
Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for components of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on 
servers or to redistribute to lists, requires prior specific permission and/or a fee.  
Request permissions from Permissions@acm.org.  
Web3D '15, June 18 - 21, 2015, HERAKLION, Greece  
© 2015 ACM. ISBN 978-1-4503-3647-5/15/06…$15.00  
DOI: http://dx.doi.org/10.1145/2775292.2775310 
 

Indoor3D: A WebGL Based Open Source Framework for 3D Indoor Maps
Visualization

Meng Gai∗

Peking University
Guoping Wang

Beijing Eng Center of VSV, Peking University

Figure 1: A 3D indoor map visualized by Indoor3D

Abstract

In this paper, we present Indoor3D, an open source framework for
3D indoor maps visualization. It takes advantage of the WebGL
technique of modern browsers, so it can work on any platform
which supports the WebGL feature, including desktop computers
and mobile devices. An extensible data structure is designed to
describe the indoor scene. The proper default view is generated
automatically according to the principal direction. A priority based
algorithm is employed to control the visibility of the texts and icons.
This library is well designed and easy to use. Developers can create
an indoor map and customize its behaviour with only a few codes.
Designers also benefit from this framework since they can change
its visual style by providing a new theme. We believe our Indoor3D
will be useful in many cases, such as airports, subway stations and
shopping malls.

Keywords: visualization, webgl, web 3d, indoor map

1 Introduction

Indoor maps are widely used in airports, subway stations and shop-
ping malls. We can find the indoor maps on boards at the most
conspicuous positions in those buildings. And almost all the mer-
chants manuals of shopping malls have several pages for indoor
maps to show the retain ditribution. Instead of showing the details

∗e-mail:gaimeng@pku.edu.cn

such as windows and doors, those maps usually only have a very
brief and sketchy apperence, which using polygons and icons to
present objects. Besides, most of those indoor maps are displayed
in a pseudo-3D style to provide an intuitive impression for the read-
ers and guide them to navigate.

With the development of computer graphics, 3D indoor maps be-
comes popular. Many organizations have built their own applica-
tions to provide more convenient experiences to customers. How-
ever there is no universal solution for it by now. Some applica-
tions such as Google Map provides their service of 3D indoor maps.
But those indoor map modules are highly encapsulated. Develop-
ers have limited controls to customize the map. Besides, it is not
a cross-platform solution to display uniform maps on both desktop
computers and mobile devices.

The Web has come a new way to build cross-platform multimedia
applications, especially as the HTML5 becoming more and more
popular. Although there are many frameworks for web based vi-
sualization, most of them are for general usage. No framework
focusing on 3D Indoor maps visualization has been proposed.

To address these concerns, we contribute Indoor3D, an open source
framework for 3D indoor maps visualization. It provides a new
way to build up an application integrated with 3D indoor maps. We
make use of WebGL to make it usable on any platform with modern
browsers. Meanwhile, to save and exchange the map data, we have
designed a extensible file format based on the widely used JSON
format.

2 Related Work

As far as we know, although there hasn’t been any open source
indoor map visualization framework proposed, some previous work
provides fundamental techniques or has close relationship with our
Indoor3D library.

181



2.1 Graphics on the Web

There are many ways to show graphics objects on the web page. For
more details, we refer the readers to a survey[Evans et al. 2014].

Scalable Vector Graphics(SVG) is popular since the graphics ele-
ments have their correspond HTML tags. Many popular visualiza-
tion library[Bostock et al. 2011] is built based on SVG technique.
But SVG can only handle 2D graphics. Similarly, HTML5 canvas
only support 2D drawing as well, but it renders graphic elements in
a imperactive way. Although it is possible to create a 3D rendering
algorithm based on SVG or HTML5 canvas by handling the projec-
tion problems by developers own, the rendering efficiency remains
a big problem.

There are some ways of showing 3D objects requiring plugins in-
stalled onto the browser. They are not convenient enough for the
normal users. For example, Adobe Flash is one of the most popular
ones.

