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Enhanced Figure-Ground Classification With
Background Prior Propagation

Yisong Chen and Antoni B. Chan

Abstract— We present an adaptive figure-ground segmentation
algorithm that is capable of extracting foreground objects in
a generic environment. Starting from an interactively assigned
background mask, an initial background prior is defined and
multiple soft-label partitions are generated from different fore-
ground priors by progressive patch merging. These partitions
are fused to produce a foreground probability map. The prob-
ability map is then binarized via threshold sweeping to create
multiple hard-label candidates. A set of segmentation hypotheses
is formed using different evaluation scores. From this set, the
hypothesis with maximal local stability is propagated as the
new background prior, and the segmentation process is repeated
until convergence. Similarity voting is used to select a winner
set, and the corresponding hypotheses are fused to yield the
final segmentation result. Experiments indicate that our method
performs at or above the current state-of-the-art on several data
sets, with particular success on challenging scenes that contain
irregular or multiple-connected foregrounds.

Index Terms— Image segmentation, multiple hypotheses fusion,
similarity voting.

I. INTRODUCTION

F IGURE-GROUND segmentation is a fundamental opera-
tion with a great potential in many vision applications [1].

It aims at producing a binary segmentation of the image,
separating foreground regions from their background. Modern
approaches include solutions based on graphs, statistics, infor-
mation theory, or variational theory [2]–[5]. Automatic seg-
mentation in generic conditions is extremely difficult due to
the broad diversity of visual cues in a natural image [6].
As a tradeoff, interactive methods [7]–[9] have produced
impressive results with a reasonable amount of user guidance.
The ideas of multiple hypotheses and classifier fusion have
also been applied to segmentation studies [10]–[12]. Current
state-of-the-art interactive segmentation methods suffer from
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several limitations, including a restrictive assumption about
latent distributions [3], an inability to treat complicated scene
topologies [9], or an inefficient similarity measure [13].

In this paper, we propose an iterative adaptive figure-
ground classification method, which gives promising solutions
in a broadly applicable environment. Foreground extraction
is achieved by first generating a large amount of hypotheses
through an iterated background prior propagation routine,
then fusing most promising hypotheses to obtain the final
result. The algorithm yields good result for challenging
scenes in both segmentation accuracy and execution efficiency.
It is not sensitive to difficult scene topology or loose
bounding box, and reliably treats multi-connected, multi-hole
foregrounds. Another advantage of our method is that the
spatial smoothness term essential in popular conditional ran-
dom fields (CRF) approaches is removed, and hence no addi-
tional learning algorithm is needed for tuning a smoothness
parameter.

The rest of the paper is arranged as follows. Section II
briefly reviews related work. Section III presents our figure-
ground classification framework. Section IV presents experi-
mental results and Section V concludes the paper.

II. RELATED WORK

The four major aspects of figure-ground segmentation,
related to our work, are the definition of prior knowledge,
similarity measures, parameter tuning, and goodness evalua-
tion. Prior knowledge can provide information about either
the foreground or background, or both [3], [14]. It can
be assigned by users in several forms, including bounding
boxes or seed points [11], [15], to help define hard or soft
constraints [2], [16]. Priors can also dynamically change or
propagate throughout the segmentation process [7], [13].

Similarity measures are defined over feature spaces,
based on appearance cues like color, shape, texture and
gradient [5], [17]. As different features often characterize
different aspects and are complementary, recent work has
focused on mixed feature spaces [14], [17]. In particular,
joint color-spatial feature have been successful in many vision
applications [18]–[20]. Besides traditional Euclidean distance,
similarity measures are often based on statistics or information
theory [4], [13].

Regarding parameter tuning, a common practice is to learn
the parameters via an energy minimization framework using
training data and supervised learning [21], [22]. The underly-
ing assumption is that there exists a parameter setting that
works for a variety of images represented by the training

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



874 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 3, MARCH 2015

set, which can then be applied equally well to the test set.
Unfortunately, this assumption is not necessarily true, and
bears the risk of training set bias and bad generalization
performance. Recent works prefer to find parameters that are
adaptively set for each image [14], [23].

Finally, it is difficult for an approach that optimizes a
single criterion to successfully segment all types of natural
images, which contain a broad variety of visual patterns.
Hence, recent works have developed good evaluation strate-
gies to judge and combine multiple candidates [24], [25].
Although not fully exploited, many studies have mentioned
the power of fusing complementary information from multiple
hypotheses [11], [12], [26].

In this paper we propose an algorithm that extracts fore-
ground by merging good hypotheses. Our method is distinct
from previous multi-hypothesis approaches in the following
two aspects: First, previous works [12], [24], [26] generate
multiple hypotheses by varying segmentation parameters or
employing different over-segmentation algorithms, resulting
in multiple K-way segmentations. In contrast, our task of
foreground extraction is a binary segmentation task, and we
propose a novel method for generating binary hypotheses using
a tree-structured likelihood propagation followed by multiple
evaluation. In particular, since it is unknown which part of the
bounding box contains the foreground, we generate candidate
segmentations by initializing the tree with various regions
as the foreground. Second, most previous approaches lack
effective mechanisms to choose a best one from multiple
hypotheses in general environment and can only resort to some
extra learning process [10], [11], [25]. In our method we use
the idea of similarity voting, which does not require a learning
process, to fuse soft-segmentations into a probability map and
hard segmentations into a final segmentation.

