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Crashworthiness simulation system is one of the key computer-aided engineering (CAE) tools for the
automobile industry and implies two potential conflicting requirements: accuracy and efficiency. A par-
allel crashworthiness simulation system based on graphics processing unit (GPU) architecture and the
explicit finite element (FE) method is developed in this work. Implementation details with compute uni-
fied device architecture (CUDA) are considered. The entire parallel simulation system involves a parallel
hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty contact force calculation
algorithm. Three basic GPU-based parallel strategies are suggested to meet the natural parallelism of
the explicit FE algorithm. Two free GPU-based numerical calculation libraries, cuBLAS and Thrust, are
introduced to decrease the difficulty of programming. Furthermore, a mixed array and a thread map to
element strategy are proposed to improve the performance of the test pairs searching. The outer loop
of the nested loop through the mixed array is unrolled to realize parallel searching. An efficient storage
strategy based on data sorting is presented to realize data transfer between different hierarchies with
coalesced access during the contact pairs searching. A thread map to element pattern is implemented
to calculate the penetrations and the penetration forces; a double float atomic operation is used to scatter
contact forces. The simulation results of the three different models based on the Intel Core i7-930 and the
NVIDIA GeForce GTX 580 demonstrate the precision and efficiency of this developed parallel crashwor-
thiness simulation system.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Crashworthiness simulation system is one of the key computer-
aided engineering (CAE) tools for the automobile industry [1]. It is
widely used in crashworthiness design [2–4]. With the usage of
simulation system, an enormous amount of expensive and time-
consuming physical tests are greatly reduced. However, due to
the high nonlinearity of contact–impact problems, such sim-
ulations contain several computationally intensive parts such as
Gaussian integration and contact searching. For example, a crash-
worthiness simulation of an energy-absorbing structure with a
fine-meshed FE model usually consumes dozens of hours.
Therefore, computational expense is a major bottleneck of the
crashworthiness simulation in real engineering problems. The pur-
pose of this work is to improve the efficiency of crashworthiness
simulation under high accurate solution significantly.

Previously, the most of contributions for improving the perfor-
mance of solver are based on the FE theories and the contact
algorithms. Hughes [5–7] and Belytschko [8–10] proposed several
advanced shell theories to improve the accuracy and stability of
the nonlinear explicit FE method. A large number of researchers
suggested several contact search algorithms for contact detection
[11,12]. Zhong [13] published the first book on Finite Element
Method (FEM) modeling of contact–impact events and deals with
FE procedures for solutions to both static and dynamic contact–
impact problems. On the other hand, supercomputing involving
parallel computing has become research hotspots. Parallel comput-
ing is a direct way to improve the computational efficiency. The
parallel implementations of shell element formulation have been
reported in both literatures and commercial codes. The results of
these studies show that the nonlinear explicit FE analysis can be
accelerated by parallel computation significantly [14–16].
Therefore, many researchers make their efforts to realize the paral-
lel implementation of contact searching. In the early stages,
Belytschko et al. [17] presented a parallel explicit FE method for
the contact–impact problem on a SIMD computer. Namburu and
Turner [18] presented a contact–impact algorithm on a data-
parallel computer. Besides, great efforts have been made to
develop decomposed impact simulation algorithms executing on
network-based parallel computing architecture, such as the
multi-processors based architectures using distributed memory
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processing (DMP) and the multi-cores based architectures using
shared memory processing (SMP) [19–21]. These efficient parallel
implementations enlarged the scale of CAE model, thus more com-
plex structures could be modeled with fine meshes [21]. However,
the disadvantages of these traditional parallel computations are
obvious. Firstly, the hardware cost of CPU-based parallel architec-
ture is too expensive, and it is more difficult to use special
programming language to code parallel program based on
supercomputers with hundreds or thousands of processors.
Secondly, the administration and maintenance costs are super-
linear rising along with growing demand for computation power.
Therefore, an alternative way for CPU-based parallel program is
needed urgently to reduce the cost of parallel computing. In the
past couple of years, we turned our attention to general purpose
computation on graphics hardware (GPGPU).

