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This paper presents a novel hierarchical shape segmentation method based on splats for 3D shapes. The
major contribution is to propose a new similarity metric based on splats, which combines patch-aware
similarity and part-aware similarity adaptively. An optimized [*>! metric for VSA (variational shape
approximation) method is used to get splats first, and such adaptive similarity metric is used to generate
a hierarchy of components automatically through adaptive cluster. As a result, a binary tree is used to
represent the hierarchy, in which low level segments are patch-aware regions while high level segments
are part-aware components. Therefore, the combination and decomposition relations are clear between
segments. Our method is designed to handle arbitrary models, such as CAD model, scanned object,
organic shape, large-scale mesh and noisy model. A large number of experiments demonstrate the
efficiency of our algorithm.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The shape analysis and understanding is the key and difficult issue
in computer graphics and computer vision fields. The key techniques
of the shape understanding are the feature abstract and definition of
feature semantics of shape, in which the important step is shape
segmentation. The shape segmentation is also widely applied in CAD,
animation, scene editing and shape match and compression and so on,
especially the part reuse of shape in CAD can increase the efficiency of
product design and use ratio of product knowledge. Segmentation has
been a well researched in recent years. Survey [1] distinguished
between patch-based and part-based methods which are considered
to be inherently different. Therefore, few works apply these two types
simultaneously. Goes et al. [2] introduced an abstraction that conveys
both the perceptual and the geometric structure. But it only gets
abstraction of shapes.

With the development of distributed virtual reality system,
streaming 3D model technology is imminent. The representation of
the models in the form of levels of detail (LODs) is a key technology.
But the study on segmentation to generate LODs of models is still
blank. In this paper we present a hierarchical splat clustering method
based on a novel similarity metric, which combines patch-aware
similarity and part-aware similarity. It generates both patch level and
part level segments at different levels in the final hierarchy. Therefore,
we are able to get LODs of the model, which is shown in Fig. 1.
Moreover, large-scale meshes are easier to obtained in recent years.
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How to segment those models fast is of paramount important for
many works. Experiments demonstrate the efficiency of our method,
especially for large-scale noise model.

Our method consists of two main steps. First, we decompose the
object into splats with an improved VSA (variational shape approx-
imation) method based on an optimized [*>' metric. Second, we
merge neighboring clusters with similar metric hierarchically to
produce a hierarchy of regions. An overview of the full algorithm is
shown in Fig. 2. Main contributions are shown below. Firstly, we
introduce an optimized L*! metric for VSA method. Secondly, we
propose a new local patch-aware similarity metric based on splats,
which does well in detecting the local feature on the surface of the
model. Besides, we define an improved SDF (shape diameter func-
tion) of splats, which adopts anisotropic smoothing, as part-aware
similarity metric. Finally, the local and global similarities are adap-
tively combined into a uniform metric, which is used in hierarchical
clustering framework. Therefore, we can obtain different levels of
segments and their decomposition relations simultaneously.

2. Related works

Mesh segmentation becomes a key ingredient in many com-
puter graphics applications and is surveyed in detail by [1].
Previous algorithms can be categorized into two basic classes
based on the types of models they aim to segment, patch-based
segmentation and part-based segmentation. To motivate our
approach, we present a brief overview of them and the hierarch-
ical face clustering method which is similar as ours.
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2.1. Patch-based segmentation

There are several algorithms for patch-based 3D mesh segmen-
tation. The traditional algorithms cluster geometric elements with
similar properties [1], such as region growing [3-5], hierarchical
clustering (see Section 2.3) and spectral analysis [6,7]. These
properties include simple surface measures like area, size or length,
various differential properties such as curvature, normal direction
and some special features like curvature tensor [5]. With a different
view of traditional methods, some segmentation methods treat
segmentation as an energy minimization problem. Because of its
optimization nature, these methods are often referred as variational
approaches. The planarity and development ability of surface
regions are usually used as error metrics to define energy functions
[8-12]. These patch-based algorithms in common are to segment
the 3D mesh into regions which represent distinct surfaces. These
surfaces can be approximated by various primitives like planes,
cylinders, spheres and polynomials.