A preliminary version of our work was introduced in [23].
The new method presented in this paper improves over the
original [23] in the following aspects: 1) we use a soft-
label scheme based on foreground likelihoods, which leads
to significant improvement in the segmentation quality of
fine details; 2) we introduce an iterative scheme to propagate
the background prior, which increases the accuracy of the
segmentation; 3) maximally stable extremal regions (MSER)
are used to define a novel score function for goodness eval-
uation and background prior propagation, which effectively
prevent over-propagation of the background and better handles
loose bounding boxes; 4) similarity voting is extended for
probability map generation and hypothesis set selection, which
yields a robust classifier fusion from multiple hypotheses.

III. ENHANCED FIGURE-GROUND CLASSIFICATION WITH

BACKGROUND PRIOR PROPAGATION

In this section, we propose an enhanced adaptive
figure-ground classification framework with background prior
propagation. Our framework is based on fusing multiple
candidate segmentations, and is guided by two underlying
principles: 1) voting or fusion of multiple candidates often
has better chance than optimization of a single score function
in classification tasks, as long as the candidates are reasonably

generated (even by very weak classifier), and in general,
more votes provide higher confidence; 2) regarding the fusion
strategy, priority should be given to the candidates sharing
more similarities, or the hypothesis set with higher intra-
similarity, to yield a result that satisfies more participants.
We denote our fusion strategy of multiple candidate segmenta-
tions as similarity voting. The idea of similarity voting can be
seen as an extension of the well-known majority vote principle
in classifier fusion [27]. It plays an important role throughout
our algorithm.

A. Algorithm Overview

Fig. 1 shows the pipeline of our figure-ground segmenta-
tion algorithm. Our algorithm consists of two main stages:
1) hypothesis segmentation generation, and 2) similarity
voting & fusion. In the first stage, the user box specifies
the initial background, and a large number of candidate
segmentations are created, from which a set of best hypothesis
segmentations are selected. By using one of the hypotheses to
define the new background prior, the segmentation process
is repeated to form several hypothesis sets. In the second
stage, the best hypothesis set is automatically selected by intra-
similarity comparison, and the corresponding hypotheses are
fused to form the final segmentation.

B. Bounding Box Assignment

Our algorithm is based on a user-specified mask box that
helps define the initial background prior, as in previous
approaches [7], [15]. Either inside or outside of the box
can be defined as the background mask, which is assumed
to only contain background pixels. The complement of the
background mask is the foreground mask, which may contain
both foreground and background elements. The mask box can
flexibly handle various cases of partially-inside or multiply
connected foregrounds.

C. Image Patches by Adaptive Mean-Shift

Defining a segmentation as the grouping of nonoverlap-
ping regions has become popular due to its advantages in
information transfer and computational efficiency [28]–[30].
In our work, we generate an over-segmented image using
an adaptive mean-shift algorithm (Fig. 1a). Mean-shift [28]
is a non-parametric clustering method, which is based on
finding the modes of the kernel density estimate in the feature
space. We choose the mean-shift algorithm because mean-shift
patches are better described statistically in comparison to other
super-pixel generators [17]. For each pixel we extract a 5D
feature vector in a joint color-spatial feature space,

fx,y = (L(x, y), a(x, y), b(x, y), x, y), (1)

where (x , y) are the 2D pixel coordinates and (L(x, y),
a(x, y), b(x, y)) are the corresponding pixel values in the
Lab color space. We use the Lab space because it is better
modeled by a normal distribution in comparison to RGB [31].
We then apply the mean-shift algorithm to cluster the feature
vectors, with pixels in each cluster forming an image patch.
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Fig. 1. The pipeline of enhanced figure-ground classification with background prior propagation (EFG-BPP): (a) Original image with box mask
(Section III-B), and image patches from adaptive mean-shift (Section III-C); The inputs of the “hypothesis segmentation generation” are the image patches.
(b) the box mask helps define the initial background prior; (c) Different foreground priors generate multiple soft-label partitions (Section III-E); (d) all soft-labels
are combined into one foreground probability map (Section III-F); (e) Thresholding the probability map forms a set of hard-label candidates (Section III-G);
(f) A set of hypotheses is selected using evaluations by various score functions (Section III-G). The lower-right hypothesis of (f) is the result using the MSER
score function, and is propagated as the background prior for the next segmentation round (Section III-H). The inputs of the “similarity voting & fusion”
block are multiple hypothesis set. (g) The winning hypothesis set is selected using similarity voting; (h) The final segmentation is obtained by fusing the
hypothesis set (Section III-I).

Fig. 2. Example of over-segmentation by adaptive mean-shift. (a) original
& mask. (b) initial patches. (c) adaptive patches.

The result is a partitioning of the original image I into a set of
non-overlapping patches RI = {p1, p2, . . . , pn}, where pi is
an image patch (Fig. 2). Since we use a joint color-spatial
feature space, the image patches tend to be visually similar
and spatially compact.

In the mean-shift algorithm we use two bandwidth para-
meters for the kernel, hs for the spatial features (x , y) and
hr for the color features (L, a, b). The bandwidth controls
the smoothness of the estimate, and ultimately determines
the number of mean-shift patches obtained [28]. Different
initial settings lead to different image patch sets, only some
of which are suitable for the subsequent classification [32].
This is illustrated in Fig. 2, where the default setting of
hs = 7 and hr = 6 generates cluttered patches and fails
to transfer the background prior reliably into the region of
interest. Nevertheless, a bandwidth setting hs = 10 and
hr = 8.6 (determined by our adaptive scheme) generates more
consolidated patches.