Nowadays, GPU offers a tremendous amount of computing
resources not only for graphics processes but also for general-
purpose parallel computations. These general parallel computing
resources include massive processing cores, high memory band-
width, and general-purpose instruction sets. In the GPU-based par-
allel program, GPU is commonly used as a coprocessor to execute
easy parallel sections. For now, a large number of high perfor-
mance implementations of FE applications based on GPU have
been reported. Göddeke et al. [22] have successfully implemented
their FE algorithm on a GPU enhanced cluster to solve implicit FE
problem with multi-grid algorithm. For nonlinear FE analysis,
Mafi and Sirouspour [23] proposed a GPU-based implementation
of FE method using implicit time integration for dynamic nonlinear
deformation analysis. Ikushima and Shibahara [24] presented an
idealized explicit FEM accelerated by GPU to predicted the residual
stresses in multi-pass welded joint. Furthermore, FE analysis
involves fluid–solid coupling [25], structural analysis [26], higher
order numerical integration [27] and others are parallelized by
GPU successfully. Our research team also developed a GPU-based
parallel sheet metal forming simulation system, which achieved
up to 27X speedup using GTX285 GPU [28].

In this paper, GPU was used to implement the explicit FE
method with a hierarchy-territory contact-searching algorithm
(HITA) and a penalty contact force calculation algorithm to simu-
late car crash. The remainder of this paper is organized as follows.
In Section 2, the mathematical model and numerical scheme of
contact–impact problems are briefly introduced. In Section 3, the
typical CUDA programming model and the details of the GPU
implementation for the whole simulation algorithm are presented.
Numerical experiments are used to evaluate the performance of
the developed parallel simulation system in Section 4. Finally, con-
clusion remarks are presented in Section 5.
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2. Mathematical model and numerical scheme

To simulate contact–impact process with FE method, contact
boundaries are usually approximated by a collection of segments,
and contacts are considered at the discrete contacting nodes. The
most widely used segments of shell structure are triangular shell
element and quadrilateral shell element, as shown in Fig. 1. The
discretized contact solution divides the solution domain into
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Fig. 1. A quadrilateral segment.
discrete elements, and then, numerical interpolations are per-
formed within these elements through shape functions.
Furthermore, to facilitate the contact searching and contact force
calculation, these segments usually correspond to a low order shell
element, such as the Belytschko–Tsay (BT) element [8].

For convenience, contact segments are usually described as a
multiple hierarchy system consists of segments, edges and nodes.
When two body boundaries come into contact, one is specified as
a master one, and the other is specified as a slave one. The segment,
edge and node on master body called master segment, master con-
tact edge and master contact node, respectively. Similarly, the seg-
ment, edge and node on slave body called slave segment, slave
contact edge and slave contact node, respectively.

2.1. Contact searching algorithm

Master–slave algorithm is the most common algorithm for con-
tact searching, which was first introduced by Hallquist [29].
However, this algorithm must specify master and slave segments
respectively, and in some situations two boundaries may come into
contact before the searching begins. These two drawbacks limit its
ability to search contacts during the crashworthiness simulation,
which usually has large displacements and rotations. Therefore, a
more efficient and effective contact searching algorithm named
HITA is used in this work [13].

The HITA method reduces the redundant contact searches by
taking the advantage of a multiple-hierarchy contact system to
improve its searching efficiency. In a hierarchical contact system,
contact searching should be first performed between the higher
level hierarchies and then between the lower level ones. If the con-
tacts are rejected between two higher level contact segments,
searching in the lower level hierarchies will not be performed.
More importantly, the data independences of each segment in each
hierarchy are well suited for GPU implementation. The following
section provides a brief introduction of searching strategy based
on the hierarchy territory techniques.

Firstly, the hierarchy territory of a segment is the smallest
rectangular box which has its edges parallel to the global coordi-
nate axes and contains the complete segment, as the solid line
box shown in Fig. 2. Mathematically, it is a domain which can be
defined as

T ¼ fðx1; x2Þjxa
i � xi � xb

i ; i ¼ 1;2g ð1Þ

where xa
i and xb

i denote the minimum and the maximum coordi-
nates of node 1 and node 2, respectively.

Secondly, a contact territory is defined due to the rounding
error of computer, as the shaded parts shown in Fig. 2. Cd is the
control distance, and, Cp is the allowed maximum penetration.
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Fig. 2. Definition of different kind of territories for a segment.



Y. Cai et al. / Advances in Engineering Software 86 (2015) 29–38 31
With these two kinds of territories, a node lies within a seg-
ment’s hierarchy territory to form a test pair, and, a node lies
within a segment’s contact territory to form a contact pair. The
searching procedure is designed to consist of two main steps.
The first step is to find all test pairs by calculating the intersection
of hierarchy territories. The second step is to find all the contact
pairs from the test pairs by calculating the exact position of node
and its relevant target segment’s contact territory. According to
Fig. 2, it can be found that the hierarchy territory does not com-
pletely include the contact territory, so the hierarchy territories
should be expanded sufficiently to form an expanded territory,
which is denoted by

