
 

Abstract 

This paper presents a new segmentation-aided checking method for distinguishing mismatch pixel 

within a complete stereo matching framework. Instead of employing traditional cross-checking method, 

our method successfully integrates segmentation information in the disparity refinement step. Segmen-

tation-aided checking method follows the plane smoothness assumption, i.e. pixels within a plane 

should vary depth continuously. Conceptually, our method goes as follows: first, the pixels are clus-

tered into a set of segments; second, planes are fitted for each segment; and finally, we choose the 

plane contain most stable pixel (i.e. passing through the Left-right Match Constraint) as the main plane 

of the segment and mark all the pixels in other planes as unstable. Compared to cross-checking method 

based on Left-right Match Constraint, our method is more effective especially in the repetitive structure 

areas and low texture areas. Compared to previous segment-based method that treat segments as match 

units, our method is more lightweight and easier to implement. Experimental results from our imple-

mentation evaluated on the Middlebury platform shows that proposed method is comparable to previ-

ous state-of-the-art local methods. 

1 Introduction 

Stereo matching is one of the most exten-

sively studied problems in the field of computer 

vision. Most stereo matching methods usually 

take the following four steps. Matching cost 

computation: the matching costs are initialized 

for every pixel at each disparity level with its 

color/intensity information; Cost aggregation: 

the initial matching costs are aggregated within 

every pixel’s support region. Cost aggregation 

methods are often based on the assumption that 

neighboring pixels with similar color/intensity 

share same disparity. Disparity computation: 

the disparity map is computed with local meth-

ods (e.g. winner-takes-all strategy) or optimized 

with a global energy function. Disparity re-

finement: the disparity map obtained with pre-

vious three steps may include occlusion and 

mismatch pixels. This step detects these outliers 

and then corrects them with various 

post-processing techniques.  

Up to now, large numbers of stereo match-

ing methods have been proposed to obtain dense 

disparity map. Most of them can be classified 

into two types: global methods and local meth-

ods[1]. Global methods usually treat the stereo 

matching problem as an optimization problem 

and minimize the energy function with graph 

cuts[18] or belief propagation[19]. Local meth-

ods, on the other hand, compute the disparity at 

a given pixel over a local support region. Local 

methods primarily rely on cost aggregation step 

(step.2). And recently, filtering the cost volume 

with edge-aware filter shows good matching 

accuracy. Yoon and Kweon[4] first demonstrated 

that bilateral filter[5] is very effective for pre-

serving depth boundaries and can be used for 
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cost aggregation. After that, a number of bilat-

eral filter based cost aggregation methods have 

been developed, such as [6][8][9][11]. He et al. 

proposed a guided image filter, which can be 

used for image processing and stereo matching. 

This method shows leading performance and 

low computational expense (linear to the pixel 

number plus disparity level number). These 

edge-aware filter based methods successfully 

deal with the sharp edge retrieval, but likely 

produce mismatch in some repetitive structure 

areas and low texture areas. 

By assuming that neighboring pixels with 

similar colors should have similar disparity, 

segment-based method can improve depth per-

formance especially for large low texture areas. 

Previous methods usually treat segments as basic 

matching units and then solve an optimization 

problem by minimizes a global cost function. 

However, these methods don’t allow large dis-

parity variation inside the segment, which inevi-

tably affect the disparity estimation. 

In this paper, an approach for edge-aware 

filter based stereo matching is presented, with 

certain improvements in the disparity refinement 

step (step.4). The proposed method can success-

fully deal with above-mentioned trade-off. Spe-

cifically, the initial matching cost combines two 

individual costs: the absolute difference cost, 

and a gradient based cost (step.1). An aggregated 

cost volume is computed by minimum spanning 

tree using the initial matching cost (step.2). And 

then the winner-takes-all approach is applied to 

produce the disparity map (step.3). Finally, our 

segmentation-aided checking method is pro-

posed for distinguishing the mismatch pixels and 

an efficient post-processing is applied to en-

hance the disparity map (step.4). 

2 Matching Cost Computation 

This step computes the initial matching 

cost for every individual pixel at all disparity 

level. The absolute difference on image col-

or/intensity (AD) is a simple and widely used 

measure function. Given a pixel 𝑝 = (𝑥, 𝑦) in 

the reference image (e.g. the left image) and a 

disparity level 𝑑, its correspondence pixel in the 

matching image (e.g. the right image) is 𝑝𝑑 =

(𝑥 − 𝑑, 𝑦). The cost term 𝐶𝐴𝐷 is shown as fol-

lows: 

 𝐶𝐴𝐷(𝑝, 𝑑) =
1

3
∑ |𝐼𝑖

𝑟𝑒𝑓
(𝑝) − 𝐼𝑖

𝑚𝑎𝑡(𝑝𝑑)|𝑖=𝑅,𝐺,𝐵   (1) 

On the other hand, the image intensity de-

rivatives in image 𝑥, 𝑦 directions are extracted, 

and the absolute differences of each derivative 

value in the two directions are summed up as 

another cost measure i.e. 𝐶𝐺𝑅𝐴𝐷 .  