Based on the relationship between the bandwidth parameters
and the covariance matrix of the multivariate normal distrib-
ution [33], we propose the following scheme to adaptively
set the bandwidths. First, an initial mean-shift segmentation is
performed with the default bandwidths hs = 7 and hr = 6.
Next, patches overlapped with the foreground mask region
are collected into the set F0, and the 3 × 3 covariance

matrix �
(rr)
i of the color features, and the 2 × 2 covariance

matrix �
(ss)
i of the spatial features are calculated for each

patch pi . Finally, the adaptive bandwidths are estimated by
averaging the color/spatial variances over all collected patches
in F0,
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Whereas hs is estimated from the variance in both
x- and y-coordinates, hr is estimated by averaging the Lab
components with largest variance, due to the observation that
this component often dominates in the Lab space. The mean-
shift algorithm is run again with the adapted bandwidths to
obtain the final patches.1 By using the statistics from the fore-
ground mask, our approach tunes the bandwidth parameters to
form better representative patches.

In some cases, when the background contains repetitive
cluttered textures, the adaptive mean-shift may still pro-
duce too many image patches, and cause the background
patches to be mainly distributed along the mask boundary
(as in Fig. 3). This will lead to a poor estimate of the
background prior and a poor segmentation. We suggest a
simple heuristic to identify and circumvent these cases. If the
initial mean-shift creates too many patches (>300) within the
mask region, we double the bandwidths (hs = 14, hr = 12)
to group together pixels in a larger neighborhood to make

1The bandwidth could be updated iteratively with multiple runs of mean-
shift. However, we did not see any improvement using more than one update,
and the iterations sometimes did not converge to a fixed value, but instead
oscillated within a small range.



876 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 3, MARCH 2015

Fig. 3. Larger bandwidths for cluttered textures: (a) image; mean-shift
patches using (b) small and (c) large bandwidths.

Fig. 4. An illustration of minimum KL divergence. p1 and p2 are two non-
adjacent mean-shift patches modeled by multivariate normals. p2 is a local
sample of p1. KL(p1, p2) is large but KL(p2, p1) is small. By using the
minimum of the 2 values, the two patches will have low dissimilarity and will
likely be grouped together. (a) An example image; (b) the two corresponding
distributions.

larger patches. Larger bandwidths merge small patches into
bigger ones and extend background prior deeper into the mask
region.

D. Similarity Measure Between Patches

In the next stage of the segmentation pipeline, patches are
gradually assigned likelihood labels, based on their similarities
to the patches labeled earlier. We will represent a region as
the set of its patches. Hence, we must first define a suitable
dissimilarity measure between two patches, and between a
patch and a region.

To remain consistent with the underlying probabilistic
framework of the mean-shift algorithm, we model each mean-
shift patch pi as a multivariate normal distribution N(μi ,�i )
in the 5D feature space defined in (1), where the mean vector
μi and the covariance matrix �i are estimated from the patch.
All patches are eroded with a 3×3 structural element to avoid
border effects.

The Kullback-Leibler divergence (KLD) can be used to
measure dissimilarity between two distributions, but is not
symmetric [34]. Here, we use the minimum KLD between
two patches as our dissimilarity measure,

D(p1, p2) = min(K L(p1, p2), K L(p2, p1)), (3)

where patches p1 and p2 are represented by two Gaussians,
with distributions N(μ1,�1) and N(μ2,�2), and the KLD
between two d-dimensional Gaussians is [34]

K L(p1, p2) = 1

2

[

(μ1 − μ2)
T �−1

2 (μ1 − μ2) + T r(�−1
2 �1)

+ log
|�2|
|�1| − d

]

. (4)

Eq. (3) is a symmetrized version of the KLD in (4), and
has an intuitive interpretation that two patches are similar if
either of them can be well described by the other. With this

dissimilarity the background holes illustrated in Fig. 4 can be
reliably identified as similar to the background.

A region in an image (e.g., the background) is represented
as a set of patches, R = {pr1, . . . , prK }, where {rk} are
the indices of the patches forming the region. Using the
dissimilarity between patches in (3), we define the dissimilarity
between a patch p and region R as the minimum dissimilarity
between the patch p and any patch in R,

D(p, R) = min
r∈R

D(p, r). (5)

We define the dissimilarity between two regions R1 and R2
as the minimum dissimilarity between their patches,

D(R1, R2) = min
r∈R1,p∈R2

D(r, p) = min
r∈R1

D(r, R2). (6)

Note that both background and foreground can be multi-
modal. That is, patches in one region (e.g., background)
may have very different distributions (e.g., sky and grass).
Therefore, for the patch-region dissimilarity, we use the min-
imum dissimilarity so as to match the patch to the most
similar part in the region. Likewise, the minimum dissimilarity
measure between two regions implies that they are similar if
they have patches in common (e.g., both contain sky). In our
context, using alternatives such as median dissimilarity or
max-min dissimilarity may not work well due to the regions
being multi-modal.

E. Soft-Label Partitions

With the patch distances defined in Section III-D we
next describe our foreground extraction algorithm. Under the
assumption that the user-specified box provides sufficient
background statistics, we first initialize the background and
foreground priors (Fig. 1b), and then gradually compute a soft-
label partition (Fig. 1c). Formally, our objective is to assign
each image patch pi a likelihood (soft-label) of belonging to
the foreground category, denoted by L(pi ).