WebGL enables the developer to access to graphics hardware by
JavaScript. One of the biggest contribution is that it brings huge
performance increase, allowing fast manipulation of thousands of
vertices in 3D space.

ThreeJS[Cabello 2010] is one of the most famous libraries for 3D
graphics based on WebGL. It provides high level APIs and well
encapsulated functions. Moreover, it provides several different ren-
dering engines(WebGL, Canvas and SVG), which makes it easier to
deal with compatibility problems. For these reasons, we build our
framework on top of the ThreeJS library.

2.2 Reconstruction from 2D Floor Plans

The 2D floor plan is a standard way to express the structures of a
building in the architecture field. Several methods are developed to
reconstruct 3D buildings from 2D floor plans. [Lewis and Séquin
1998] developed a semi-automatic system to create 3D building
models from CAD plans. [Zhu et al. 2014] proposed an automatic
algorithm to generate 3D buildings from 2D vector floor plans by
recognizing the specific elements in the them.

Similarly, we also construct the 3D building models by extruding a
2D map. But we have different purposes. The results from those
reconstruction methods are full of details, such as windows and
doors. They are good for CAD (computer aided design), virtual
reality and simulation purpose, but not good enough for the general
public users.

We intend to visualize the indoor map with as less redundancy de-
tails as possible. All the rooms are expressed by simple polygons
while all the windows and doors are omitted. Some public facility
spots are simplified by a single point. As a result, it reduces the
difficulty of the users’ cognitive. More over, our file format benifits
from the simplicity of the models. The file size can be smaller and
better used in network transmission.

2.3 Indoor Maps Visualization

Although indoor maps are commonlly used in public buildings,
bringing indoor maps into digital applications is a emerging direc-
tion.

Some commercial applications such as Google Map are integrated
with the indoor map functions. But they are not friendly to develop-
ers to customize the maps. Although some of them provide a bunch
of APIs, they are not easy to be used in cross-platform applications.

Widitu[wid 2015] is one of the most professional applications
which provide indoor maps services in China. It releases SDK on
different platforms for developers. But it renders the maps only in
2D.

3 Architecture Design

Indoor3D is built beyond the ThreeJS library and designed under
the rule of MVC(Model-View-Controller) pattern, which has been
widely used to separate internal representations. After loading the
map data represented by a json file, a Building object is created to
hold the data and plays the role of Model. All the interactions of
mouse and touch events are handled in a Controller class. The In-
door3D class contains the Renderer of the ThreeJS and cooperates
with the model and controller.

{
  "Building": {
    "Shape": [
      [-202, -768, -208, -768, ...,  -202, -768]
    ],
    "Name": "Sample Building",
    "Address": "Sample Street Sample City",
    "Longitude": 116.436347485204,
    "Latitude": 39.9718578960126,
    ...// More building properties
  },
  "Floors": [
    {
      "Shape": [
        [566, -232, 566, -235, ..., 566, -232]
      ],
      "Name": "F1",
      "Area": 13985,
      "Height": 5,
      ...// More floor properties

      "Rooms": [
        {
          "Shape": [
            [-85, -545, -54, -747, ..., -85, -545]
          ],
          "Name": "Sample Shop",
          "Type": 102,
          "Center": [-137, -624],
          "Area": 261.94140625,
          ... // More room properties
        },
        ... //More Rooms
      ],

      "Points": [
        {
          "Center": [-399, -55],
          "Name": "Entrance",
          ... // More point properties
        },
        ... // More Points
      ]
    }
    ...//More floors
  ]
}

a

b

c

d

e

f

g

Figure 2: The sample data. (a) The Building propterties block. (b)
The Floors array. (c) The Floor propterties block. (d) The Rooms
array. (e) The Points array. (f) The Room propterties block. (g) The
Point propterties block

182



3.1 Map Data Structure

Room Room Room…

Point Point Point…

Floors

 Points
Floor

Floor

Floor

Building

Map Data

 Rooms …

Figure 3: The data structure of the JSON file.