Te ¼ ðx1; x2Þjxa
i � Ep � xi � xb

i þ Ep; i ¼ 1;2
� �

ð2Þ

where xa
i and xb

i are indicated in Eq. (1), Ep denotes the amount of
expansion, which is usually defined by the size of contact territory

Ep �maxðCd;CpÞ ð3Þ

Contact territories for three dimensional contact segments can
be defined in a similar way. Consider a 3-node contact segment
as shown in Fig. 3. The hierarchy territory is the smallest hex-
ahedron box which has its faces parallel to the global coordinate
planes and contains the complete segment, with a mathematical
description as follows

T ¼ fðx1; x2; x3Þjxmin
i � xi � xmax

i ; i ¼ 1;2;3g ð4Þ

where xmin
i and xmax

i denote the maximum and the minimum coor-
dinates of a segment, respectively. Correspondingly, the expanded
territory can be expanded to

Te ¼ fðx1; x2; x3Þjxmin
i � Ep � xi � xmax

i þ Ep; i ¼ 1;2;3g ð5Þ

The way to define a contact territory for a three dimension
problem is a little more complex than two dimension problem,
as show in Fig. 3(b). The mathematical description is

Tc ¼ xj � Cp � dðxÞ � Cd; PiðxÞ � 0; ði ¼ 1;2;3Þ
� �

ð6Þ

where

dðxÞ ¼ ðx� x1Þ � N1 ð7Þ
PiðxÞ ¼ ðx� xiÞ � eNi
g ; ði ¼ 1;2;3Þ ð8Þ

where x denotes the slave contact node coordinate, N1 is the unit
normal vector of the master segment, xi is the node coordinate of

the master segment, and eN i
g is the unit normal vector of the contact

edge.
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Fig. 3. Contact territories for three
2.2. The mathematical model of contact force

In the explicit FE method procedure, an efficient way to calcu-
late the contact force is to allow the penetration between contact-
ing boundaries and calculate the contact forces by

f 1 ¼ �kipi ð9Þ

where pi is the penetration of contact segments and ki is the contact
stiffness of the contact segment. A typical contact stiffness of the
shell contact segments is

ki ¼
f s � Ai � K

min ðdiagonalÞ ð10Þ

where fs is the penalty scale factor, 0.1 by default. Ai is the area of
the ith contact segment, K is the bulk module of contact segment,
which is related to Young’s module E and Poisson’s ratio v. This
method is known as penalty method, the contact force can be
expressed by the displacement function and no new unknowns
are introduced.
2.3. Distribution of the computing time

The main procedure of an explicit crashworthiness simulation
program with above mathematical models is shown in Fig. 4.
Firstly, a pre-searching is implemented to generate the contact
hierarchies and other relevant information based on the FE mesh.
Sequentially, the nodal external force and the internal force can
be obtained. Then, the application begins to search contact pairs
and compute the contact forces. The contact forces should be
assembled into a global nodal force vector, and the physical quan-
tities such as nodal velocities and coordinates must be updated
based on the nodal force vector. Finally, the time-step size should
be updated to guarantee the stability as the contact body becomes
more and more distorted.

In general, the efficiency of a pure FE analysis program mainly
depends on the size of elements. However, the contact algorithm
is the major consuming part for a contact–impact problem. For
example, as shown in Table 1, the contact searching consumed
the most CPU time for an automobile body-in-white (BIW) crash
model with 69,625 nodes and 65,177 elements. The cost for ele-
ment formulations is the second-consumed one. Obviously, these
two parts should be parallelized by GPU to improve the overall
efficiency.

In addition, the data transfer between the host memory and the
device memory are costly via a PCI Express whose peak theoretical
bandwidth is only 16 GB/s or less. Hence, for a best overall applica-
tion performance, it is important to minimize the data transfer
between the host and the device. Therefore, although there is very
little time consumed on computing the contact forces and other
1
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2
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3
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dimension contact segment.



Pre-searching

Solve the element formulations

Search the contacts

Calculate the contact force

Assemble the nodal forces

Update the physical quantities

step=step+1

Compute the time-step size

t=t+ Δt

Fig. 4. Main procedures of a crashworthiness simulation.

Table 1
Computing time distribution for a BIW crash model.

Module Clock cycles Percentage (%)

Element formulations 140 21.88
Contacts searching 478 73.51
Contact forces 14 2.19
Others 8 1.25
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small computing procedures, it is also important to parallelize
them.
Pa
ra

lle
l Iteration

span

Non-parallel subroutines ...

memory operation / barrier synchronization

Kernel 1 Kernel 2

...

...