The partitioning process proceeds as follows. First, all
patches pi overlapping with the background mask form the
initial background prior B , and are given zero likelihood,

L(pi ) = 0, ∀ pi ∈ B. (7)

Next, the initial foreground region F0 is formed using the set
of patches that are sufficiently far from B ,

F0 = {pi |D(pi , B) > Dt }, (8)

where Dt is a foreground threshold whose value will be dis-
cussed at the end of the subsection. The foreground likelihood
of these initial foreground patches is set to 1,

L(pi ) = 1, ∀ pi ∈ F0 (9)

The remaining unlabeled patches are progressively labeled
with patches furthest from the background considered first,
i.e., in descending order based on their distances from the
background prior B , D(pi ,B). Let � be the set of currently
labeled patches. For each patch pi under consideration, a
local conditional probability with respect to any labeled patch
p j ∈ � is computed by comparing the distances from pi to
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Fig. 5. Two examples of tree-structured likelihood propagation as soft-labeling. The demo image in (a) has 7 patches. The background prior is B (striped
area). Patches p1-p6 are the unlabeled regions (white area), sorted in descending order by their distance to the background prior. (b) Table of conditional
probabilities l(pi |p j ) that pi is foreground given p j is foreground. (c) Iterations to generate a tree structure using p1 as foreground. Foreground likelihood
scores are denoted as Li = L(pi ). White segments and solid arrows form the current tree structure �. The gray segment is the current segment under
consideration, and dashed lines are candidate connections between the current segment and existing nodes in the tree. In each iteration, the likelihood scores
L j→i = l(pi |p j )L(p j ) are calculated for current patch pi to each existing tree node p j , and the maximum value (bold) is selected to add the segment to
the tree. (d) The tree structure using p1 as the foreground prior, resulting from iterations in (c). (e) A different tree structure that uses p1 and p2 as the
foreground prior.

the background prior B and p j using the softmax (logistic)
function,

l(pi |p j ) = e−D(pi ,p j )

e−D(pi,p j ) + e−D(pi ,B)
. (10)

Because the feature space represents both color and loca-
tion, (10) will give high likelihood when the two patches
are both visually similar and spatially close together, while
also being dissimilar to B . The overall likelihood of patch
pi being foreground is estimated by calculating the maximum
likelihood score over all preceding patches,

L(pi ) = max
p j ∈�

L(p j )l(pi |p j ). (11)

Eq. (11) considers both the conditional probability of the
current patch being foreground given the labeled patch, and the
probability of the labeled patch also being foreground. Note
that these patches are not explicitly assigned a foreground
or background label, but instead assigned a likelihood of
being foreground, based on foreground likelihood of preceding
labeled patches. After all unlabeled patches are processed
with (11), a likelihood L is defined for every patch, resulting
in a soft-labeling of foreground regions in the image. The
procedure is summarized in Algorithm 1.

Overall, the above soft-label method can be interpreted as
a likelihood-tree growing procedure, as shown in Fig. 5. The
initial foreground F0 is the root of the tree. The likelihood of

Algorithm 1 Soft-Label Partitioning

being foreground is propagated from node to node as the tree
grows in a top-down manner.

Finally, the hard-label partition, used in our preceding
work [23], can be obtained by replacing the softmax function
in (10) with a hard binary-valued function,

lhard(pi |p j ) =
{

1 if D(pi , p j ) ≤ D(pi , B)
0 if D(pi , p j ) > D(pi , B).

(12)



878 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 3, MARCH 2015

Using (12), pi will be marked as foreground only if it is more
similar to some other foreground patch than the background B .
This corresponds to a greedy labeling method, where the
foreground set, F = {pi |L(pi) = 1}, is updated when a new
patch is assigned to the foreground.

We now turn our attention to the threshold Dt that deter-
mines the initial foreground region F0. The choice of threshold
is important since it may lead to different tree structures and
hence different soft-label partitions (e.g., see Figs. 5d and 5e).
Rather than select a single threshold, we instead con-
sider multiple thresholds, i.e., multiple foreground initializa-
tions, and produce various candidate soft-label partitions for
consideration. In practice, we use all thresholds Dt between
the lower and upper bounds, Dl = 5 and Du = 50. This
interval allows a large enough set of initial foreground priors
but excludes unnecessary initializations.2 Since there are a
finite number of possible D(pi ,B) values (one for each image
patch), we only need to try a finite number of thresholds.
In articular, we sort all values of D(pi ,B) within the interval
[Dl ,Du ] in ascending order and use the midpoints between
two successive values as the set of thresholds. Running the
soft-label partitioning method for each threshold, we obtain a
large set of soft-label partitions. The size of the set depends on
the number of patches in the image. Simple images will have
few patches (<5), whereas cluttered images will have more
patches (>100), and thus a larger set of soft-label partitions.

