorithm process.

3.2 Index structure

This paper adopts Cline’s [24] index structure that organizes triangles according to their areas.

• Index structure includes series of lists {list0, list1, list2, . . . , listn}.
• Each listi has a pair of area bounds: Bmaxi

and Bmini
, where Bmaxi

= 2∗Bmini
and Bmaxi

= Bmini−1
;

Btotali records the sum of triangle areas in listi.

• Each triangle in listi satisfies (Area(T ) is area of T ):

Bmini
< Area(T ) � Bmaxi

. (4)

To pick one triangle, we randomly select α ∈ [0, 1) and then find the first index i that meets Condition

(5) by starting from index 0:

α �
i∑

j=0

Btotalj

/
n∑

j=0

Btotalj . (5)

After finding the index i, pick a triangle Tj in sequence within listi and then accept it with probability

Aij/Bmaxi , where the Aij is the area of triangle Tj and Bmaxi is the maximum area of triangles assigned

to the list listi. If Tj is not accepted, we continue to test the next triangle in the list listi. If no triangle

is accepted till the end, we choose the last triangle. Triangles in the listi will invariably be at least

half as large as Bmaxi
, and the acceptance rate of each picked triangle is at least fifty percent, and the

expectation of this triangle picking process will terminate in constant steps. Large triangle will be picked

firstly, and so the sampling result satisfies Condition (1) approximately.

3.3 Mesh clipping method based on BFS

After generating a sampling point p within the triangle T , we clip the mesh locally using a ball with

center p and radius 2r based on BFS (breadth-first search algorithms). The part inside the ball is defined

as the sampling point’s territory on which no point will be sampled in the subsequent steps.

Figure 3 shows the mesh clipping procedure. We check each triangle around the sampling points

according to the BFS and find all triangles on the boundary. In order to avoid the errors caused by

floating-point calculations, we first collect all edges intersected with the ball (Figure 3(a), dotted line)

and then calculate all intersections on those edges. By inserting those intersections into mesh, triangles are

degraded into polygons which are then cleared up by subsequent subdivision processing. The subdivision

result is shown in Figure 3(c).
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Figure 3 Mesh clipping process. (a) Collection of intersection edge; (b) calculation of intersect; (c) clipping.

Figure 4 (a) Collision detection necessity; (b) collision detection principle.

Straight line in Figure 3(c) is used to replace the circular arc in this stage which produces error equal

to the arc height. In order to control the error, we insert a new point(Figure 3(c), dotted line) in the arc

when the error is larger than the threshold defined by the user.

3.4 Collision detection frame based on isophotic distance metric

An unexpected case may be found using the BFS mesh clipping algorithm, as shown in Figure 4(a), where

the solid arc stands for cut part by existing sampling point set. Point A and dashed circle represent the

current sampling point and cutting boundary, respectively. Point B located in point A’s territory will

not be cut because we use BFS to find neighbor triangles, and sampling in point B will destroy Condition

(2).

To solve this problem, collision detection is needed between the new sampling point and the existing

sampling point set. If the distance between the new sampling point and any point in existing sampling

point set is less than 2r (like the point D in Figure 4(b)), the new sampling point will not be accepted

and the sampling process continues. If not, the new sampling point is added into existing sampling point

set (like the point C in Figure 4(b)). We use uniform grid to accelerate this collision detection process

(Figure 4(b)).

Models always have some thin sheets (see Figure 5). Because the distance between the points of

A and B under the collision detect radius, these two points cannot be accepted simultaneously while

otherwise it should be. In order to overcome this kind of problem, we introduce Isophotic distance metric

which substitutes for Euclidean distance in collision detection frame inspired by reference [26]. This

metric distance takes the normal distance into consideration, so it is performs more sensitively for high

curvature area on surface.