As far as we know, there has not been a standard file format for the
indoor mpas. We designed a structure in JSON format to describe
the information of an indoor map, which is widely used in Web de-
velopment and data exchange. Although XML is another popular
format with high readability, JSON format is more compact. The
data structure is extensible, and designed independent from imple-
mentation, so that it can also be used or converted for other indoor
maps applications easily, such as those displaying 2D indoor maps.

We design our file format according to the real structure of a build-
ing straightforwardly. A complete indoor map is composed of four
parts: Building, Floors, Rooms and Points. All the geometry in-
formation are stored in 2D, and it will be extruded to 3D in the
front end. Building, Floors and Rooms all contain a series of poly-
gons (only one in most cases) to present their outlines, while Points
stand for the facility spots whose positions are represented as sin-
gle points. All of them have their own unique id to identify from
each other. Many interfaces for the developers are using id as the
parameters in Indoor3D.

The Building holds the information of the whole building itself,
such as the building’s name, its address, the latitude and the lon-
gitude. It also has a shape property which is a series of arrays.
Each array is some numbers to represent a polygon. Each pair of
the numbers represent a coordinate point. In most cases, only one
array is used unless there are multi-polygons and holes.

The Floors structure is an array holding all the floors. Each element
of the array describes a floor. The floor contains an array of Rooms
and Points. The Floor’s properties are also extensible to hold the
floor propertie (the floor’s name, area, height, etc.). The Room is a
functional area in a floor, such as a shop in a mall or a closed area.
The Type property of the Room is used for colourization. This is
especially useful when using different colors to represent different
functional areas. The Floor and Room’s geometry shapes are rep-
resented in the same way as the outline of the Building. And their
center and area is pre-computed for later use. The Point is used to
represent the facility spots, such as Entrance, Staircases, Toilet and
so on. They will be shown as an round icon later.

A sample data of a map file is shown in Figure 2. And the diagram
to sketch the hierarchical data structure is shown in Figure 3. No-
tice the information of the Building and the Floors are separated.
Because in some cases, the building’s information is not neces-
sary. Moreover, some applications may take advantage of this file

structure to support streaming transmission and display some of the
floors as soon as they are loaded.

The original JSON file without trimming spaces is usually less than
1 MB. The file of a map with seven floors and more than 300 rooms
in Figure 1 is less than 300KB. This file size is totally acceptable
in web applications. Further compression techniques can make it
even smaller, but need more time cost for uncompressing in the
front browsers.

There are many ways to get the required map data. Since the data
structure is clean and simple, the map data from other application
can be converted to ours easily. Furthermore, we are developing
an utility to let the users create the map interactively. But it still
remains a tedious work for the users to create the map manually.
So similar to the problem of building reconstruction from 2D floor
plans, automatic recognition and converting approach need to be
studied.

3.2 Architecture

Building(Model) Controller

Renderer(View)Draw
Change

JSON Data

MapLoader

Load/Parse

User Interaction

Mouse/Touch Events

Indoor3D

Developers

Theme

Access and Customize

Figure 4: The architecture of Indoor3D based on MVC pattern.

As introduced before, the architecture of our framework is designed
based on the MVC pattern. Several utility functions are defined to
loose coupling and increase flexibility. The architecture is shown in
Figure 4.

A MapLoader class is defined to request the JSON file and parse
it to a Building object. The texts in the map is translated to 2D
sprites by an extra HTML Canvas. The 3D Mesh models are all
stylized according to the Theme. The 2D sprites of texts and icons
are create in a lazy way to save memory. So if they are hidden, they
won’t be created. The properties of the Theme are easy to under-
stand. They describe the color, opacity, stroke style, font, icons, etc.
Even the designers without programming experience can modify it
intuitively.

The Building class serves as a container of the 3D models and 2D
sprites. When the user switch the floors, the Building is in charge of
removing old objects from the scene temporarily and add the new
objects in the current floor to the scene. If the 2D sprites in a floor
have not been created yet, they will be create at the time when the

183



floor is switching to visible. Once they are created, they will be
cashed in case of later use.