F. Foreground Probability Map

We next build a foreground probability map by fusing all
soft-label partitions (Fig. 1d). The fusion is based on the
idea of similarity voting. That is, partitions sharing more
similarities are given higher influence. Denote Fi as the i−th
soft-label partition from the previous stage, and Fm

i as the
likelihood value of the m−th pixel in Fi , where pixels take
the likelihoods of their corresponding patches. We define the
similarity between two soft-label partitions Fi and Fj by

d(Fi , Fj ) = (

M
∑

m=1

∣
∣
∣Fm

i − Fm
j

∣
∣
∣)/(

M
∑

m=1

sign(Fm
i + Fm

j )), (13)

where M is the total number of pixels, and sign(x) is 0 when
x = 0 and 1 when x > 0. When Fi and Fj are hard-label
partitions (i.e., sets of foreground pixels), (13) reduces to the
scale invariant measure [36],

d(Fi , Fj ) = ∣
∣(Fi ⊕ Fj )

∣
∣ /

∣
∣(Fi ∪ Fj )

∣
∣, (14)

where ⊕ and ∪ denote symmetric difference and union of
two sets, and |F| denotes the cardinality of a set F . We then
construct a symmetric affinity matrix A with entries

A(i, j) = exp(−d(Fi , Fj )
2/2σ 2), (15)

where σ 2 is the variance of the pairwise distances between
all partitions {Fi } [7], [30]. Finally, a real-valued probability

2The KL divergence values calculated in (4) are typically dominated by
the Mahalanobis distance term, which follows a 5-dof χ2 distribution under
multivariate Gaussian [35]. For a random sample from B , Dl = 5 and
Du = 50 set it as foreground with chances p = 0.42 and p = 10−9

respectively.

map is calculated as the weighted sum of the soft-label
partitions {Fi },

P =
∑

i

w2
i Fi . (16)

The weight vector w is determined using the following con-
strained optimization problem,

max wT Aw, s.t . ‖w‖2 = 1. (17)

Eq. (17) is a standard Rayleigh quotient problem [37], and the
optimal w is given by the top eigenvector of A. Intuitively, the
weights found by (17) are higher for partitions sharing more
similarities. In short, the probability map is computed as the
weighted sum of all soft-label partitions, where larger weights
are given to more similar partitions. This corresponds to a
similarity voting process leading to a better probability map,
compared to [23]. Some example probability maps are given
in Figs. 1d and 7a.

G. Hypothesis Segmentation Set

Given the foreground probability map, a set of candi-
date segmentations is formed by thresholding the probability
map P (Fig. 1e). Due to the finite number of patches, the prob-
ability map P contains a finite number of values πi (i = 0..n).
Therefore, it is easy to create multiple hard-label (binary-
valued) candidates from P by brute-force thresholding.
In particular, first we sort all values of πi in ascending order,

0 = π0 < π1 < π2 < . . . < πn = 1. (18)

We have π0 = 0 and πn = 1 because there must be
some definite foreground and background regions in a valid
probability map. We then define a threshold set T = {ti }i=1..n
as the midpoints between two successive probability values,
ti = (πi−1 + πi )/2. This threshold set T is used to binarize
the probability map P into n hard-label candidates

Ci = (P > ti ), i = 1 · · · n. (19)

From these hard-label candidates we select promising seg-
mentations according to various evaluation scores, denoted
as the hypothesis set (Fig. 1f). Taking into account the fact
that perceptually meaningful segmentations may correspond
to different cost functions, we generate multiple segmentation
hypotheses from multiple evaluation scores. In particular,
we prefer evaluation scores that encourage different types
of segmentations. We consider three score functions from
different points of view, which are described below. Other
scores could also be used to incorporate any available prior
knowledge (like texture or shape).

The average-cut (a-cut) score is defined as the average of
the distances D( f ,B) from each foreground patch f to the
background set, i.e. the selected threshold is given by

t(a) = arg max
t∈T

1

|F(t)|
∑

f ∈F(t)

D( f, B(t)), (20)

where F(t) and B(t) are respectively the foreground and the
background groups in the final segmentation map computed
from the threshold t . The a-cut score finds a split of foreground



CHEN AND CHAN: ENHANCED FIGURE-GROUND CLASSIFICATION WITH BPP 879

Fig. 6. Three ti -score curves for the image of Fig. 2. A log-plot is used for
the MSER curve to show the minimum clearly. The hypothesis segmentations
are selected as the minimum of the log(MSER) curve, and the maxima of the
a-cut and m-cut curves. In this example with 87 hard-label candidates, the
optimal values are taken at t9, t86, and t85 respectively by the three score
functions. (a) ti -log(MSER) curve. (b) ti -acut curve. (c) ti -mcut curve.

and background such that the average distance between the two
is large. It is also related to the “average cut” used in spectral
partitioning [30], but here we only consider the foreground
region when calculating the score.

Inspired by the maximum-margin principles of support
vector machines (SVMs), the maxmin-cut (m-cut) score
maximizes the minimum distance between foreground and
background patches,

t(m) = arg max
t∈T

D(F(t), B(t)). (21)

The m-cut score prefers segmentations where the foreground
and background regions have a wide boundary in the feature
space, corresponding to the optimization of (6).

The third score is based on the idea of maximally stable
extremal regions (MSER) [38], which tries to maximize the
local stability of a candidate over the threshold set T . Recent
evaluations reveal that the MSER detector [38] exhibits good
performance on a variety of benchmarks [39]. The original
MSER detector finds regions that are locally stable over
a wide range of thresholds. In contrast to previous works,
we make a modification by using the full foreground map
instead of a local connected region to define MSER, and only
considering the global maximum over the whole threshold
set T . In our context, the threshold selected by MSER score is
defined by

t(M) = arg min
ti∈T

|F(ti−1)| − |F(ti+1)|
|F(ti )| , (22)

where {ti−1, ti , ti+1} are three consecutive thresholds in the
threshold set T , and |F| denotes the area of the region F . The
adoption of the region area as the denominator term in (22)
makes the MSER score favor larger foreground regions. There-
fore, it is particularly good when a tight mask box is assigned.
More importantly, the MSER score is sufficiently robust to
allow for the background prior to be updated iteratively, which
will be discussed in Section III-H.