In this paper, we defined the weighted Isophotic distance metric as

dist isophotic(p1, p2) = dist euclid(p1, p2)×
(
1 +

(
1− n1 · n2

2

)b
)
, (6)
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Figure 5 Thin sheet. Figure 6 Comparison between Isophotic distance metric and

Euclidean distance (sampling radius r=0.3). (a) Duck sampling

(our method); (b) Duck wing sampling(our method); (c) Duck

wing sampling (Euclidean distance).

where dist euclid (p1, p2) is the Euclidean distance between point p1 and p2. n1, n2 are normals of the

points p1, p2 respectively, b is the parameter for adjusting the influence of the normal. In experiment,

we find that b=6 adjusts the influence well. Due to the parameter b in Eq. (6), the error of the Isophotic

distance in planner part is almost the same as the Euclidean distance (when b=6, the angle of n1n2 is 90◦

such that dist isophotic (p1, p2)=1.016∗ dist euclid (p1, p2)≈dist euclid (p1, p2)). This weighted Isophotic

distance metric is easy to calculate, and meanwhile it works in our experiment well (see Figure 6).

4 Feature preserving sampling and adaptive sampling

Using sampling point set to represent the model, feature preserving sampling and adaptive sampling

always provide good expressions. That explains why these two sampling methods become popular in CG

field. In this section we will discuss these two issues in detail.

4.1 Feature preserving sampling

In feature preserving sampling, some sampling points must be placed in regions with sharp features. To

this end, before sampling, we should extract a set of feature edges and corners from the input mesh first.

Since the input mesh is a discrete approximation of the underlying smooth surface, feature extraction

may be sensitive to noise. We improve the feature detection method based on the tensor voting [27]

which can perform efficient and reliable feature detection. The algorithm goes as follows:

First of all, we assign the voting tensor Tv of a vertex v in an arbitrary point data set as a weighted

covariance matrix which is called a vote. Then we define the normal voting tensor of a vertex on a

triangular mesh as the weighted sum of neighbor triangles’ votes, which is a 3 × 3 tensor matrix with

three eigen-values λ1, λ2, λ3 (assume λ1 � λ2 � λ3). All vertices of the input mesh are classified according

to the observation that there is a close correspondence between eigenvalue’s (λ1,λ2, λ3) distribution and

geometrical features. Figure 7 demonstrates this correspondence.

Kim [27] adopted K-means iterative method to achieve automatic feature detection. In practical

applications, we have found that the result of K-means depends on a good initial seed placement. So,

using a threshold specified by user we classify the feature points to improve the previous method’s

performance.

After the classification, a region growing is performed for each seed triangle, and the boundaries of

the regions are extracted as the edges. The experimental results show that the proposed algorithm is

effective in almost all cases. Figure 8 is the feature detection result of Fandisk.

To imply feature preserving sampling, we make sampling on corners, edges, faces in turn to make sure

that sampling points lie on sharp features. Figure 9 shows the feature preserving sampling result.

4.2 Adaptive sampling

Adaptive sampling is a variant of uniform sampling that adjusts sampling radius automatically according

to the differential properties of surface. The sampling radius decreases in high curvature surface, and

increases in low curvature surface.
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Figure 7 Eigenvalues of the normal voting tensor for different features [27].

Figure 8 Features. Figure 9 Feature preserving sampling.

Figure 10 Comparison between adaptive sampling radius calculation methods. (a) Curvature method; (b) our method.

For adaptive Poisson disk sampling, we use the eigenvalues in subsection 4.1 to calculate adaptively

sampling radius as follows:

Ri = Rmin + (Valuei)
Contrast rate × (Rmax −Rmin), (7)

Valuei =
1

(α ∗ (λ1 − λ2) + β ∗ (λ2 − λ3) + (1− α− β) ∗ λ3) ∗ C + 1
(λ1 � λ2 � λ3), (8)

where Rmax and Rmin are the maximum radius and minimum radius assigned by user, respectively.