Fig. 5. GPU-based two span implementation.
3. GPU implementation

3.1. GPU programming with CUDA

GPUs are parallel devices of the single instruction, multiple data
(SIMD) classification, which are well suited for the problem that
can be expressed as data-parallel computations with a high arith-
metic intensity. CUDA programming involves running code on two
different platforms concurrently: a host system with one or more
CPUs and one or more CUDA-enable GPU devices. In general, serial
codes that exhibit little or no data parallelism are executed on the
host while parallel codes that exhibit rich amount of data paralle-
lism are executed on the device. An entire procedure involves four
steps: (1) Do initial jobs on host. (2) Copy input data form host to
device. (3) Execute kernels on GPU. (4) Copy output data from
device to host.

The most popular approach to realize GPU parallel computing is
to decompose a problem into well-defined, thread-level work
units, which are coded as kernels. Kernels are executed by a batch
of threads, which has arranged by three-dimensional blocks. All
threads in a block can communicate and synchronize with each
other by synchronization functions. Furthermore, in order to man-
age the larger number of threads effectively, thread blocks are also
managed by a three-dimension array, which is referred to as grids.

CUDA threads access data from a multiple device memory sys-
tem to improve the memory bandwidth. All threads can access to
the same global memory which is off-chip, big size and low
bandwidth. Threads in a thread block share data through shared
memory which has very high bandwidth and with the same life-
time as the block. Each thread has a private local memory and a
set of registers. There are two additional read-only and off-
chip memories accessible by all threads: the constant memory
and texture memory.

Finally, although the CUDA affords a convenient tool to realize
applications executing on GPU, the performance of the GPU-based
application is difficult to be optimized. The performance with dif-
ferent execution configurations can be quite different, so there are
a series of performance guidelines deserved to be observed when
the CUDA is used. The details of optimization can be found in the
official guide [30] and the corresponding literatures [31,32].

3.2. Basic parallel execution strategies

Compare to the implicit integration approach, the explicit
integration approach has an excellent natural parallelism, because
the most parts of the explicit application can be performed in their
own data space independently. Therefore, each element or node
can be seen as an independent thread-level work unit, it means
that these variables should be parallelized randomly. According
to these work units, three kinds of parallel execution strategies,
including one thread map to one element (TME), one thread map
to one node (TMN) and one thread map to one freedom (TMF)
are suggested. For example, the nodal displacement vector can be
calculated by mapping one thread to one node (TMN). In other
words, each element of this vector is calculated by a different
thread parallel. Overall, the GPU-based iteration application lets
iteration steps span the horizontal direction, while parallelization
spans the vertical direction, as shown in Fig. 5. In order to guaran-
tee the stability and the conformity of these two span imple-
mentations, a memory operation or barrier synchronization often
plugged between two parallel kernels or one parallel kernel and
one non-parallel subroutine. The original two/multi-dimension
arrays can usually be spitted into several one-dimension arrays
in our GPU-based applications to ensure the coalescing accesses
of global memory.

3.3. Parallel solver for single values using cuBLAS

In the process of FE analysis, many single values should be
obtained among an array. These single values could be the sum,
the maximum or the minima among all elements or all nodes,
etc. Since reduction of the data transferred between the host and
the device is very important to improve the efficiency of GPU-
based applications, it is necessary to parallelize the calculations
of these single values on GPU. Initially, a parallel reduction algo-
rithm is introduced to our developed program, which uses a binary
operation to reduce an input sequence to a single value and it has
been effective implemented on GPU [33]. Nowadays, the CUDA
basic linear algebra subroutines (cuBLAS) developed by NVIDIA
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makes it easy for researchers to code single value calculating pro-
gram. Take the calculation of time-step size as an example, the
Fig. 6 illustrates the way to obtain the minimum time-step size
among all elements by function cublasIdamin() and
cublasGetVector(), where E stands for the element information
and S stands for the size of element. In the cuBLAS-based applica-
tion, the areas array of each element is first parallelized by using
the TME strategy. Sequentially, the function cublasIdamin() is used
to find the index of the element with the minimum area. Then, the
function cublasGetVector() copies the minimum value from the
device memory to host memory. Finally, the time step size is calcu-
lated on CPU. Details are shown in Listing 1.
Module 
1 

Pre-searching processing 

Loop over the number of time steps 
Module Loop over the number of contact nodes 
3.4. Parallel implementation of the element formulation

The way to parallel solve the element formulation has been dis-
cussed in our previous works [28,34], which presented various par-
allel FE algorithms based on central difference method and GPU
general computing platform for plane nonlinear dynamic prob-
lems, such as an efficient parallel BT element solution. We can copy
these parallel implementations to this parallel crashworthiness
simulation system. Fortunately, the modular programming makes
these works easy. After the primary parallel simulation system is
developed, a thin-walled beam impact model with 4140 nodes
and 4080 elements running on the Intel Core i7-930 with a single
thread at 2.8 GHz and the NVIDIA GeForce GTX580 with 512 cores
is considered to analyze the efficiency.