Fig. 6 plots an example of the three score functions, while
varying the threshold ti . It is worth mentioning that different

Fig. 7. Example probability map and hypothesis set for the image in
Fig. 2. a) probability map (Section III-F); b) multiple binary candidates
by thresholding (Section III-G); c) 4 hypothesis segmentations selected by
different evaluation scores, corresponding to the 3 optimal points of Fig. 6
(Section III-G).

Algorithm 2 Enhanced Figure-Ground Classification With
Background Prior Propagation (EFG-BPP)

segmentations may have the same m-cut score. For example,
in Fig. 6c within the [82, 84] interval the same m-cut score
corresponds to 3 different candidates. This means the solutions
to m-cut may not be unique. Different m-cut solutions along
the optimal interval tend to have slightly different appear-
ances. Hence, we select two hypotheses from the m-cut score
function, corresponding to the left and the right ends of
the optimal interval. Thus, in total we have four hypothesis
binary segmentations, one by MSER, one by a-cut, and two
by m-cut. Fig. 7 shows an example of building hypotheses
from the probability map.

H. Iterated Background Prior Propagation

The result of Section III-G is a set of hypothesis segmen-
tations. The background region of one of these segmentations
can be used as the background prior for a new round of
segmentation (Algorithm 2), which we call background prior
propagation (BPP). We use the background from the MSER
segmentation for BPP because of its favorable properties
mentioned in Section III-G. The process iteratively continues
until the background prior stops changing between iterations.
The convergence of BPP is guaranteed because image patches
can only be added to the background prior in each round.
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Fig. 8. Examples of iterative background prior propagation. Columns 2, 3, 4
show the negative background priors after the first three iteration rounds
respectively. Column 5 shows the final result by fusing the four hypotheses
of the winner round.

Hence the background prior region can only grow until it
reaches a stable point, or, very rarely in our context, covers
the full image. The fact that MSER favors bigger foreground
regions contributes to the prevention of over-propagation of
the background.

Fig. 8 shows the background priors after three iterations of
BPP for a few example images with complicated foreground
topologies (multiple hole, multiply connected, or irregular
contours). These examples demonstrate how the background
prior gradually propagates into the region of interest and builds
multiple hypotheses.

Each round of BPP is associated with a hypothesis set. Due
to the risk of over-propagation or under-propagation, the best
hypothesis set is not necessarily the first or last iterations.
In the next subsection, we design a winner selection strategy
to automatically select a good hypothesis set. The final results
in the last column of Fig. 8 show the effectiveness of our
selection method.

I. Hypotheses Selection and Fusion

After convergence, BPP generates several sets of hypothesis
binary segmentations, with one set from each BPP itera-
tion round. An automatic mechanism is required to build
a final result from the hypotheses sets of all iterations
(Figs. 1g and 1h). Direct fusing all these hypotheses is not
a good choice due to the risk of including over-propagated
backgrounds. Instead, based on the principle of similarity
voting, we choose the set with highest intra-similarity for the
final fusion. The motivation is that under a good initialization,
the results selected by different evaluation scores are generally
consistent and correct, whereas under a bad initialization, the
results selected by different evaluation scores are generally
inconsistent and unreliable. We denote the hypothesis set
of 4 binary segmentations in the j th iteration of BPP as

Fig. 9. Weizmann examples. Rows 1-3 are 1-obj examples. Rows 4-8 are
2-obj examples. The EFG-BPP result is equally good as the user selection for
rows 1, 2, 4, 6, & 7; and slightly worse on the remaining rows. The outside
of the blue boxes or the inside of the red boxes define the background masks.

Fig. 10. IVRG examples. Top: image & mask; middle: grabcut results;
bottom: EFG-BPP results.

H j = {H j
M S E R, H j

acut , H j
mcut1, H j

mcut2}. For each hypothesis
set H j , we calculate the mean pairwise similarity within the
set,

s(H j ) = 1

12

∑

a,b∈{M S E R,acut,mcut1,mcut2}
a 	=b

(H j
a , H j

b ) (23)

where the similarity between two binary segmentations
H1 and H2 is defined as the Jaccard index [16],

s(H1, H2) = |H1 ∩ H2| / |H1 ∪ H2| . (24)
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TABLE I

F -MEASURES ON FOUR IMAGE DATASETS. BOLD INDICATES BEST ACCURACY AMONG ALL METHODS, EXCLUDING USER-SELECT

The set with the largest mean similarity s(H j ) is selected as
the winner set H . Finally, from the 4 binary-valued hypothesis
maps H = {HM S E R, Hacut , Hmcut1, Hmcut2} of the winner
set, we compute the final foreground map F by a simple pixel-
wise majority vote,

F = ((HM S E R + Hacut + Hmcut1 + Hmcut2) ≥ 2). (25)

The full framework is summarized in Algorithm 2. Note
that most parameters in our system are set automatically
based on the image, and our multiple hypotheses framework is
based on generating segmentation candidates using all possible
thresholds. In addition, because segmentation is based on soft-
labeling and multiple hypothesis segmentations are kept, the
effects of erroneous outputs in each stage of the pipeline are
minimized.