2.2. Part-based segmentation

Psychological researches [13,14] indicate that human perception
tends to cut a shape along concave regions in the direction of
minimum principal curvature. Many existing mesh segmentation
methods leverage the surface concavity information as a key measure
for the underlying algorithms, such as, K-mean clustering [15], graph
cut-based fuzzy clustering [16], random walk algorithm [17] and
spectral clustering methods [18,19]. There are also some algorithms
incorporating some forms of the minima rule to segment the surface
of models, such as the approaches based on randomized cuts [20],
variational decomposition [21] and concavity-aware fields [22].

A few works also make direct use of volumetric information for
segmentation, such as the shape diameter function [23], the part-
aware metric [24], the approximate Convexity Analysis [25] and
the continuous visibility feature [26]. The maturity of research on
segmentation has culminated in a benchmark which enabled the
comparison of different segmentation algorithms [27]. A hierarch-
ical work [28] segments articulated bodies into a coarse-to-fine
hierarchy of segments. The goal is as similar as ours, but it is only
handle man-made shapes.

Besides those single shape segmentations, there are rising many
data-drive co-segmentation [29-31], joint segmentation [32] and
supervised segmentations [33,34]. These methods require a training
set of labeled shapes, user input, or a set of shapes from the same
category. Our goal is to segment individual shapes, which is important
when the category of the shapes is unknown in advance, which
cannot be clearly categorized or no training set is available.

2.3. Hierarchy face clustering

Hierarchical clustering method merges the pair of regions from
the bottom to top hierarchically [35-37,12]. At the beginning, each
face of the mesh is assigned as a single region. Then, a pair of
adjacent regions with least merging error is merged to form a new
region iteratively. This merging is repeated until it meets some
stopping criteria. Hierarchical clustering approach generates a
binary tree of clusters, which indicates the decomposition rela-
tions between components. Our paper improves the hierarchical
clustering framework by using splats as the initial clusters, which
avoids the influence of noise and greatly improve efficiency on
big-data models.

Compared with the previous methods, our method is designed to
handle the arbitrary shapes-sharp or smooth, accurate or noisy,
sparse or dense. For each specific type of the model and the
corresponding method, result analysis of experiment demonstrates
the effectiveness of our method.

3. Hierarchical splat clustering framework

We introduce a hierarchical splat clustering framework inspired
by traditional HFC (hierarchical face clustering) method [12]. The
basic idea is that neighboring clusters merge into representative
region by using some passive priority strategies, which defined by an
novel similarity metric in Section 4. Differently from traditional HFC
method, we use splats as the initial clusters. This can significantly
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Fig. 2. Overview of our method: (a) a mesh model is given. (b) We decompose this model into 2941 splats in the first step. (c) Patch-aware and part-aware results are
obtained at different levels of the hierarchy. (d) An example of one decomposition relation.
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reduce the levels of the hierarchical tree and improve the efficiency
of the algorithm. The remainder of this section focuses on the
definition of splats and how to get them in the first step. More
details of HFC method can be referenced in paper [12].

3.1. Splat definition

By the observation on the output planes of the VSA by [*!
metric [8], we find that these planes always show some narrow
shape characteristics depending on the surface local curvature (see
Fig. 3), we denote them as “Splat”. These characteristics guide us to
define the local similarity metric well. Besides, splats representa-
tion is actually a simplified form of the model. Using splats as
clustering atoms can avoid influence of local noise, and have an
advantage to handle dense, big-data models.

3.2. Improved VSA by [>! metrics

This paper introduces an improved L>! error metric for planes:
En(t))=|n—nj| - |t;]. Instead of triangle normal n;, it measures
difference between the optimized normal n; on mesh and the
plane normal n. We use a bilateral filter to smooth the normal field
defined over the input mesh based on the method in [38] in the
processing. This strategy avoids the adverse effects of noise
introduced, which can be omitted for no noise model.