Because most of procedures in a single iteration step consume a
short periods of time, we use the clock function clock() at the begin
and the end of each procedure to get the number of clock cycles
elapsed. For a GPU kernel, a function __syncthreads() is added at
the end to synchronize the CPU and GPU. Fig. 7 shows the number
of clock cycles consumed by each procedure of this partial parallel
system for the beam model. It is easy to observe that the time con-
sumed for the element formulation is obviously reduced. In the
E1 E2 E3 ... En-2 En-1 En

S1 S2 S3 ... Sn-2 Sn-1 Sn

Parallel calculate the 
size of each element 
using the TME.

cublasIdamin()

cublasGetVector()

S3

Get the minimum 
using CUBLAS 
functions

Calculate time step size
Calculate time step size on 
CPU

Fig. 6. Parallel algorithm for calculating time step using reduction.
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meantime, the contact algorithm has replaced the element for-
mulation as the most time-consuming part. On the other hand,
the overall efficiency of this partial system is not improved.
Therefore, the efficiency of contact algorithm should be improved
to obtain an obviously performance boost.

3.5. Parallel implementation of contact searching

Based on the above-mentioned theoretical analysis, the mod-
ules of the HITA method can be summarized to different function
modules, as shown in Fig. 8. In this section, we will detail the par-
allel implementation of these modules. It should be noted that the
hierarchy territories and the expanded territories are independent
calculated for all segments, so they are easy to be parallelized by
mapping one thread to one segment as same as the above-men-
tioned three basic parallel execution strategies.

3.5.1. Parallel test pairs searching
The module of the test pairs searching (module 3) needs to per-

form numerous of comparisons between the expanded territories
and the segment nodes to find out which segment might be
involved in a contact interfaces. For the case of three-dimension
problems, our program stores the expanded territories and the seg-
ment nodes in a mixed array according to an optimal dimension of
their coordinates. The optimal dimension usually stands for the
direction in which has the largest number of segments. As shown
in Fig. 9(a), the low bounds of expanded territory are stored in
the front part of array and the low bounds of contact nodes are
stored in the latter part. Then, the mixed array is sorted in ascend-
ing order as shown in Fig. 9(b), where the solid spot stands for the
2 Calculate the territories 
End Loop over the number of nodes 

Module 
3 

Loop over the number of contact nodes 
Find the test pairs by calculating the intersection of expanded 
territories 
End Loop over the number of nodes 

Module 
4 

IF the number of test pairs is not 0 THEN
Loop over the number of test pairs 
Find the contact pairs by calculating the exact position of a 
hitting node in relation to a relevant target hierarchy 
End Loop over the number of test pairs 
END IF 
End Loop over the number of time steps 

Fig. 8. Modules of the HITA algorithm.
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Fig. 11. Parallel strategy for contact pairs searching.
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expended territories, and the vacant spot stands for the nodes of
segment. Thereafter, the test pairs searching can be easily imple-
mented by iterating over the sorted array. When an element of
expanded territory is found, the program calculates the length of
the expanded territory (Ls) in the optimal dimension and records
the contact nodes falling in the area of Ls. For example, the nodes
falling in the related area of expanded territory 2 are node 1, node
2 and 3. When the first searching in the optimal dimension is
completed, a further comparison will be performed between the
coordinates in the other two dimensions.

We developed several fine-grained parallel execution strategies
to perform test pairs searching on GPU. The first step is the parallel
construction of the mixed array by the TME strategy and stores it in
the global memory. Secondly, this mixed array should be sorted in
ascending order on GPU. Several parallel sorting methods based on
the GPU have been published [35], including the above-mentioned
parallel reduction algorithm. In order to decrease the parallel pro-
gramming difficulty, our program chooses the Thrust [36] as the
parallel sorting tool. Thrust is a free C++ template library for
CUDA. Mixed array sorting can be easy achieved by means of the
Thrust’s sorting function thrust::sort_by_key() as shown in
Listing 2.