IV. EXPERIMENTS

In this section, we evaluate our algorithm. Experiments are
run on a notebook computer with an Intel core-i7 CPU 2.7Ghz
processor and 4GB RAM. Our algorithm is implemented in
MATLAB and is available online3.

A. Evaluation of Segmentation Results

We make a comprehensive comparison using four
image datasets with ground truths; Weizmann 1-obj
(100 images), Weizmann 2-obj (100 images) [40],
IVRG [41] (1000 images), and grabcut [42] (50 images).
We denote our enhanced figure-ground classification using
soft-label partitions and background prior propagation
as EFG-BPP. We also test the performance using hard-
label partitions with (12), which is denoted as EFG-BPP
(hard-label). We also compare against grabcut [7] and other
methods [4], [11], [28], [43]. The initial mask box is assigned
by the user and is fixed for comparisons between box-based
methods.

We first qualitatively examine the major benefits of our
segmentation method on some examples. Fig. 9 displays
some example segmentations from the Weizmann dataset.
EFG-BPP successfully labels background holes and multiply
connected components, and identifies many details missed in

3http://www.graphics.pku.edu.cn/members/chenyisong/projects/Figure
GroundPuzzle/FGpuzzle.htm

TABLE II

AVERAGE ERROR RATE COMPARISON ON THE GRABCUT DATASET

Fig. 11. Comparison between EFG-BPP and grabcut. (a) Grabcut dataset.
(b) IVRG dataset.

Fig. 12. Figure-ground switching examples. Left: original & mask; right:
EFG-BPP result.

the manual-made truths. Fig. 10 shows some example segmen-
tations from the IVRG dataset. In comparison to grabcut [7],
EFG-BPP exhibits qualitatively better performance, mainly
when segmenting complicated foreground and background
shapes.

The performance on each image is evaluated using
F-measure, F = 2PR/(P + R), where P and R are the preci-
sion and recall values [43]. Table 1 reports the 95% confidence
intervals of the average F-scores of both hard-label and soft-
label EFG-BPP. We also give the output of the first and the
last iteration of BPP for both schemes. We note that even in
the absence of background prior propagation, the result of the
first iteration is sufficiently good. By employing background
prior propagation and automatic hypotheses selection the result
becomes better. It is worth noting that the performance of the
last iteration slightly degrades for the Weizmann and IVRG
datasets. This indicates that the best result is not necessarily
reached at the time of convergence, but may instead come
in some earlier iteration round. Intelligently selecting and
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Fig. 13. Some foreground extraction results for Berkeley and Grabcut datasets.

leveraging multiple hypotheses improves the F-measure on all
the datasets. This validates the principle of similarity voting.
That is, we should encourage more candidates to participate
in a multiple hypothesis scheme, and similarity comparison
plays an important role in smart hypothesis selection. Finally,
the foreground map closest to the ground truth in all hard-label
candidates (last column of Fig. 9) forms an upper bound for
the figure-ground classification method. The EFG-BPP result
performs close to this upper bound.

The last row of Table 1 shows the results of several
reference algorithms [4], [7], [11], [28], [43]. EFG-BPP per-
forms slightly better than the state-of-the-art techniques for
single connected foregrounds (Weizmann 1-obj), and outper-
forms the state-of-the-art on multiple connected foregrounds
(Weizmann 2-obj). For the grabcut image set, we also compare
the error rate with the result reported in [13]. The error rate
is defined as the percentage of mislabeled pixels within the
initial box mask. Table 2 shows that EFG-BPP has lower
average error rate than grabcut [7] and iterated distribution
matching [13]. Fig. 11 compares the performance of grabcut
and EFG-BPP for the Grabcut and IVRG image sets. The
x-axis is the F-score threshold, and the y-axis is the num-
ber of images with an F-score greater than this thresh-
old. The figure shows that EFG-BPP generates fewer poor
segmentations.

For some scenes the contour separating foreground and
background may take a very complicated shape. This makes
it difficult to assign a box mask providing sufficient infor-
mation about the background. To handle these images we
switch the roles of foreground and background. Namely, at
the initialization stage we take the foreground region as the
background, and assign a bounding box fully enclosed by
it (the green boxes in Fig. 12). After the segmentation we
reverse the foreground and the background to obtain the final

result. Fig. 12 shows two images that can be improved by this
switching operation.

We also evaluate EFG-BPP on the Berkeley segmentation
dataset [44]. Fig. 13 gives the results of some challenging
images in the Berkeley dataset (rows 1 & 2) and the grabcut
dataset (row 3). The adaptive bandwidth parameters {hs , hr }
computed by (2) are also given. Note that the adaptive band-
widths can vary a lot for different scenes, and our adaptive
initialization works well in finding suitable bandwidths, and
generates good mean-shift patches. The images in the fig-
ure show that EFG-BPP can handle challenging background
or foreground topologies. As a typical example, almost all
connected components and all holes in image 370036 are
successfully identified.

B. Evaluation of Soft- and Hard-Label Schemes

The soft-label scheme performs better than the hard-
label scheme at the cost of slightly slower running time
(see Table 1). For simple scenes the outputs of the two
schemes are often the same or have only minor differences.
For cluttered scenes the two schemes are more likely to output
different results. The soft-label scheme has better chance
of keeping fine details, due to the soft likelihoods that are
transferred to the probability map. Some different outputs are
given in Fig. 14 for comparison.