Contrast rate is the contrast ratio indicating the transitional smoothness from the maximum radius to

minimum radius (in this paper it is set to 1). C is a parameter; α, β are weights (In our experiment,

C=100, α = 0.001, β = 0.5). One significant advantage of adaptive sampling is that it shares the

framework (tensor voting method) with feature preserving sampling. So, we integrate feature preserving

sampling and adaptive sampling. The performance is improved largely because many intermediate results

can be reused. On the other hand, results of this method represent the surface’s differential properties

as well as the method based on curvature [23] (see Figure 10).
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Figure 11 Spectral analysis of sampling results. (a) Our sampling result; (b) our method average spectral analysis; (c)

average spectral analysis of [17].

Through the above steps, we get the vertex radius on the mesh. It is easy to calculate the arbitrary

sampling point radius by bilinearly interpolating the three vertices radius of the corresponding triangle:

Rp =
∑

Vi∈Tri(p)

ωiRi. (9)

We use the same sampling process as introduced in the section 3 by adopting the new sampling radius

in clipping mesh step. Fu [23] has proved that adaptive sampling boundary is a combination of a series

of conic segments. For simplicity of calculation, we use Rp + Rmin as the cutting radius of sample point

p.

We also modify the collision detection (see subsection 3.4 for details). Through recording each sampling

point radius, the collision detection ensures that the distance between any two points is larger than the

sum of their radii in sampling point set.

5 Results and analyses

We implemented our algorithm on a PC (Intel Core Duo CPU 2.67 GHz, 2 GB RAM). Here we give a

comparisons between Fu’s [23] method and ours.

5.1 Blue noise properties analysis

As we know, the analysis of blue noise properties of Poisson disk distribution is limited to 2D plane

sampling, and the analysis in high dimensional space and manifold surface is rare. Therefore, we adopt

the analysis of blue noise properties of planer mesh. Our analysis method is based on [28,29]. The

generated average power spectrum is depicted in Figure 11(b).

Compared to the average power spectrum generated by Lagae [9], the average power spectrum of our

method also has a peak in the center of DC component. The energy in peripheral wide low-frequency

region is extremely low, while energy is mainly concentrated in the high frequency part. This shows that

our sampling results have Poisson disk distribution’s blue noise properties.

5.2 Sampling time

This paper greatly improves the algorithm speed due to simpler arithmetic logic and less time consumption

in computation of geodesic distance. For most models it takes a very short time to make sampling.

The sampling procedure were performed on 10 typical models and the results were compared with

Fu’s [23] method. Table 1 lists the comparison data. The first row shows our algorithm results while the

second row shows the contrast algorithm results for each chart.

The last column displays the ratio of the sampling rate. It shows that our algorithm is at least 10 times

as fast as contrast algorithm. The specific speed varies with respect to specific tesselation and topology.
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Table 1 Comparison of sampling times.

Modle algorithm
face sampling sampling sampling rate sampling rate ratio

number time (ms) number (points/ms) (Our/FuYan [23])

Fandisk
Our algorithm

12,946
7,172 1,469 0.2048

19.37
FuYan [23] algorithm 36,125 382 0.0106

Casting Our algorithm
10,204

5,031 1,834 0.3645
10.04

FuYan [23] algorithm 31,843 1,156 0.0363

Block Our algorithm
4,208

2,500 2,026 0.8104
12.46

FuYan [23] algorithm 8,469 551 0.0651

Sharp Our algorithm
18,864

11,656 3,559 0.3053
195.78

sphere FuYan [23] algorithm 229,547 358 0.0016

Rock Our algorithm
18,794

5,015 1,488 0.2967
32.68

arm FuYan [23] algorithm 71,157 646 0.0091

Dinosaur
Our algorithm

19,458
6,515 727 0.1116

31.35
FuYan [23] algorithm 111,532 397 0.0036

Duck
Our algorithm

4,990
5,156 1,714 0.3324

15.58
FuYan [23] algorithm 14,532 310 0.0213

Dolphin
Our algorithm

5,592
2,156 376 0.1744

102.04
FuYan [23] algorithm 77,234 132 0.0017

Man Our algorithm
53,966

56,781 1,601 0.0282
56.77

head FuYan [23] algorithm 940,235 467 0.0005

Hand
Our algorithm

17,290
7,594 2,162 0.2847

106.47
FuYan [23] algorithm 89,750 240 0.0027

5.3 Sampling results

Figures 12(a)–(j) show the sampling results of the 10 models mentioned above, where (a)–(g) are feature