In the third part, the way to traverse this sorted array involves a
nest loop. At worst, the time complexity may up to O(n2), and it
will consumes more than 90% of execution time of whole test pairs
searching. The most direct approach to realize parallel traversal is
to unroll the outer loop by mapping each array element to different
threads. When a low bound is found by a thread, a more precise
comparison is performed by this thread. This direct parallel strat-
egy can reduce the time complexity to O(n). Take a parallel execu-
tion model with 10 threads as an example. As shown in Fig. 10, in
the beginning, 10 threads are assigned to parallel execute the e1
instruction to judge whether the current element is expended ter-
ritory or not. If the result of one thread is FALSE, the program will
terminates this thread while the rest threads continue execute the
e2 instructions. The e2 instruction stands for the above-mention
further comparison. If the result of the e2 instruction is TRUE, the
program will records this test pair to global memory by the c1
instruction; otherwise, the program will terminates this thread.
The storage location of each test pair is random according to the
timestamp. For example, the test pair found by the thread 1 is
stored in the location M1 and the one found by the thread 6 is
stored in the location M2. Here an atomic add function
atomicAdd() is used to avoid the race write.

3.5.2. Parallel contact pairs searching
In the HITA method, the approach to contact pair searches

(module 4) in each hierarchy is to calculate the exacting distances
between the contact node and its relevant target hierarchy. These
t3 t10t9t8t7t6t5t4t2t1

e1 e1 e1 e1e1 e1 e1 e1e1 e1

End EndEnd

FF F

e2 e2 e2 e2 e2e2 e2

EndEnd
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c1 c1 c1 c1 c1

M2 M3 M4 M5M1 M6

Preliminary 
judgment

Further
judgment

Atomic
storage

Sorted array

Test pairs

Fig. 10. Parallel strategy for test pairs searching.
computations also give good fine-grained parallelism because of
their data independence. To effective utilize the GPU’s multi-pro-
cessors, the suggested strategy takes one thread to calculate one
test pair.

In this work, the test pairs in each hierarchy are stored in a
same array to save the GPU memory consumption and reduce
the time of allocating new memory space. Therefore, we performed
a sorting operation when the searching in the higher level is com-
pleted; it is an effective strategy to ensure the updated array can be
always coalesced accessed during the searching, as shown in
Fig. 11. Take a 10 test pairs model as an example. Firstly, 10 threads
are assigned to carry out a e1 judgment, e1 stands for the Eq. (1) for
two-dimension problem and Eq. (6) for three-dimension problem.
If one of these test pairs obtains the TRUE result, the test pair num-
ber will remains the same. Otherwise, if one of test pairs obtains
the FALSE result, the test pair number will changes to a maximum
integer value MX. Usually, the MX is equal to a positive number lar-
ger than the total number of test pairs in the highest level hierar-
chy. Secondly, we sort the array in ascending order to move the
test pairs whose results are TRUE in this hierarchy to the front part,
and the failed test pairs have been moved to the latter part. Finally,
the cuBLAS function cublasIdamx() is introduced to count the total
number of the TRUE test pairs by finding the smallest index of MX
in the sorted array.

3.6. Parallel calculation of contact force

The first step of the explicit contact force calculation method is
to obtain the penetrations, and then calculate the element contact
forces by Eq. (9). The TME strategy can be used to parallel cal-
culations of these penetrations and element contact force because
of their inheriting natural parallelism. After that, similar to the ele-
ment internal forces assembling, the element contact forces need
to be assembled to the global nodal forces. As same as the nodal
forces assembling, several elements parallel assemble their forces
to one node may cause ‘‘race written’’ error. Fortunately, since
the computing scale of contact forces assembling is much smaller
than the element internal forces assembling, the atomic operation
is introduced to assemble these forces without any additional
work. In detailed, an atomic add function atomicAdd() for double
float number is developed [37] as the Listing 3, due to the atomic
add function provided by CUDA can only be used for the integer
and long data types.

3.7. Overall GPU-based flowchart

Finally, based on the original flowchart as shown in Fig. 5, the
flowchart of GPU-based parallel crashworthiness simulation sys-
tem is presented. As shown in Fig. 12, subscript C means running
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on CPU, subscript G means running on GPU and subscript S means
asynchronous execution. The whole iterative procedure is acceler-
ated by GPU in this system. Because the CUDA supports asyn-
chronous transfers to overlap the host computation with the
asynchronous data and device computation, asynchronous trans-
fers are used to transfer intermediate results from the device to
host in order to hide the time taken for I/O operation. Finally, a
GPU-based software for contact–impact problem is developed
based on a self-developed serial contact–impact simulation system
DYSI3D [38].
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4. Numerical examples

In order to analyze the precision and efficiency of our sim-
ulation system, three cases have been selected. The precision ver-
ification is carried out by comparing the calculation results
between the CPU code and the GPU code for the same test model.
On the other hand, the performances on GPU are measured includ-
ing the data transfer time. The speedup is calculated by dividing
the total CPU consumed time by the total GPU consumed time.
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Fig. 12. Flowchart of the GPU-based parallel simulation system.