The natural of VSA method is formulating the segmentation as
an optimization problem under certain segment number and
solving it by a variational approach. But determining this number
as prior is hard for arbitrary shapes with different scales. Our
optimization problem is converted to obtain the minimum energy
and get the number of clusters automatically with constraints of
maximal error for each patch. The specific change is that we use an
error threshold 9 (we use (/15)A,¢, where A, is average area of
triangles). First, we use region growing process to get initial
planes: seeds are picked randomly to grow regions under error
threshold 9. The initial step results in a good guess of the
unknown planes. In the second step, we assign all the triangles
to their nearest planes to drive down the total error by an iterative
distortion-minimizing flooding algorithm as in [8]. To quickly
obtain splats, all experiments only iterate five times. Fig. 4

illustrates our improved VSA by L>! metrics, which generate better
splats on the noisy oil-pump model compared to traditional
method.

4. Similarity metric

We propose a new combination similarity metric based on
splats, which distinguish our work from the previous work
permanently. It combines two measures: patch-aware local simi-
larity metric and part-aware global similarity metric. Above all, it
uses an adaptive integration to intelligent judge which similarity
should be dominated in relevant clustering level.

4.1. Patch-aware similarity metric

Splats show local surface features, as in Fig. 3, the area of splat is
proportional to the mean curvature; the long and narrow shape has
connection with the radio between maximum curvature and mini-
mum curvature; the direction of splat is consistent with the principal
direction corresponding to minimum curvature. To describe the main
points of the splat patch-aware similarity metric, it is convenient to
fix some notations, as shown in Fig. 5. Let splat S; is bounded by
oriented bounding box OBB(S;). The means of relevant attributes in
this figure are as following: 7; is the normal of S;; O is the center of

len(i)

OBB(Si)

OBB(Sj)

Fig. 5. Two splats S; , S; and their relevant parameters.

Fig. 4. Splats obtains with VSA by L*' metric or our improved L>! metric on noisy model.



H. Zhang et al. /| Computers & Graphics 51 (2015) 136-145 139

OBB(S;); len(i), wid(i) are the length and the width of OBB(S)),
respectively, and the d; means the long and narrow direction of S;,
which is the direction of the longest side of OBB(S;).

In order to faithfully measure this similarity, we use the
following elements as basic factors:

® Area similarity Sq(i,j) = Min(A;, Aj) /Max(A;, A)), A, A; are areas of
Sj and Sj.

® Shape similarity Ss(i, j) = Min(P;, P;)/Max(P;, Pj), P;, P; mean long
and narrow extend of S; and S;, respectively, which are
calculated by P; = len(i)/wid(i). N

° Lglg and narrow direction similarity S4(i,j)=|d; - d; |, where
Idil=1,|d;| =1.

® Normal similarity S,(i,j) = n - ﬁj) where || =1, |ﬁ;\ =1.

Considering these factors, the shape similarity between two
adjacent splats is defined as

W1(Sa(i,J) +Ss(i,J) +Sa (i) + W2Sn(i, )
3-wi+wy

Sshape(i,j) = (l)
In our implementation, w; = sin(@) and w, =1, where «a is the
angle between S; and S;. Typically, the factors Sq(i, ), Ss(i,j), Sa(i,J)
of two splats on a very flat region do not have any guiding
significance. So, the weight parameter w; increases as the angle .

Fig. 6 demonstrates local similarity values associated with
various splat pairs. The range of this metric value is 0-1. Fig. 7
shows the visualization of local similarity computed between
adjacent splats. It can be noticed that the local similarity is
intuitive, and can easily be interpreted visually.

After merging in our framework, one cluster becomes bigger
and contains multi-splats. Shape similarity metric between two
clusters needs to recalculate. Properties considered in Eq. 1 are

0.978 0.916 0.436 0.118

Fig. 6. The local similarity rank associated with various splat pairs.