The Renderer is naturally the ones provided by ThreeJS. There are
three kinds of render engines available: WebGL, HTML5 Canvas
and SVG. The WebGLRenderer is first considered. And the other
ones are alternative when WebGL is not supported by the users’
browser.

The Controller class receives all the interaction events from the user
and convert it to the transformation operations(pan, pivot and zoom)
by manipulating the camera in Indoor3D. On desktop computers,
the click event in the browser is dealed with. While on mobile
devices, it handles the touch events. Although using WebGL can
achieve high frame frequency, projecting the 2D sprites to the right
position is a little time consuming. So we let the controller notice
the Renderer to update the canvas only when the view is changed.
This saves the computation resources significantly when the view
is static, and is particularly useful when using the render engines
other than WebGl Renderer.

The Indoor3D class serves as an whole wrapper of the model, the
renderer and the controller and interacts with external calls. Besides
the cameras are managed by it. We create two cameras. One is for
rendering perspective 3D models, the other one is for the 2D sprites.
This Indoor3D class provides the interfaces for the developers to
access the data and specify the behaviour of the map. For example,
the developers can set if the rooms in the current floor is selectable,
if the 2D sprites should be shown, etc. Besides, this class has a
function to generate UI for the users to switch between floors. The
UI is a HTML element appended to the webpage, its style can be
specified by the classical CSS.

3.3 Usage

The Indoor3D is really easy for the developers to use. In general,
the only class that the developers need to interact is the Indoor3D
class.

Two examples are shown in Figure 5, one is the simplest way and
the other one is a little more complicated. In the simplest way, it
creates an indoor map from a json file just in two rows of codes, and
it will create an indoor map by default configuration. In the more
complicated example, it shows some additional settings customized
in the callback function when the map data is loaded successfully:
The interactive selection is enabled. The room names are hidden. A
callback function is added and it will be called when the selection
event is triggered. At last, the UI of switching floors is added to the
webpage.

Further more, the developer can specify an HTML ¡div¿ tag as the
container of the indoor map by passing the parameter to Indoor3D.
If the container is not provided, Indoor3D will generate a full screen
canvas for map rendering by default.

4 Implementation

In this section, we will introduce some details about the algorithm
in implementation. First we extrude the 3D models directly from
the 2D coordinates stored in the map data. After that, we compute
the principle axis of the map to provide the best view direction.
Besides, we use an priority based algorithm to control the visibility
of the 2D sprites to avoid occlusions.

4.1 3D Extrusion

The indoor map in the JSON file is described as 2D coordinates. To
generate the 3D mesh model, we need extrude the polygon outlines

<div id="indoor3d"></div>
<script>

    var params = {
       mapDiv:"indoor3d"
    }
    var indoorMap = Indoor3D(params);

    indoorMap.load("sampledata.json", function(){
        indoorMap.setSelectable(true);
    indoorMap.showRoomNames(false);
    indoorMap.setSelectionListener(callback);

        var ul = Indoor3D.getUI();
        document.body.appendChild(ul);
    });
</script>

<script>
  var indoorMap = Indoor3D();
 indoorMap.load("sampledata.json");
</script>

a

b

Figure 5: The sample data. (a) The simplest usage example. (b) A
slightly more complicated example with some detailed settings.

by the height of the floor. If the floor height data is missing, we set
it to 5 meters by default.

The extrusion result depends greatly on the triangulation of the
polygon. For complex polygons with holes, the well developed
poly2tri[Contributors 2009-2014] library based on sweep-line al-
gorithm [Domiter and Žalik 2008] is employed to fulfil this task.

When switched to the global view of the whole building to showing
all the floors(as shown at right in Figure 1), the offsets between the
floors are not the real distance to give a better visual experience for
the users. The value of the offset is a multiple scalar operated on
the floor’s height. In our implementation, the multiple value is set
to 4 and can be changed by developers.

4.2 Best View Generation

θ

Figure 6: The default view generation

Displaying the indoor map in a proper default view is important
for user experience, especially on those small screens of mobile
devices.