Fig. 13. A ball impacting a clamped beam.
All examples have been carried out on an Intel Core i7-930 with
one single thread at 2.8 GHz. The GPU used in our tests is a
NVIDIA GeForce GTX580, which including 512 CUDA cores and
3 Gb global memory. Furthermore, the version of CUDA for coding
and compiling is 5.0. Float numbers in our program are all in dou-
ble precision format.
4.1. Test case 1: a ball impacting a clamped beam

In this case, a ball impacting a clamped beam is studied to ana-
lyze the correctness of the suggested parallel contact searching
strategy, as shown in Fig. 13. The details of this case can be found
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Fig. 14. Displacement time histories of one of the node in ball.

Fig. 15. Deformed configurations of the ball-beam system.
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in [13], and the geometric of this model is defined with the
parameters R = 0.01 m, B = 0.24 m, L = 1.0 m, h = 0.0015 m. Both
the ball and beam are assumed to consist of elastic material with
Young’s module E = 200 GPa, and Poisson’s ratio v = 0.3. Squared
unstructured meshes are processed, and an initial velocity of
30 m/s is assigned to the ball.

The CPU and GPU calculated displacement–time curves of one
of the nodes in the ball from 0 s to 0.01 s are plotted in Fig. 14.
As can be seen, the result curve of CPU plotted in black dash line
is the same as the result curve of GPU plotted in red dotted line.
This phenomenon indicates the simulation results of GPU are iden-
tical to CPU. Meanwhile, three deformed shapes with displacement
distribution in the Z direction of this model calculated by GPU are
plotted in Fig. 15. It shows that there are several oscillations occur-
ring in the displacement of the beam due to the mechanics feature
of elastic material. Therefore, it can be concluded that the GPU
codes simulate the contact–impact process as same as the original
CPU code exactly.

4.2. Test case 2: a square beam impacting a rigid wall

In the second test case, a square shell beam impacting a rigid
wall under a crashing load is considered. Such a square beam is
typically used in the passenger car to absorb energy during a crash.
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Fig. 16. A square beam im

Fig. 17. Plots of deformation
The geometry parameters are shown in Fig. 16, and the elastic–
plastic material parameters are as follows, Young’s module
E = 0.21E6 MPa, Poisson’s ratio v = 0.3, Yield stress ry = 206 MPa,
and density is 2.45E�6 kg/mm3. The beam is assigned a linear ini-
tial velocity of 100 m/s impacting a fixed rigid wall from 0 s to 10 s.

The prepared FE model of this square beam has 24,840 free-
dom degrees and 4080 elements. The deformed plots with dis-
placement distribution in the X direction of the beam at four
different time steps are given in Fig. 17. We can see that the
deformed shapes calculated by GPU are exactly as same as the
deformed shapes calculated by CPU. This simulation consumed
4331.2 s with 1328 time steps on CPU while the elapsed time is
reduced to 658.2 s with the same time steps on GPU. So, the
speedup ratio of the GPU implementation for this simulation is
6.58.

4.3. Test case 3: an automobile body-in-white crash simulation

Finally, a crashworthiness simulation of an automobile BIW
model is considered, as shown in Fig. 18. The elastic–plastic mate-
rial parameters are as follows: Young’s module E = 0.21E6 MPa,
Poisson’s ratio v = 0.3, Yield stress ry = 206 MPa, and density is
2.45E�6 kg/mm3. The car is assigned an initial velocity of 16 m/s
impacting a fixed rigid wall continuously for 0.05 s.
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Fig. 18. Automobile body-in-white crash model.

Table 2
Three different scale finite element models.

Elements Nodes Degrees

Case 1 20,597 22,404 134,424
Case 2 73,680 73,727 442,362
Case 3 294,720 294,803 1,768,818

Fig. 19. Deformed BIW of model 2.
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Fig. 20. Speedup ratios of three different models.

1 ...
2 extern "C"
3 void TimeStepGPU(intgmeshl, intgnnode, intndf, int *d_ix, double 
4 *d_x,double&gdt1,double &gdt2, double gyms, double gro)
5 {
6 //Calculate the area of element
7 CalculateArea<<<numBlocksTS,numThreadsTS>>>(gmeshl,gnnode,ndf,d_ix,
8 d_x,d_gcb);
9 // Find the minimum area
10 // Find the index of the element of the minimum area
11 cublasIdamin(handle1,gmeshl,d_gcb,1,&idex);
12 // Get the value by the index
13 cublasGetVector(1,sizeof(double),&d_gcb[idex-1],1,&tempmin,1);
14 // Calculate the time stepsize
15 double wv = sqrt(gyms/gro);
16 gdt2 = gdt1;
17 gdt1 = 0.9 * tempmin / wv;
18 }

Listing 1. Calculation of the time-step size using cuBLAS.