preserving sampling examples. It can be seen from these figures that the points are sampled accurately

on the corners and edges (Duck wing edges and Fandisk edges). Figure 12(e)–(j) show adaptive sampling

examples. The differences between flat part and high curvature part are obvious.

Our algorithm does collision detection based on Euclidean distance. Because the geodesic distance

between two points is equal or greater than its Euclidean distance, the sampling points must satisfy

the collision detection based on geodesic distance. Also it should be noted that we introduce isophotic

distance metric to solve the thin sheet problems which also have errors. However, by Eq. (6) in subsection

3.4, this error relative to the Euclidean distance is trivial. So, we naturally reach the conclusion that

our algorithm satisfies Condition (2) approximately. In this paper, the process of taking triangle from

index structure does not fully obey area Condition (1); meanwhile, accidental error is inevitable when

we apply Euclidean distance to clipping triangles instead of geodesic distance. So, this method can only

satisfy Condition (1) approximately. To sum up, the algorithm is an approximate Poisson disk sampling

algorithm.

5.4 Remesh application

Remeshing is one application of our algorithm. We implemented Fu’s [23] post-processing method to make

remeshing. Figure 13 shows the excellent result of remeshing through a typical example. The remesh

results are only affected by the differential properties of the initial surface, except for the initial mesh

tesselation. It is an improvement compared with traditional remesh method implemented by adjusting

the vertex positions [30].

5.5 Limitations

Although this algorithm gets fairly good results in sampling speed and quality, it still has some limitations.

First of all, this method needs several user-defined parameters, thus increasing the difficulty in user
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Figure 12 Sampling result. (a) Fandisk (r= 0.3); (b) Casting (r= 0.3); (c) Block (r = 0.3); (d) Sharp sphere (r= 0.3);

(e) Rock arm(Rmax = 0.4, Rmin = 0.2); (f) Dinosaur (Rmax = 0.3, Rmin = 0.15); (g) Duck(Rmax = 0.4, Rmin = 0.2); (h)

Man head (Rmax = 0.4, Rmin = 0.2); (i) Dolphin(Rmax = 0.4, Rmin = 0.2); (j) Hand (Rmax = 0.3, Rmin = 0.1).

Figure 13 Comparison between remesh methods.(a) The original model;(b) our algorithm; (c) Yue’s [30] algotithm.
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interaction. This can be improved by setting initial value of the parameters. Second, the algorithm needs

connectivity information of the model, and it will fail when dealing with the non-manifold model. We

can solve this by preprocessing models. Finally, when Rmax � Rmin, the result of adaptive sampling is

not good enough because the errors introduced by sampling points with large radius influence sampling

points with small radius. This problem can be solved via improving the adaptive method.

6 Conclusion and future work

We present an algorithm for generating Poisson disk distribution directly on mesh. Area based triangle

index structure and point selection method are the kernel of our algorithm. A mesh clipping method is

used to ensure the efficiency of the index structure; collision detection frame based on Isophotic distance

metric is introduced in order to keep distance condition satisfied. Our algorithm is easy to implement, fast

and robust. Sampling results show good blue noise properties. Some minor modifications will make the

algorithm suitable for feature preserving sampling and adaptive sampling, suggesting that this algorithm

has good flexibility. As for future work, isophotic distance metric will be used to implement the Poisson

disk sampling on non-manifold surfaces and point clouds. Parallel Poisson disk sampling and spectrum

analysis of Poisson disk distribution on manifold surfaces will also be considered.
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