184



Selecting the best views for 3D object has been well studied, espe-
cially in the CAD field. Previous work either maximized the visi-
bility of interesting content using viewpoint entropy [Vázquez et al.
2003] or meaningful salient parts numbers[Mortara and Spagnuolo
2009]. [Fu et al. 2008] proposed a method to find the upright orien-
tation of a model by several geometric atrributes, such as stability,
symmetry, parallel and visibility. [Hu et al. 2011] applied a convex
hull based method to find the upright orientation and chose the best
view which owns the most visual features in the depth image from
four candidate isometric views.

To implement the view selection method, we should balance the
computation efficiency simultaneously. Since in our application,
there is more prior knowledge about the model, This view selec-
tion problem can be treated much easier. Apparently, the support-
ing plane is ready-made, since the floors are always parallel to the
horizontal plane. The solution space of the view point position is
limited in the half upper space.

We first take all the polygons vertices of the floor’s outline and use
PCA (Principal components analysis) to find the first principal di-
rection. This first principal direction can be treated as the width
direction of its OBB (Oriented Bounding Box) and will be set par-
allel to the screen width direction later. The angle between the first
principal direction and the original horizontal direction is stored in
the JSON file so that it reduces computation in the front end.

To fit the 3D indoor map right in the view port, the proper distance
between the camera and the center of the scene can be computed:

d =
H

2
cot(

θfovy
2

)

where H is the height of the floor’s OBB.

The last step is to decide at which side of the principal direction the
camera should be positioned. Starting from the idea of helping the
users to exhibit more informations, we choose the side with more
rooms. This is computed by comparing the center of the floor’s
OBB and the average center point of all the rooms in this floor. The
camera is positioned at the same side as the latter point.

The view is shown in Figure 6. The red arrow shows the first princi-
pal direction. The tilt angle θ is set to 75 degree in our system after
researching on several existing pseudo-3D maps of some buildings,
so that the users can see all the rooms and get good experience of
3D perspective.

4.3 Progressive Visibility of Texts and Icons

Showing all the texts and icons at the same time will be a disaster.
The overlap of these sprites will bring bad visual effects. To show
the texts and icons progressively, we employed an priority based
algorithm. When the indoor map is zooming out, the elements with
high priority are more likely to be kept, others will become invisi-
ble.

For the text names, the default priority is set to the area of the room,
which can be directly computed by the polygon outline based on
Green’s Theorem in a plane[Russ 2010]. Given points (xi, yi), i =
0, ..., n, with x0 = xn and y0 = yn, the area S of a polygon in a
plane can be rapidly calculated as:

S =
1

2

n−1∑
i=0

ai

where

(a) (b)

Figure 7: Progressive visibility of the texts and icons. More de-
tailed elements are shown when zooming in

ai = xiyi+1 − xi+1yi

This strategy means the names of bigger rooms tend to be kept when
zooming out. More advanced priorities can be designed if there is
more information. For example, if the popularity index of every
shop is available, the priority may take the popularity into account
and defined as following:

Pi = w1
Si

Smax
+ w2

Popi
Popmax

where Pi, Si and Popi are the priority, area and popularity index
of the ith shop respectively. Smax and Popmax are the maximum
shop area and popularity index of current floor. w1 and w2 are the
weights to balance these two items.

For the icons of facility spots, the default priority descending order
is set as Table 1. The priority is designed based on the idea that
the icons showing navigation information are more important, and
the entrances are the most important. This is coincident with the
psychological expectation of the customers.

Table 1: The priority of facility spots

point type Entrance Staircase Escalator elevator Toilet others
priority 3 2 2 2 1 0

Notice that if the element is set to visible as soon as it turns not
overlapping with other ones, there will be an undesired flicking
effect. Because the elements may switch between visible and in-
visible frequently when the user is pivoting. So we add a margin
area to the element’s bounding rectangle when it is about becoming
visible from invisible. Only when the gap between the bounding
rectangles is beyond a threshold, it does turn to visible again. In
our experiment, the margin value is set to 5 pixels to achieve good
visual effects.