 𝐶𝐺𝑅𝐴𝐷 = ∑ |∇𝐼𝑟𝑒𝑓(𝑝) − ∇𝐼𝑚𝑎𝑡(𝑝𝑑)|𝑥,𝑦   (2) 

Merging above two different costs derives 

the total matching cost C: absolute difference on 

image color/intensity and absolute difference on 

image gradients. An exponential function is pre-

ferred [2][3] for normalization and control on 

the influence of the outliers with λ: 

 𝜌(𝐶, 𝜆) = 1 − 𝑒𝑥𝑝(−
𝐶

𝜆
)  (3) 

The joint matching cost value 𝐶(𝑝, 𝑑) is 

computed as follows: 

 𝐶(𝑝, 𝑑) = 𝜌(𝐶𝐴𝐷(𝑝, 𝑑), 𝜆𝐴𝐷) + 𝜌(𝐶𝐺𝑅𝐴𝐷(𝑝, 𝑑), 𝜆𝐺𝑅𝐴𝐷)  (4) 

Which turn out to improve following 

non-local cost aggregation result compared to 

simply sum the two cost terms up. 

3 Cost Aggregation 

This step aggregates each pixel’s matching 

cost over a support region to reduce the match-

ing ambiguities and noise in the initial cost 

volume. Here, we prefer Yang’s non-local cost 

aggregation method [11].  

Different from other edge-aware filter 

based cost aggregation methods that rely on lo-

cal support region; Yang’s method aggregates 

matching costs over the entire image with a 

minimum spanning tree (MST) structure.  

The input image 𝐼  is treated as a 

4-connected, undirected grid graph 𝐺 = (𝑉, 𝐸) 



where 𝑉 denotes all the pixels in 𝐼 and E is all 

the edges connect neighboring pixels. Let 𝑒 

denote an edge connecting neighboring pixel 

pair 𝑝1 and 𝑝2, the weight of 𝑒 is  

 𝑤(𝑒) = 𝑤(𝑝1, 𝑝2) = |𝐼(𝑝1) − 𝐼(𝑝2)|  (5) 

The minimum spanning tree 𝑇 is derived 

from 𝐺 by removing edges with bigger weights 

that are more likely cross the depth boundaries. 

Let 𝑝1  and 𝑝2  be any two pixels in 𝑇 , and 

their distance 𝐷(𝑝1, 𝑝2) is defined by the sum 

of the weights along the shortest path. The simi-

larity between 𝑝1  and 𝑝2  is denoted as fol-

lows: 

 S(𝑝1, 𝑝2) = exp⁡(−
𝐷(𝑝1,𝑝2)

𝜎
)  (6) 

Where 𝜎 is used to adjust similarity be-

tween two pixels. Thus, the aggregation cost 

function is defined as follows: 

 𝐶𝑑
𝐴(𝑝) = ⁡∑ 𝑆(𝑝, 𝑞)𝐶𝑑(q)𝑞 =⁡∑ exp⁡(−

𝐷(𝑝,𝑞)

𝜎
)𝐶𝑑(q)𝑞   (7) 

Disparity is estimated by ‘winner-takes-all 

method, i.e. by simply selecting the disparity 

level with the lowest cost. 

4 Disparity Refinement with Seg-

mentation-aided Checking Method 

Edge-aware filter based methods work well 

in depth boundaries, but still produce mismatch 

in some repetitive structure areas and low tex-

ture areas.  

Cross-checking method is widely used for 

distinguishing occlusion areas and easy to im-

plement. A pixel 𝑝 = (𝑥, 𝑦) is marked as stable 

if it satisfies the following constraint for the 

disparity maps 𝐷𝑟𝑒𝑓 and 𝐷𝑚𝑎𝑡  of the stereo 

image pair: 

 𝐷𝑟𝑒𝑓(𝑝) = 𝐷𝑚𝑎𝑡(𝑝 − [𝐷𝑟𝑒𝑓(𝑝), 0])  (8) 

Though cross checking method works well 

in outlier detection, it can’t deal with aforemen-

tioned problem. As shown in Figure 1, marking 

mismatch pixels as stable will ruin neighboring 

areas. 
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Figure 1 Once mismatch pixels are marked as 

stable, propagation method will use these wrong 

disparities to computer neighboring unstable 

pixels’ disparity. 