1 … 
2 // Include Thrusthead files
3 #include <thusrt/sort.h>;
4 #include <thusrt/device_ptr.h>; 
5 … 
6 // Construct the mixing array: d_xsgd. 
7 // The size of array is the number of contact nodes add the number of segments. 
8 // Setup an index array: d_ksgd. 
9 // The elements of d_ksgdared_xsgd corresponding node number or segment number. 
10 //sort this mixing array in ascending order 
11 thrust::sort_by_key(thrust::device_ptr<double>(d_xsgd), 
12 thrust::device_ptr<double>(d_xsgd+nums), 
13 thrust::deivce_ptr<int>(d_ksgd)); 
14 … 

Listing 2. Sort the mixing array by the Thrust.

1 __device__ double atomicAdd(double* address, double val) 

2 { 

3 unsigned long longint* address_as_ull = (unsigned long longint*)address; 

4 unsigned long longint old = *address_as_ull, assumed; 

5 do { 

6 assumed = old; 

7 old = atomicCAS(address_as_ull, assumed, 

8 __double_as_longlong(val + 

9 __longlong_as_double(assumed))); 

10 } while (assumed != old); 

11 return __longlong_as_double(old); 

12 } 

Listing 3. Atomic add function for double float.
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In order to verify the efficiency of GPU code for different com-
putation scales, three different size meshes of this BIW model are
considered, as shown in Table 2. These three FE models are all
simulated on both CPU and GPU. Fig. 19 shows the GPU calculated
deformed body with the displacements distribution in the X direc-
tion of the case 2 model, where 143,028 time steps in total are cal-
culated to simulate the 0.05 s impact process.

Take the case 2 model for example, the speedups of element
formula and contact algorithm than run on GPU compared to
its CPU counterpart is shown in Fig. 20. It can also be seen in
Fig. 20, the maximum speedup of the GPU-based simulation sys-
tem tends to 22, compare to running on the CPU with one single
thread.
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5. Concluding remarks

In this study, a parallel crashworthiness simulation system
based on GPU is presented. In the beginning, three kinds of GPU-
based parallel approaches for explicit FE algorithm are presented,
including TME, TMN and TMF. These suggested approaches inher-
ited the good parallelism of explicit FE algorithm and they can be
efficiently executed on GPU. Furthermore, two free GPU-based
numerical calculation libraries, include cuBLAS and Thrust, are
introduced into our system to decrease the difficulty of program-
ming. In order to analyze the time distribution of the original
sequential simulation system, a BIW crashworthiness simulation
model with 69,625 nodes and 65,177 elements that runs on CPU
was studied. It shows that the contact searching is the most
time-consuming part, while the element formula is the second
time-consuming part. According to our previous research work, a
GPU-based parallel element formula solver with BT shell element
is copied to the original sequential system DYSI3D to form a partial
parallel system. The numerical result of this primary system shows
that the time consumed to solve element formula was significantly
decreased, but the whole efficiency was barely improved.
Therefore, an entire parallel contact searching algorithm based
on the HITA method is presented. During the parallel test pairs
searching, a mixed array is allocated in global memory and parallel
calculated by the TME strategy to improve the searching efficiency.
Since the test pairs searching need a two-lever loop to traverse this
mixed array, the outer loop is unrolled to realize parallel searching.
Next, as the contact pairs searching gives good finer-grained paral-
lelism, one CUDA thread is assigned to judge one test pair to realize
parallel searching. Furthermore, atomic function is introduced to
record search results and a sort-based strategy is presented to
translate the search result between different hierarchies. Finally,
the approach to contact force parallelization is discussed. The
TME pattern is adopted to calculate the penetrations and the pene-
tration forces. A double float atomic add function is developed for
contact forces assembling.

Three kinds of classical impact–contact problems are investi-
gated as the test cases for the GPU-based simulation system. All
examples have been run on the Intel Core i7-930 with a single
thread and the NVIDIA GeForce GTX580 with 512 cores. By using
double precision floating point numbers, the parallel algorithm
running on GPU can obtain the same results as the CPU-based
implementation. Take the case 2 of BIW models as an example, this
parallel implementation can perform more than 22 times faster on
CPU. This means that the GPU-based simulation system can reduce
the calculation time remarkably and save calculation cost. It makes
possible to mesh more elements during the simulation, which can
better represents the geometry and provides more accurate results.
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