Fig. 7. Visualization of local similarity computed between adjacent splats (red:
high similarity, blue: low similarity). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)

A
B C

Fig. 8. The red line is the common boundary between A and B, and the blue one is
between A and C. Though splat C has higher similarity value with A, the best choice
is B because the red line is longer than the blue one. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

local and do not have transitivity. Only splat pairs on the common
edge participate in the definition of clusters shape similarity:

Sshape(Iaj) :% Z Slocal(i»j) (2)
(ij)eE
where E is a set of splat pairs which lay on the common edge of
cluster I and cluster J, n= |E]|.
Besides cluster shape similarity, we introduce a cluster shape
optimization factor Os(I,J) into the finally patch-aware similarity
metric to avoid some unsatisfactory merging like Fig. 8:

Os(,)) = e~ 2 Min(ANA()/Crenayy 3)

where A(I) is the area of cluster I, Cienqy is the length of common
boundary. Then local patch-aware similarity metric is defined as

Slocal(l’.l) =a- Sshape([aj)+b . Os(Ia]) (4)

where the parameters a and b are assigned to be 0.7 and 0.3,
respectively in our experiment.

4.2. Part-aware similarity metric

As the concept of a “part” is not well-defined, the definition of a
part-aware similarity metric is challenging. SDF [23] of triangles
provide a connection between the surface mesh and the volume of
the subtended 3D bounded object, which are more closely linked
to skeletal shape representations.

We calculate splat SDF values based on triangle SDF definition.
For each splat, a constant number S, of triangles (S, =10 in our
implementation) is uniformly subsampled and the SDF value for
each triangle is calculated by [23]. Then the initial SDF value of this
splat is computed by averaging those triangle SDF values. We set
the default values to an opening angle of 90° and send 30 rays per
face for triangle SDF calculation. To overcome the effects of local
noise, we perform smoothing based on a small number of bilateral
filtering iterations of the SDF values on neighborhoods around
each splat:

o) =f,(x)

LU0+, Af o)
1437, CxyAy

where ff,(x) is the SDF value of splat x in iteration i+1. It is
calculated as the average sum of all y neighbors of x, weighted
using the area of splat y, and controlled by anisotropy function cy.
If the angle between their normals forms a convexity cxy=1,
otherwise cxy = 0, here we judge whether the angle is convexity or
concavity following [25]. Fig. 9 shows the comparison between our
method and traditional SDF method [23]. Our method can distin-
guish the details better than traditional SDF method. For example,
the bolts of model oil-pump (the second and the third columns in
Fig. 9) are distinguished by our work. And our method gets similar
satisfactory result for smooth organic model. Our splat SDF values
also have pose-invariant (Fig. 10). In addition, the calculation of
SDF includes a mass of intersection ray casting, which leads to
high time complexity. Our splat SDF method only computes SDF
values of subsampled triangles, so we can achieve the real-time
calculation even for big noisy models, like Fig. 18.

We define cluster SDF value fspI) as an weighted average of
splats SDF values. The splat's area is used as weight. The part-
aware similarity metric between two clusters is defined as the rate
of two SDF values:

Tl =

®)

Min(f spr(@). f spr()

Setobal(l-J) = Max(fspp(D), fspr()’

©)
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Fig. 9. Comparison between traditional SDF method [23]and our method. First line shows triangle SDF values and the second line is ours. (The traditional SDF values are

based on triangles of mesh, which apparent is clear than our splat SDF method.)

Fig. 10. The SDF values of splats are pose-invariant.

4.3. Combination metrics

With the patch-aware metric Sj,.(l,J) and part-aware metric
Sgiobal(L,]), we use an adaptive pattern to build combined similarity
metric S(I,]) between two cluster I,] as

Slocal(IJ) =a- Slocal(L.’)"'ﬂ : Sgloball’] (7)

where the parameters, o and f# control the relative importance of
the two metrics. In the first few merging of our hierarchical
framework, we are primarily interested in patch level structure,
therefore we should emphasize the patch-aware metric. For high
level merging, the importance of the part-aware metric ought to
be increased. For this reason, we set @ = sin*(@) and 8= cos2(6),
where @ is an average dihedral angle of the common edge shared
by two clusters. By this setting, the global part-aware similarity
metric plays a more important role with increasing angle 6.