Reexamining the mismatch area in Figure 

1, we can find those areas and neighboring cor-

rect areas belong to same plane, while pixels’ 

disparities of the same plane should vary con-

tinuously. Here, we give this idea a definition 

theoretically, and then use it to remove the mis-

match pixels. 

 Plane Smoothness Assumption: Plane 

smoothness assumption is a kind of strong 

smoothness assumption. Pixels in the same plane 

are enforced to vary disparity continuously. Pix-

els that couldn’t satisfy this assumption are 

marked as unstable. 

Based on this assumption, we segment the 

image using mean-shift method[13] and treat 

each segment as a plane, as shown in Figure 2. 

For each segment, we try to fit planes with the 

pixels passing the cross-checking. Note that we 

enforce that the plane should contain sufficient 

stable pixels, and the disparity gradient shouldn’t 

exceed given threshold. Finally, we choose the 

plane with most stable pixels as the principal 

plane and mark all the other pixels as unstable. 

 

Figure 2 Teddy’s segmentation map 

Pixels passing the cross checking and seg-

mentation-aided checking are shown as Figure 

3. The repetitive structure areas are labeled cor-



rectly. 

To handle the large unstable regions in 

Figure 3, we define a new cost value for each 

pixel p at each disparity d: 

 𝐶𝑑
𝑛𝑒𝑤(𝑝) = {

|𝑑 − 𝐷(𝑝)|, 𝑝⁡𝑖𝑠⁡𝑠𝑡𝑎𝑏𝑙𝑒
0, 𝑒𝑙𝑠𝑒

  (9) 

 

 

Figure 3 Stable pixels map 

 Where D denote the disparity map. For all 

unstable pixels, their new cost values are as-

signed as zero at every disparity level, thus their 

disparities will completely depend on stable pix-

els. 

 And then we use the above-mentioned 

non-local cost aggregation method aggregating 

the new cost values 𝐶𝑑
𝑛𝑒𝑤(𝑝) to propagate the 

disparity values from stable pixels to unstable 

pixels. 

5 Experimental Results 

We test our method with the Middlebury 

benchmark. The test platform is MacBook pro 

laptop computer with a 2.5 GHz Intel Core i5 

CPU and 4 GB memory. We keep the parame-

ters constant for all the data sets: 𝜆𝐴𝐷 = 10, 

𝜆𝐺𝑅𝐴𝐷 = 15 , 𝜎 = 0.1 , ℎ𝑠 = 10 , ℎ𝑟 = 8 , 

𝑚𝑠 = 30 (ℎ𝑠, ℎ𝑟,𝑚𝑠  are parameters of mean 

shift algorithm). 

For visual comparison, we present disparity 

results of Teddy and Baby1 dataset in Figure 7. 

The segmentation-aided method improves the 

performance in large low texture areas and 

around depth boundaries. 

Our method ranks 21 in the Middlebury 

evaluation, and outperforms all the edge-aware 

filter based method, as shown in Figure 4. The 

disparity results are presented in Figure 5. 

   

   

   

   

Figure 5 Left: Four stereo pairs of Middlebury 

evaluation platform. Middle: Final resulting dis-

parity maps. Right: “bad” pixels of the produced 

disparity maps evaluated for the 1 pixel error 

threshold. Mismatched pixels are indicated by 

gray (occlusion) and black (non occlusion). 

Figure 6 shows the comparison result of 

edge-aware filter based methods in recent years.  

Figure 4 Results from the Middlebury evaluation platform for the 1 pixel threshold. Columns record 

from left to right: method; average rank; average percent of bad pixels; errors for the Tsukuba, Venus, 

Teddy, Cones stereo pairs; 
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Figure 6 Edge-aware filter based methods’ experimental results on the Middlebury data sets. From 

top to bottom Tsukuba; Venus; Teddy; Cones; method and its average percent of bad pixels 

Figure 7 The disparity results of Teddy and Baby1 stereo pairs. From left to right: Original left images; 

disparity results without segmentation-aided checking; disparity results with segmentation-aided 

checking. 



6 Conclusion 

This paper has presented a novel segmenta-

tion-aided checking method, which proves to be 

an effective supplement for edge-aware filter 

method. The proposed method significantly im-

proves the disparity map’s quality especially in 

repetitive structure areas and low texture areas. 

Our future work includes improving the 

sub-pixel performance, considering various 

segmentation methods and parallel implementa-

tion. 
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