The algorithm is shown in Algorithm1.

4.4 User Interaction

Once the map is loaded, it’s shown by the best view direction intro-
duced in previous section. To display the 3D indoor map interac-
tively by users, we use an orbit controller to control the movement
of the camera. On a computer with the mouse, users can drag the
left mouse button to pan the scene, right mouse button to pivot it
and scroll the middle button to zoom in and out. While on a mobile
device, single touch and multi-touch gestures are used to control
the scene.

185



Algorithm 1 decide the visibility of elements(texts and icons)

sort the element by descending priority order
for i = 1 to elements.length do
visibility ← true
margin← 5
for j = 0; j < i; j ++ do
recti← elements(i).boundingRect
rectj ← elements(j).boundingRect
if elements(j).visible and recti.collide(rectj) then
visibility ← false
break

end if
recti.shrink(margin)
rectj.shrink(margin)
if elements(i).visible 6= true and recti.collide(rectj)
then
visibility ← false
break

end if
end for
elements(i).visible← visibility

end for

For interactive selection, we use the classical ray casting method
to check which object is selected by users. When showing all the
floors, the floors are treated as an integral whole object, while when
showing a floor, the rooms are the objects to be checked. The de-
fault behaviour of the selected room is high lighted to light yellow.

Developers can set a selection listener to Indoor3D to customize
the behaviour of the map when something is selected. There are
3 parameters passed to the callback listener: the id of the selected
object, the projected 3D position of the click point, and the selected
object. This is useful when the developer wants to create a detailed
pop-up dialog or put a marker in the map when something is se-
lected. Since the 3D object can be accessed by API, the developers
can even create smooth animations with TweenJS [Gskinner 2015].
Some examples of customized interactions are shown in Figure 8.

4.5 Downward Compatibility

Based on the idea of progressive enhancement, we have many
strategies for those browsers that do not support WebGL.

On a desktop computer with older browsers, Indoor3D use the Can-
vasRenderer provided by ThreeJS. But for some of the mobile de-
vices, the computing resources are limited, so the CanvasRenderer
is not efficient enough. We also provide a 2D version indoor map
rendered by HTML5 canvas. The translation and rotation act di-
rectly on the canvas DOM element rather than redraw the canvas.
In such a way, the 2D map can run smoothly on some older mobile
devices.

For those older browsers which do not support HTML5 Canvas at
all, the developers should consider to display a static image.

5 Result and Discussion

5.1 Results

We have tested our framework on several platforms, it can run on an
real-time frame on every platform which supports WebGL. Because
we redraw the scene only when the view is changed, it runs on a full
frame rate when the view is static. When the user is interacting, the
frame rate will drop down a little bit. The interacting frame rates

(a)

(b) (c)

Figure 8: different customized interactions.(a) Floors selection (b)
Add a marker on selected shop. (c) Add a pop-up dialog

of showing the map in Figure 1 on 3 of the platforms are shown in
Table 2.

Table 2: The Frame rates of interacting on different platforms

Device OS CPU GPU Browser FPS

Desktop PC Windows 8 i5 2.8GHz
NVIDIA
GeForce
GTX 550 Ti

Chrome 41 50

Macbook Air Mac OS X i5 1.3 GHz
Intel HD
Graphics 5000

Chrome 41 60

Macbook Air Mac OS X i5 1.3 GHz
Intel HD
Graphics 5000

Safari 8 40

The new iPad IOS 8 A5X A5X Safari 25

Figure 9 are some different rendering styles customized by chang-
ing the themes, which shows the flexibility and extensibility of our
framework. The color, stroke and transparency are different be-
tween each other.

5.2 Future Work

This is the first step of our work, more future work is required for
a complete indoor map framework. First, navigation function is
usually necessary for a map application. When the users set the
start point and end point in a map, the closest path will be gener-
ated. The shortest path is usually computed by A*[Hart et al. 1968]
based searching algorithms. This function is especially useful when
the indoor map is registered to the real building. Besides, more
customization functions will bring more convenience to develop-
ers, such as adding different image layers onto the map. Moreover,
acquiring the map data is an tough but important task. Creating an
whole indoor map data manually remains tedious for the users. De-
veloping the algorithm which can convert existing vector plans or

186



Figure 9: different rendering styles

raster images to our indoor maps data automatically will help a lot.