5. Implementation

Implementation details of the presented algorithm are present
in this section. Since the calculation of SDF needs consistently
normals, we unify normals in the preprocessing. After all splats are
received, we compute OBB(i) using a discrete intersection of 2D
rectangle rotatigp algorithm and store the elements Len(i), Wid(i),
OBB(i), ﬁ; and d; for later use. In addition, we use CGAL package
for 3D fast intersection and distance computation for our SDF
solution. Our method obtains splats and calculates their similarity
metric automatically, but the output of our hierarchical clustering
is a binary tree which denotes the different levels of segmentation.
Users need to decide which level should be chosen as the final

Fig. 11. The red line is smoothed by graph cut smoothing. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

reasonable segment result. We also propose a boundary smooth-
ing in the postprocessing to improve the segmentation quality.

As the final step, we employ a graph cut optimization to refine
the boundaries between the segments. We create a label l? for
each triangle t;, which is signed as l? =m if i belongs to segment
region m, and sign the new label as [; for t; after graph cut
optimization. The energy function E(X) is defined in a similar
way to [39], which contains two terms. We set the data term to
strictly preserve each segment, but allow the border to move along
a narrow band between segments and improve boundary smooth-
ness. We define the data term formally like Ref. [25]:

if =1,

Eq(x) =
10%) (dist(Byn)/maxdist(Byn))'®  if I 1; and I; = n.

®



H. Zhang et al. /| Computers & Graphics 51 (2015) 136-145 141

Fig. 12. Segmentations obtained with our algorithm on a collection of organic models. A quantitative evaluation on the full segmentation benchmark with 380 meshes is
reported in Fig. 17.

Fig. 14. Segmentations obtained with our algorithm on CAD models.

where dist(n) is the distance of the triangle to the boundary B, smoothness term is defined as
between the segment with labels m and n. The power 1.5 incr-
eases the cost faster for triangle away from the boundary. The Ea(Xi, X)) = Enormat (Xi, X;) + Egdger (X, X}) C))
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Fig. 15. Segmentations obtained with our algorithm on scanned objects.

Fig. 16. Illustration of a decomposition relation of model oil-pump.

where Epormai(Xi,X;) = | cos(@)| and Egqger (Xi, X)) = len(i, j)/(len(i, j) +
avelen) if triangle t; and ¢; are divided into different segment after
process; otherwise, Enomma(Xi,X)=1—|cos(a)| and Egggee(X;,
x;) =0. Here, len(i,j) is the length of the common edge shared by
triangle t; and t;, avelLen is the average edge length of the mesh.
Clearly, E>(x;,x;) ensures the smoothness of the boundary and
allows the border to move along a narrow band (see Fig. 11).

6. Experimental results

The hierarchical segmentation presented in this paper is
suitable for wide applicable scope. The patch-based or part-
based similarity can be used separately. Fig. 13 illustrates examples
by using the patch-metric or part-metric alone. Besides, the
combination metric ensures to get a hierarchical relationship (as
Figs. 1 and 16). Result analysis for each specific type of model is
presented in this section.

CAD models: Fig. 14 presents visual examples of segmentation
results of CAD models, where many shapes have sharp feature
edge. So, this type model is easy to segment. However, great
majority of CAD models are obtained by reconstruction of scanned
point clouds, which typically are corrupted with noise and outlier.
It is difficult to distinguish noises and features. Fig. 15 shows
segmentation results of scanned objects. Compared to traditional
segmentation methods, the advantage of this paper is that the
decomposition relations are implied in the hierarchy. Fig. 16 shows
a more detailed example of decomposition relations.

Organic models: The biggest advantage of this method is that it
can get part-based segmentation meanwhile. Fig. 12 presents
segmentations obtained with our algorithm on a collection of
organic meshes. Those models are selected from benchmark of
[27]. Fig. 17 shows a comparison of the algorithms according to the
various measures of the benchmark. From the results in Fig. 17, we
can see that our algorithm is comparable to the state-of-the-art,
achieving results similar to shape diameter function and rando-
mized cuts, while also having the advantage of being applicable to
get patch-based segment.