C. Evaluation of Background Prior Propagation

Overall, about 80% of the time, EFG-BPP converges within
three iterations of BPP, and most of them select the first
round as the winner. This suggests that our method still can
perform well without BPP. Nevertheless, we have seen in
Table 1 that the output of the first loop is not necessarily
the best one. For some cluttered scenes, it may take as
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Fig. 14. Example results comparing hard-label and soft-label schemes.
The soft-label result outperforms hard-label in the first 3 rows, but performs
slightly worse for the last row.

Fig. 15. Some examples of long iterations of BPP.

TABLE III

THE NUMBER OF TIMES EACH SELECTION STRATEGY OBTAINED THE

BEST SEGMENTATION. THE VALUE IN () IS THE TOTAL

NUMBER OF IMAGES IN THE IMAGES SET

long as 10 iteration loops to propagate the background prior
deeply into the region of interest. The performance gain of
background prior propagation mainly comes from these long
iterations. Fig. 15 displays some example images that take
more than 5 iterations before reaching convergence. Although
over-propagation occurs in some trials (row 4 of Fig. 15,
and rows 1, 2, & 4 of Fig. 8), similarity voting is able to
make a good selection from all iteration rounds and output a
satisfactory result.

Table 3 compares the three selection strategies from the
BPP results: similarity voting (auto), first iteration, and last
iteration. Note that multiple strategies can produce the best
segmentation at the same time. The three strategies are con-
sistent to a large extent, with each obtaining good results in
at least 70% of the trials.

An interesting observation is that the last iteration outputs
better results more times than the first iteration whereas the
F-score is inferior as shown in Table 1. This is due to the
higher risk of over-propagation in the last-iteration. Even
though over-propagation occurs only in a small number of

Fig. 16. Segmentation results of different iterations of background prior
propagation. The result of the first iteration may be better (rows 1 & 4),
worse (row 2), or comparable (row 3) to that of the last iteration. EFG-BPP
makes a good balance and best candidate gives an upper bound.

TABLE IV

RESULTS OF EFG-BPP FOR VARIOUS MASK BOX SIZES ON 500 IVRG

IMAGES. EACH COLUMN SHOWS THE AVERAGE F-MEASURE WHEN

RANDOMLY EXPANDING THE BOX EDGES WITHIN A RANGE

OF ALLOWED VALUES (AS A PERCENTAGE OF

THE MAXIMUM ALLOWED VALUE)

trials it can cause significant drop of the F-score. The auto-
choice (EFG-BPP) consistently outperforms the two competi-
tors in both F-scores and number of best segmentations. This
provides strong evidence for the power of similarity voting
as a winner selection criterion. Some examples of the three
schemes are given in Fig. 16.

D. Evaluation of Initial Mask Box

The background prior propagation mechanism makes
EFG-BPP tolerant to loose initial mask boxes around the
foreground subject, since for each iteration the background
region can move further into the initial box. We test 500 IVRG
images that allow looser bounding boxes while keeping parts
of the background prior. For each image, we manually assign
the maximally allowed range of the 4 edges of the mask
box such that some common parts of the background remain,
and test various box sizes within the range. Table 4 shows
that EFG-BPP is stable and insensitive to looser boxes, and
outperforms both the first and last iterations of BPP. Fig. 17
shows example segmentation results by various mask box
sizes. Fig. 18 shows that different mask boxes can be used
to successfully extract different foreground elements.

E. Failure Cases

Fig. 19 shows two failure cases of EFG-BPP. In general,
the method fails if the background prior does not match true
background well. This can be caused by similar foreground
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Fig. 17. Examples of varying box sizes and the corresponding segmentations.
(a) tight box. (b) small box size. (c) medium box size. (d) large box size.

Fig. 18. Example segmentations from different mask boxes.

Fig. 19. Example failure cases of EFG-BPP. (a) Failure caused by similar
foreground and background appearances; (b) failure caused by cluttered
background.

and background appearances (Fig. 19a), or too cluttered back-
ground which prevents successful background prior propaga-
tion (Fig. 19b). These can be improved by employing a more
flexible initial mask.

V. CONCLUSION

We have proposed an enhanced figure-ground classification
algorithm. Our framework is based on the principles of gen-
erating multiple candidate segmentations, selecting the most
promising using several scoring functions, and then fusing
them with similarity voting. Specifically, an adaptive mean-
shift algorithm is used to generate image patches, and soft-
segmentations are produced using tree-structured likelihood
propagation. We put forward the idea of similarity voting to
guide the generation of multiple foreground map hypotheses,
and use several score functions to select the most promising
ones. To improve robustness we iteratively propagate the
background prior and generate multiple hypothesis sets. The
most promising hypothesis set is automatically determined
by similarity voting, and the corresponding hypotheses are
fused to yield the final foreground map. Our method produces

state-of-the-art results on challenging datasets, and is able
to segment the fine details in the segmentation, as well
as background holes and multiply-connected foreground
components.

Future work includes more intelligent schemes with mul-
tiple background prior hypotheses, as well as extensions to
box-based segmentation in video. Finally, our segmentation
algorithm could be applied to other computer vision tasks like
tracking, recognition and retrieval.
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