6 Conclusion

In this paper we presented our Indoor3D framework. It takes advan-
tage of WebGL to render 3D indoor maps for cross-platform appli-
cations. We designed a JSON file format to store the map structure,
and solves several problems sush as best view selection and pro-
gressive element visibility to achieve better user experience. The
framework provides friendly interaction for users. And it is de-
signed flexible to allow the developers and designers to customize
it conveniently.

We believe many organizations will benefit from our Indoor3D
framework. Airports, subway stations and shopping malls will pro-
vide better interactive services for guests and customers with our
Indoor3D framework.

The source code and documentation are available from the web-
site[Gai 2015].

Acknowledgements

This research was supported by Grant No. 61421062, 61170205,
61232014, 61472010 from National Natural Science Foundation of
China. Also was supported by Grant No. 2012AA011503 from The
National Key Technology Research and Development Program of
China.

References

BOSTOCK, M., OGIEVETSKY, V., AND HEER, J. 2011. D3 data-
driven documents. Visualization and Computer Graphics, IEEE
Transactions on 17, 12, 2301–2309.

CABELLO, R. 2010. Three. js. URL: https://github.
com/mrdoob/three. js.

CONTRIBUTORS, P., 2009-2014. poly2tri.js. http://code.
google.com/p/poly2tri/.

DOMITER, V., AND ŽALIK, B. 2008. Sweep-line algorithm for
constrained delaunay triangulation. International Journal of Ge-
ographical Information Science 22, 4, 449–462.

EVANS, A., ROMEO, M., BAHREHMAND, A., AGENJO, J., AND
BLAT, J. 2014. 3d graphics on the web: A survey. Computers
& Graphics 41, 43–61.

FU, H., COHEN-OR, D., DROR, G., AND SHEFFER, A. 2008.
Upright orientation of man-made objects. In ACM transactions
on graphics (TOG), vol. 27, ACM, 42.

GAI, M., 2015. Indoor3d. https://github.com/
wolfwind521/indoor3D.

GSKINNER, 2015. Tweenjs. http://www.createjs.com/
TweenJS.

HART, P. E., NILSSON, N. J., AND RAPHAEL, B. 1968. A for-
mal basis for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics, IEEE Transactions on 4, 2,
100–107.

HU, K., WANG, B., YUAN, B., AND YONG, J. 2011. Automatic
generation of canonical views for cad models. In Computer-
Aided Design and Computer Graphics (CAD/Graphics), 2011
12th International Conference on, IEEE, 17–24.

LEWIS, R., AND SÉQUIN, C. 1998. Generation of 3d building
models from 2d architectural plans. Computer-Aided Design 30,
10, 765–779.

MORTARA, M., AND SPAGNUOLO, M. 2009. Semantics-driven
best view of 3d shapes. Computers & Graphics 33, 3, 280–290.

RUSS, J. C. 2010. The image processing handbook. CRC press.

VÁZQUEZ, P.-P., FEIXAS, M., SBERT, M., AND HEIDRICH, W.
2003. Automatic view selection using viewpoint entropy and its
application to image-based modelling. In Computer Graphics
Forum, vol. 22, Wiley Online Library, 689–700.

2015. Widitu.com. http://www.widitu.com.

ZHU, J., ZHANG, H., AND WEN, Y. 2014. A new reconstruction
method for 3d buildings from 2d vector floor plan. Computer-
Aided Design and Applications 11, 6, 704–714.

187

http://code.google.com/p/poly2tri/
http://code.google.com/p/poly2tri/
https://github.com/wolfwind521/indoor3D
https://github.com/wolfwind521/indoor3D
http://www.createjs.com/TweenJS
http://www.createjs.com/TweenJS
http://www.widitu.com