Our algorithm only considers the similarity of neighboring
regions. So, it pays more attention on tiny feature. Fig. 19 shows
flange segment result, in which gear is preserved in the merging
process. More examples in Fig. 12 like armadillo’s finger, human's
ear and nose can confirm this behavior.

6.1. Efficiency

All examples are tested on a PC with Intel core i5 with 2.53 GHz
CPU and 2.00 GB RAM. Table 1 presents runtime of our method. To
speed up the whole clustering process, the splat SDF values are
pre-computed and stored for later use. HC time in this table means
time required to compute across the whole hierarchy for models. It
is noticed that even though the triangle numbers increase greatly,
the total time grows slowly because we use splats as the basic
elements of clustering. Fig. 18 shows an example of a noisy big city
with more than 100w triangles. It can also get result under 10 s.



H. Zhang et al. /| Computers & Graphics 51 (2015) 136-145 143

a 1 1 : . . . . . b . . . ' ‘ ’
I Randindex | I Hamming
06| 0.9 H []Hamming-Rm .
: I Hamming-Rf
08— 1
05 07+ 1
04k 06 8
8 € o5t 1
w w
03} 04k
02+ 03+
02+ 1
01+
. 01}t IDI IHI |
ot 0
Human Rand Shape Norm Core Rand Fit Human Rand Shape Norm Core Rand  Fit K- HSC
Cuts Diam Cuts Extra Walks Prim Means Cuts Diam Cuts Extra Walks Prim Means
C I T T T T T d T T T T T T
I e | [
0.25 1 I LCE |
05 B
g 5
o &

02+
015
01}
0.0 II

Human Rand Shape Norm Core Rand  Fit K- HSC
Cuts Diam Cuts Extra Walks Prim Means

(=]

Human Rand Shape Norm Core Rand  Fit K- HSC
Cuts Diam Cuts Extra Walks Prim Means

Fig. 17. Quantitative evaluation of our segmentation algorithm on the benchmark of [27]. Our algorithm is named HSC (hierarchical splat clustering).

Fig. 18. Segmentations obtained with our method on a big noisy city model.

6.2. Limitation

One limitation of our approach is that it do not suit for all
semantic parts adhere to our part characterization. As shown in
the example in Fig. 20, some structure is unable distinguished by
splat similarity. In addition, we pay more attention to details.
Sometimes, we have to retain some fine features in order to obtain
a reasonable division. Interactive merging tool is used to remove
these subtle features in rare cases.

7. Conclusions and future work

We present a hierarchical clustering segmentation algorithm
that uses a novel similarity metric to combine patch-aware simi-
larity and part-aware similarity. The main frame divides the object
into a hierarchy. Thus, we could generate patch regions and part
components in one hierarchical clustering process. The component
decomposition relations are implicit in this hierarchy. We also use a
graph cut optimization to optimize the segmentation boundary. We
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| 4

A

Fig. 19. Details of our segmentations of model flange. It is noticed that our method catch more tiny features.

Table 1

Runtime of our method.
Model Face numbers Splat numbers VSA (s) SDF (s) HC (s)
Teddy 27,648 1134 0.889 4.389 0.298
Casting 10,204 498 0.615 3.012 0.205
Flange 66,691 4119 1.030 5.98 0.506
OilPump 79,780 941 0.890 3.88 0.349
Armadillo 345,944 4112 2.013 6.415 0.589
Bigcity 1,051,986 4634 2.623 6.75 0.62

Fig. 20. Limitations of our approach: (a) hand model. (b) splats of hand models. (c) unsatisfactory result.

are able to process arbitrary shapes, regardless whether the shape is
sharp or smooth, accurate or noisy, sparse or dense. Because the
presented method does not need complicated topological arith-
metic, we could realize the other versions which apply for point
clouds in the future.
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